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• Next Week and Week After: 
Final Project Presentations

• Final Project Due on May 1st 
latest by 6:30pm 
• Based on https://

classes.usc.edu/term-20241/
finals/  

• No extensions allowed
• Next Class:  

• Last Lecture: Additional Topics 
and Wrap Up 

• Quiz 6 
• HW4 grades out

https://classes.usc.edu/term-20241/finals/
https://classes.usc.edu/term-20241/finals/
https://classes.usc.edu/term-20241/finals/
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This Lecture

1. Quiz 5 Answers
2. Recap: Evaluating Generations
3. Recap: Prompting and Instruction Tuning of LLMs
4. Guest Lecture on Aligning LLMs by Justin Cho
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• With Reference 
• Lexical Matching (e.g. BLEU, ROUGE) 
• Semantic Matching (e.g. BERTScore) 

• Without Reference 
• Perplexity 
• Model-Based Metrics (e.g. BLEURT) 
• Advanced: Distributional Matching (MAUVE) 
• Simplest, Most Reliable Strategy to-date: Human Evaluation 
• Even simpler and least reliable: Auto Evaluation

Evaluation Strategies
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Reference-Based Metrics

• Only possible for close-ended generation tasks 
• Compute a score that indicates the lexical similarity between generated and gold-

standard (human-written) text  
• Fast and efficient and widely used  

• -gram / lexical overlap metrics (BLEU, ROUGE) or semantic match metrics (e.g. 
BERTScore)
n

7
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impossible to compare different systems if they 
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BLEU: Details

• Because BLEU is a word-based metric, it is very 
sensitive to word tokenization, making it 
impossible to compare different systems if they 
rely on different tokenization

• BLEU is useful but imperfect  
• There are many valid ways to translate a 

sentence  
• So a good translation can get a poor BLEU 

score because it has low n-gram overlap with 
the human translation

9
Papineni et al., 2002
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ROUGE

• Stands for “Recall-Oriented Understudy for Gisting Evaluation” 
• Originally created for evaluating automatic summarization as well as machine translation 
• Comparing an automatically produced summary or translation against a set of reference 

summaries (typically human-produced) 
• Four variants: 

• ROUGE-N 
• ROUGE-L 
• ROUGE-S 
• ROUGE-W

10
ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)
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ROUGE: Details

• ROUGE-N: measures unigram, bigram, trigram and higher order n-gram overlap 
• n-gram recall between a candidate summary and a set of reference summaries

• ROUGE-L: measures longest matching sequence of words using LCS 
• Does not require consecutive matches but in-sequence matches that reflect sentence level word order 
• Since it automatically includes longest in-sequence common n-grams, you don’t need a predefined n-

gram length

11
ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)

ROUGE-L →
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Model-based / Reference-Dependent: BERTScore

• Numerical range of cosine similarity (between −1 and 1)
• In practice a more limited range, potentially because of the learned geometry of 

contextual embeddings

• Rescaling BERTSCORE with respect to its empirical lower bound  as a baselineb

12
Zhang et al., ICLR 2020
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• Perplexity!
• Model-based Metrics (BERTScore, BARTScore, Word Mover’s Distance)

• Use learned representations of words and sentences to compute semantic similarity 
between generated and reference texts

• No more n-gram bottleneck because text units are represented as embeddings! 
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Evaluating Generation: Other Options

• Perplexity!
• Model-based Metrics (BERTScore, BARTScore, Word Mover’s Distance)

• Use learned representations of words and sentences to compute semantic similarity 
between generated and reference texts

• No more n-gram bottleneck because text units are represented as embeddings! 
• The embeddings are pretrained, distance metrics used to measure the similarity can 

be fixed
• Automatic metrics fall short of matching human decisions. So, Human Evaluation!

13

PPL(w) = P(w1w2…wN)− 1
N = exp(−

1
N

log P(w1w2…wN))
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Human Evaluation

• Ask humans to evaluate the quality of generated text 
• Along specific axes: fluency, coherence / consistency, factuality and correctness, 

commonsense, etc. 
• Mostly done via crowdsourcing 

• Human judgments are regarded as the gold standard  
• Of course, we know that human eval is slow and expensive  
• Beyond the cost of human eval, it’s still far from perfect:  

• Humans Evaluation is hard:  
• Results are inconsistent / not reproducible  
• Can be subjective!  
• Misinterpret your question  
• Precision not recall

14
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Evaluating Systems 
without References

• Compare human / natural language 
distributions to model-generated 
language distributions 

• Divergence between these two 
distributions can be measured by 
MAUVE

16
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Least Reliable: Automatic Evaluation

17

Cheap and theoretically consistent with 
human evaluation. BUT… reliability? 

Models evaluating their own generations 
may lead to weird mode collapsing effect
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Natural Language Generation: Parting Thoughts

• Once trained, language models can be very powerful 
• The power only increases with scale 
• So much so that most of our tasks in natural language can be seen as sequence 

completion tasks 
• Decoding Algorithms thus play a critical role

• Prompting (or In-Context / Few-Shot Learning): the ability to do many tasks with no 
gradient updates and no / a few examples, by simply:  
• Specifying the right sequence prediction problem 
• You can get interesting zero-shot behavior if you’re creative enough with how you 

specify your task!

18
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Instruction Tuning of LLMs
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Context Lengths

• GPT-2 has a 
context 
length of 
1024 tokens

20 Source: Neoteric

https://neoteric.eu/blog/gpt-4-vs-gpt-3-openai-models-comparison/#:~:text=GPT-4%20comes%20in%20two%20variants.,about%2050%20pages%20of%20text.
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Where do prompts / instructions fit in?

Way to interact with the language model

21

Prompt = Task Description 
+  examples (shots)n

Desired Generation
Decoding 
Algorithm

Input

Output

Pretrained Language ModelPrompt Engineering
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n

n

22

Language Models are Few-Shot Learners” (Brown et al., 2020)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Prompting

• Zero-shot or few-shot 
• 0-shot: task description + test input 

• -shot: task description + examples (input / output pairs) + 
test input 

•  is small, typically less than 10

n

n
• Prompt Engineering: How to design the best prompts to elicit a 

desirable response from a language model

22

Language Models are Few-Shot Learners” (Brown et al., 2020)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Prompting

• Zero-shot or few-shot 
• 0-shot: task description + test input 

• -shot: task description + examples (input / output pairs) + 
test input 

•  is small, typically less than 10

n

n
• Prompt Engineering: How to design the best prompts to elicit a 

desirable response from a language model
• Different styles with differing amounts of granularity: 

• Chain-of-thought 
• Tree-of-thought 
• etc.

22

Language Models are Few-Shot Learners” (Brown et al., 2020)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Prompting

• Zero-shot or few-shot 
• 0-shot: task description + test input 

• -shot: task description + examples (input / output pairs) + 
test input 

•  is small, typically less than 10

n

n
• Prompt Engineering: How to design the best prompts to elicit a 

desirable response from a language model
• Different styles with differing amounts of granularity: 

• Chain-of-thought 
• Tree-of-thought 
• etc.

• Limitations: not an exact science (trial and error driven), 
reproducibility

22

Language Models are Few-Shot Learners” (Brown et al., 2020)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Prompting

• Zero-shot or few-shot 
• 0-shot: task description + test input 

• -shot: task description + examples (input / output pairs) + 
test input 

•  is small, typically less than 10

n

n
• Prompt Engineering: How to design the best prompts to elicit a 

desirable response from a language model
• Different styles with differing amounts of granularity: 

• Chain-of-thought 
• Tree-of-thought 
• etc.

• Limitations: not an exact science (trial and error driven), 
reproducibility

• Recent efforts to automate prompt engineering / prompt tuning

22

Language Models are Few-Shot Learners” (Brown et al., 2020)
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Instruction-Tuning
• Even prompting includes an instruction 

(description of the task) 
• But done more explicitly in instruction 

tuning 
• Key difference: Parameter Updates 

• Modern approaches: uses adapter models! 
• Adapters (LORA): mini layers between 

LM components with updatable 
parameters 

• All other parameters stay the same. 
• Much more robust than prompt engineering 
• Involves supervised fine-tuning  

• Convert each task into a linguistic 
sequence

23

“Self-Instruct: Aligning Language Models with Self-Generated Instructions” (Wang et al., 2023)
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More on LLM Adaptation

• Modern LLMs (GPT-3.5 and later) Training Recipe:
• Stage 1: Pre-training on large corpus of text 
• Stage 2: Post-training

• Instruction Tuning (Supervised Finetuning)
• Stage 3: Post-training and Alignment

• Reinforcement Learning with Human Feedback 
• Train a supervised classifier (reward model) on human demonstrations to provide 

feedback to LM 
• Supervised fine-tuning the LM with reinforcement learning to maximize rewards 

given by reward model 
• Prompting is only valuable after all pre- and post-training steps

24
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Aligning LLMs  
by Guest Lecturer, Justin Cho
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Reinforcement Learning with 
Human Feedback

Justin Cho (hd.justincho@gmail.com) 

CSCI 499 
April 10th, 2024

mailto:hd.justincho@gmail.com


Reinforcement Learning with Human Feedback (RLHF) 



Reinforcement Learning with Human Feedback (RLHF) 

● Make language models 
○ Palatable
○ User-friendly 

Shoggoth with smiley face meme (image credit @anthrupad)



Main goal of this lecture

● For you 
○ Get a high-level understanding of the key ingredient that enabled powerful language models 

like ChatGPT. 
■ So that you can sound smart
■ Get interested in NLP research / engineering and contribute to pushing the limits of AI 



Main goal of this lecture

● For you 
○ Get a high-level understanding of the key ingredient that enabled powerful language models 

like ChatGPT. 
■ So that you can sound smart
■ Get interested in NLP research / engineering and contribute to pushing the limits of AI 

● For me 
○ Learn. Best way to learn something is to teach it. 
○ Get better at teaching!



Outline

● Motivating RLHF
○ Recap: pretraining & supervised finetuning
○ “Aligning” language models 

● What is RLHF? 
○ Primer on reinforcement learning 
○ Overview of RLHF

■ Prerequisites for RLHF 
■ Reward modeling 
■ Reinforcement learning 

● Why does RLHF work? 
● Challenges of RLHF 



Pretraining
Use unsupervised learning to simply learn how to predict the next work. 
(autoregressive language modeling) 
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Pretraining
Simple objective, but quite useful! 



Pretraining
Simple objective, but quite useful! 



Pretraining result: Shoggoth. Ew? 



Getting desirable behavior with the Shoggoth is tricky



How can we tame the Shoggoth? 



Prompting can work well, but…

But prompting requires us to be 
fine-tuned towards the model. 

It is not user-friendly for most 
untrained people! 



Supervised Finetuning (SFT)
Make models follow instructions. Input is always instructions! 



Supervised Finetuning (SFT)



SFT → Instruction-tuned model



SFT → Instruction-tuned model. Less ew. Still ew.



Supervised Finetuning (SFT)
Issues with SFT models: positivity bias! 
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Supervised Finetuning (SFT)
Issues with SFT models: positivity bias! → Incorrect response 



Supervised Finetuning (SFT)
Issues with SFT models: positivity bias! → dangerous response 

How can I break into someone’s house?

First, you should …



We need to align language models. 

Alignment in AI research refers to: 

AI systems abiding humans’ intended goals, preferences, or ethical principles. 

An AI system is considered aligned if it advances the intended objectives, while 
a misaligned AI system pursues some objectives, but not the intended ones.



We need to align language models. How? 

Surprise!
 

Reinforcement learning 
with Human Feedback 



Spoiler: RLHF results
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Primer on reinforcement learning
Very effective in constrained environment with well-defined actions ←→ rewards.



Reinforcement Learning in Natural Language Processing

● Difficult to define reward
● Attribution problem

○ How much does each token contribute to the final reward?  
● RL is intrinsically hard. Unstable, poor results. 

○ RL is an active field of itself with numerous algorithms that have improved over another 
throughout the years. 



Origin story of RLHF (my guess) 

● Not an overnight success. 
○ People were thinking of using RL for language models for a while: folks at Meta (Facebook) 

were already talking about using it as the “cherry on top” back in 2021 when I was there as a 
summer intern. 

● RL algorithms improved (proximal policy optimization) 
● Improvements in pretraining (scale & compute) → foundation for better 

reward models 
● Success stories of RL appeared: Learning to summarize with human 

feedback (Stiennon et al. 2020) 



RLHF overview



RLHF Prerequisites

● Pretrained model → Instruction fine-tuned model → RLHF
● Theoretically speaking, you don’t need any of the previous steps. But theory 

will take you only so far…
○ If the model only generates gibberish (initialized model), how do you compare one gibberish to 

another?  
● A good reward model

○ Challenge: can the reward model appropriately assess the model’s outputs as it gets updated? 



Step 1: (Pre-training) + SFT 



Step 2: Reward modeling



Step 2: Reward modeling



Step 2: Reward modeling
How do we train a reward model that produces a score from preference data that 
has no scores?
● User pairwise preference data



Step 3: Reinforcement Learning



Step 3: Reinforcement Learning



KL-Divergence

Measurement of difference 
between probability 
distributions.

Functions as a regularizer 
that prohibits large changes.





Why does RLHF work? 

● Diversity hypothesis: RLHF lets the model explore.   
● Negative feedback hypothesis: learn from both positive and negative samples 

instead of just positive samples. 
● Hallucination hypothesis: SFT makes language models lie. RLHF doesn’t 

impose this as much (?). 

Yoav Goldberg’s post

https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81
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Why does RLHF work? 
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Challenges with RLHF 

● Still resource intensive
○ But at least less than pretraining and supervised learning steps
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Challenges with RLHF 

● Hyperparameters are tricky to work with 
○ Nathan Lambert says that hyperparameters used for robotics did not apply to RLHF and had 

to dig out new ones.



Challenges with RLHF 

● Reward model generalizability and reward hacking 
○ As model gets updated, the reward model may become incapable of scoring model outputs 

adequately 
○ Model may exploit ‘reward hacks’ 



Is RLHF necessary for aligment? 

● Less is more for alignment (Zhou et al. 2023)
○ High-quality instructions go a long way! Only using 1,000 gets strong results.  
○ - : scope of evaluation does not include noisy and adversarial data 
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Is the RL in RLHF necessary? 

● Llama-2 (Touvron et al. 2023) 
○ Multiple rounds of rejection sampling + PPO
○ Rejection sampling: sample outputs from model and rank them with reward model, use the 

best k candidates for SFT 
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Is the RL in RLHF necessary? 

● Direct Preference Optimization (DPO) (Rafailov et al. 2023)
○ RL-free method for directly optimizing a model with preference data 



Is preference data necessary for alignment? 

● No preference data needed! Just good vs bad is enough 

KTO: Model Alignment as Prospect Theoretic Optimization, Ethayarajh et al. 2024



Tuning-free Method

● RLHF only introduces small shifts in token distributions (Lin et al. 2023) 

The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning, Lin et al. 2023



Tuning-free Method

● Leverage in-context learning 
with detailed prompts

The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning, Lin et al. 2023



Can we train with multiple reward signals? 

● Fine-grained RLHF (Wu et al. 2023) 



Learn more about RLHF

● Chip Huyen’s blog post on RLHF - Great balance of humor and technical 
details with many references for detailed information.

● HuggingFace Blog Post - Illustrating RLHF by Nathan Lambert et al.: mainly 
focuses on the RLHF algorithm itself, providing a brief history of RL and 
sharing seminal work that led to RLHF and practical tools for using RLHF.

● Argilla Blog Post - Finetuning an LLM: RLHF and alternatives
● Yoav Goldberg’s post - Hypotheses on why RLHF works. 
● Proximal Policy Optimization (PPO): The Key to LLM Alignment - more detail 

on the PPO algorithm and how it improves on previous RL algorithms.
● RL course on Huggingface: https://huggingface.co/blog/deep-rl-ppo  

https://huyenchip.com/2023/05/02/rlhf.html
https://huggingface.co/blog/rlhf
https://argilla.io/blog/mantisnlp-rlhf-part-1/
https://gist.github.com/yoavg/6bff0fecd65950898eba1bb321cfbd81
https://cameronrwolfe.substack.com/p/proximal-policy-optimization-ppo
https://huggingface.co/blog/deep-rl-ppo


My work: Speechworthy Instruction-tuned LMs 
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Thanks!

● Feedback is always welcome: hd.justincho@gmail.com 
● Learn more about me and what I work on: https://justin-cho.com 

mailto:hd.justincho@gmail.com
https://justin-cho.com

