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Logistics  / Announcements

• Upcoming Guest Lectures 
• Lecture on Prompting: Qinyuan Ye 
• Lecture on Alignment: Justin Cho
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• Today: Quiz 5
• Wednesday: HW4 due
• HW3 Grades: Out latest by tomorrow
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Lecture Outline

• Mid-Semester Feedback 
• Recap: Tokenization 
• Recap: Natural Language Generation - Basics 
• Recap: Classic Inference Algorithms: Greedy, Exhaustive and Beam Search 
• Modern Generation Algorithms 
• Evaluating Generations 
• Quiz 5
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Transformers
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Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary 
• Adapted for word segmentation from data compression technique (Gage, 1994) 

• Instead of merging frequent pairs of bytes, we merge characters or character sequences 
• Algorithm: 

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.  
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword  

• This is a learned operation! 
• Only combine pairs (hence the name!) 

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.  
• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols 
• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 

models.
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BPE in action

8
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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Recap: Natural 
Language Generation
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Language Generation: Fundamentals

In autoregressive text generation models, at each time step , our model takes in a sequence of tokens as input  
 and outputs a new token,  

For model  and vocabulary , we get scores 

t
S = fθ(y<t) ∈ ℝV ̂yt

fθ( ⋅ ) V S = fθ(y<t) ∈ ℝV
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Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

P(w |y<t) =
exp(Sw)

∑v∈V exp(Sv)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Language Generation: Training

• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t
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Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word  in the training data  

• “Teacher forcing” (reset at each time step to the ground truth)
y*t

y*ty*0
y*t+1
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Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step

12

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))
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Recap: Classic Inference Algorithms: 
Greedy and Beam Search
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Holtzmann et al., 2020

Decoding

• Generation from a language model is 
also called decoding / inference 

• Strategy so far is Greedy: Take  
on each step of the decoder to produce 
the most probable word on each step 
• Not looking ahead, making the 

hastiest decision given all the 
information we have 

• Problem: No wiggle room for errors 
• Problem: Bland / repetitive 

generations (degeneracy)

arg max
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Exhaustive Search Decoding

• We could try computing all possible sequences  

• This means that on each step t of the decoder, we’re tracking  possible partial 
translations, where  is the vocabulary size  

• This complexity is far too expensive!

y
Vt

V
O(VT)

15

• Ideally, we want to find a (length ) translation  that maximizesT y
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the  most probable partial 
translations (which we call hypotheses)  

•  is the beam size (in practice around 5 to 10, in NMT)

k

k
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k
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• A hypothesis has a score which is its log probability:
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the  most probable partial 
translations (which we call hypotheses)  

•  is the beam size (in practice around 5 to 10, in NMT)

k

k
• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better  

• We search for high-scoring hypotheses, tracking top  on each stepk
• Beam search is not guaranteed to find optimal solution 
• But much more efficient than exhaustive search!
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Beam Search Decoding: Example
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time steps  
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• Place it aside and continue exploring other hypotheses via beam search. 
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• We reach time step  (where  is some pre-defined cutoff), or  

• We have at least  completed hypotheses (where  is pre-defined cutoff)
T T
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Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token 
• For e.g. <s> he hit me with a pie </s>

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different 
time steps  
• When a hypothesis produces </s>, that hypothesis is complete.  
• Place it aside and continue exploring other hypotheses via beam search. 

• Usually we continue beam search until:  

• We reach time step  (where  is some pre-defined cutoff), or  

• We have at least  completed hypotheses (where  is pre-defined cutoff)
T T

n n
• Beam Search: Deprioritize short sequences by length normalization

30
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Beam Search Decoding: Parting Thoughts

• Problem with this: longer hypotheses have lower score
• Fix: Normalize by length. Use this to select top one instead

31

• We have our list of completed hypotheses. Now how to select top one?

• Each hypothesis  on our list has a scorey1, …, yt

But this is expensive!
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Maximization Based Decoding

• Either greedy or beam search
• Beam search can be more effective with large beam width, but also more expensive
• Another key issue: 

32

Generation can be bland or 
repetitive (also called degenerate)

Holtzmann et al., 2020

Perhaps we should not really be maximizing! 
What else could we do?
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Solution: Don’t Maximize, Pick a Sample

33

• Sample a token from the distribution of tokens. 
• But this is not a random sample, it is a sample for the learned model distribution 

• Respects the probabilities, without going just for the maximum probability option 
• Or else, you would get something meaningless 
• Many good options which are not the maximum probability!
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Modern Generation: 
Sampling
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Pure / Ancestral Sampling

35

yt ∼ Pt(w) =
exp(Sw)

∑v∈V exp(Sv)• Sample directly from Pt
• Still has access to the entire 

vocabulary
• But if the model distributions are 

of low quality, generations will be 
of low quality as well

• Often results in ill-formed 
generations
• No guarantee of fluency
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Top-  SamplingK
• Problem: Ancestral sampling makes every token in the vocabulary 

an option 
• Even if most of the probability mass in the distribution is over 

a limited set of options, the tail of the distribution could be 
very long and in aggregate have considerable mass

• Many tokens are probably really wrong in the current context. 
Yet, we give them individually a tiny chance to be selected. 

• But because there are many of them, we still give them as a 
group a high chance to be selected. 

• Solution: Top-  sampling K
• Only sample from the top  tokens in the probability 

distribution
K
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Top-  Sampling: Value of K K

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability distribution  

• Common values are  = 50 

K
K

K

37

• Increase  yields more diverse, but risky outputs K
• Decrease  yields more safe but generic outputsK
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Top-  Sampling: IssuesK

38
Image Source: Holtzmann et al., 2019

Top-  sampling can cut off too quicklyK

Top-  sampling can also cut off too slowly!K

We can do better than having one-size-fits-all: a 
fixed  for all contexts K
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Nucleus (Top- ) SamplingP
• Solution: Top-  sampling 

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is concentrated)  

• Varies  depending on the uniformity of 

P
P

K Pt
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Comparing different 
decoding algorithms

• Generate text to continue a 
given context 
• Open-ended generation

• Same decoding algorithms are 
also useful for close-ended 
generation tasks

41
Holtzman et al., ICLR 2020



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

42

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

42

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

• We can apply a temperature hyperparameter  to the softmax to 
rebalance 

τ
Pt

42

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

• We can apply a temperature hyperparameter  to the softmax to 
rebalance 

τ
Pt

42

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)

• Raise the temperature  > 1:  becomes more uniform  

• More diverse output (probability is spread around vocab) 
τ Pt



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

• We can apply a temperature hyperparameter  to the softmax to 
rebalance 

τ
Pt

42

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)

• Raise the temperature  > 1:  becomes more uniform  

• More diverse output (probability is spread around vocab) 
τ Pt

• Lower the temperature  < 1:  becomes more spiky  

• Less diverse output (probability is concentrated on top words)
τ Pt



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

• We can apply a temperature hyperparameter  to the softmax to 
rebalance 

τ
Pt

42

Temperature is a 
hyperparameter for 
decoding: It can be 

tuned for both beam 
search and sampling.
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Next Class: Evaluating 
Generations (Me), 

Prompting and 
Instruction Tuning 

(Guest Lecture)
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