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Logistics  / Announcements

• HW4 due on Wed, 3rd April
• Project discussions on 8th April
• Next Monday: Quiz 5
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Outline

• Recap: Pretraining with Encoder-Decoder Models 
• Recap: Tokenization in Transformers 
• Natural Language Generation 
• Classic Inference Algorithms: Greedy and Beam Search
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Recap:  
Transformer Encoder-Decoders
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Pretraining

• Not restricted to language modeling! 
• Can be any task.  
• But most successful if the task definition is 

very general 
• Hence, language modeling is a great 

pretraining option 
• Three options!

6

Token / Sequence 
Classification

Sequence-to-sequence

Language Models
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Pretraining Encoder-Decoder Models

• For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

7

The encoder portion benefits from 
bidirectional context; the decoder 
portion is used to train the whole 
model through language modeling.
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T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

8

Replace different-length spans from the 
input with unique placeholders; decode out 
the spans that were removed!

Still uses an objective that looks like 
language modeling at the decoder side.
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T5: Task Preparation
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T5 can be finetuned to 
answer a wide range of 
tasks, where the input and 
output are expressed as a 
sequence of tokens
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Recap: Tokenization in 
Transformers
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The Input Layer
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The Input Layer

• So far, we have made some assumptions about a 
language’s vocabulary

• Our approach so far: use a known, fixed vocabulary 
• Built from training data, with tens of thousands of 

components
• However, even with the largest vocabulary, we may 

encounter out-of-vocabulary words at test time
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The Input Layer

• So far, we have made some assumptions about a 
language’s vocabulary

• Our approach so far: use a known, fixed vocabulary 
• Built from training data, with tens of thousands of 

components
• However, even with the largest vocabulary, we may 

encounter out-of-vocabulary words at test time
• Our approach so far: map novel words seen at test 

time (OOV) to a single UNK
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How to get the words?

• Problem: break the text into a sequence of discrete tokens
• For alphabetic languages such as English, deterministic scripts usually suffice to achieve 

accurate tokenization
• However, in languages such as Chinese and Swahili, words are typically composed of a 

small number of characters, without intervening whitespace 

12

Or, more accurately, the tokens?
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Word Structure in Language
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Word Structure in Language
• Finite vocabulary assumptions make even less sense in many languages. 

• Many languages exhibit complex morphology, or word structure. 
• The effect is more word types, each occurring fewer times.
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Source: Wiktionary

Example: Swahili verbs 
can have hundreds of 
conjugations, each 
encoding a wide variety 
of information. (Tense, 
mood, definiteness, 
negation, information 
about the object, ++)

-ambia = to tell
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Subword Modeling

• Solution: look at subwords!
• Subword modeling encompasses a wide range of methods for 

reasoning about structure below the word level
• Subwords may be parts of words, characters, bytes

• The dominant modern paradigm is to learn a vocabulary of parts of 
words (subword tokens) 

• At training and testing time, each word is split into a sequence of 
known subwords

• Different algorithms:
• Byte-Pair Encoding
• WordPiece Modeling
• Follow different strategies. Often contain prepending / appending 

special tokens (##, </w>)

14
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 Word structure and subword models

• Common words end up being a part of the subword vocabulary, while rarer words are 
split into (sometimes intuitive, sometimes not) components.  

• In the worst case, words are split into as many subwords as they have characters.

15
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• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary
• Adapted for word segmentation from data compression technique (Gage, 1994)

• Instead of merging frequent pairs of bytes, we merge characters or character sequences
• Algorithm:

1. Start with a vocabulary containing only characters and an “end-of-word” symbol. 
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword 

• This is a learned operation!
• Only combine pairs (hence the name!)

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. 
• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols
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Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary
• Adapted for word segmentation from data compression technique (Gage, 1994)

• Instead of merging frequent pairs of bytes, we merge characters or character sequences
• Algorithm:

1. Start with a vocabulary containing only characters and an “end-of-word” symbol. 
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword 

• This is a learned operation!
• Only combine pairs (hence the name!)

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. 
• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols
• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 

models.

16



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

17
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

18
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

18
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            
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BPE in action
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Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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WordPiece Modeling

• Algorithm from Google, similar to BPE
• Identifies subwords by adding a prefix (##)

• Each word is initially split by adding ## to all the characters inside a word
• So, for instance, “word” gets split like this: w ##o ##r ##d
• For this vocabulary: 

• ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
• Splits may look like: 

• ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u" 
"##n", 4), ("h" "##u" "##g" "##s", 5)

• On merging, ## between the two tokens is removed
• This explains the presence of the token “##ing”

20
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WordPiece Modeling Outcome

• Different stopping criteria: number of merges or size of resulting vocabulary 
• In the worst case, at test time, words are split into as many subwords as they have characters 
• Common words end up being a part of the subword vocabulary, while rarer words are split 

into (sometimes intuitive, sometimes not) components

21

WordPiece Outcome



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Tokenization: Questions

• Where does the token “##ing” come from? 
• In WordPiece tokenization, all non-starting characters are initialized as ##x.  

• Like: h, ##e, ##l, ##l, ##o.  
• Upon merging, only the first segment keeps its ##. 

• How is tokenization done in Chinese? 
• Follows the same broad overall algorithm, but the initial split into characters involve 

language-specific rules 
• e.g. stroke-level tokenization

22

Source: https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt
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Natural Language Generation

• Natural language understanding and natural language generation are 
two sides of the same coin
• In order to generate good language, you need to understand 

language
• If you understand language, you should be able to generate it (with 

some effort)
• NLG is the workhorse of many classic and novel applications

• AI Assistants
• Translators
• Search summarizers

24
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Rashkin et al., 2020 Parikh et al., 2020

Krause et al., 2017
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Language Generation: Fundamentals

In autoregressive text generation models, at each time step , our model takes in a sequence of tokens as input  
 and outputs a new token,  

For model  and vocabulary , we get scores 

t
S = fθ(y<t) ∈ ℝV ̂yt

fθ( ⋅ ) V S = fθ(y<t) ∈ ℝV

29

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

P(w |y<t) =
exp(Sw)

∑v∈V exp(Sv)
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Language Generation: Training

• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t

30

Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word  in the training data y*t
• “Teacher forcing” (reset at each time step to the ground truth)

y*ty*0
y*t+1
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Teacher Forcing

• Strategy for training decoders / language models

• At each time step  in decoding we force the system to use the gold target token from 
training as the next input , rather than allowing it to rely on the (possibly erroneous) 
decoder output 

t
xt+1

̂yt
• Runs the risk of exposure bias!

• During training, our model’s inputs are gold context tokens from real, human-
generated texts

• At generation time, our model’s inputs are previously–decoded tokens

31
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Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step

32

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))
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Classic Inference Algorithms: 
Greedy and Beam Search
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Decoding

• Generation from a language model is also called decoding
• Think encoder-decoder
• Also called inference

• Strategy so far: Take  on each step of the decoder to produce the most probable 
word on each step

arg max

• This is called greedy decoding
• Greedy Strategy: we are not looking ahead, we are making the hastiest decision 

given all the information we have

34
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Greedy Decoding: Issues

• Greedy decoding has no wiggle room for errors! 
• Input: the green witch arrived 
• Output: Ilego 
• Output: Ilego la  
• Output: llego la verde 

• How to fix this? 
• Need a lookahead strategy / longer-term planning

35
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Exhaustive Search Decoding

• We could try computing all possible sequences y
• This means that on each step t of the decoder, we’re tracking possible partial 

translations, where is vocab size 
Vt

V
• This complexity is far too expensive!O(VT)

36

• Ideally, we want to find a (length ) translation  that maximizesT y
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses) 
• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better 
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution 
• But much more efficient than exhaustive search!

37
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Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token 
• For e.g. <s> he hit me with a pie </s>

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different 
time steps  
• When a hypothesis produces </s>, that hypothesis is complete.  
• Place it aside and continue exploring other hypotheses via beam search. 

• Usually we continue beam search until:  
• We reach time step T (where T is some pre-defined cutoff), or  
• We have at least n completed hypotheses (where n is pre-defined cutoff)

51
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Beam Search Decoding: Parting Thoughts

• Problem with this: longer hypotheses have lower score
• Fix: Normalize by length. Use this to select top one instead

52

• We have our list of completed hypotheses. Now how to select top one?

• Each hypothesis  on our list has a scorey1, …, yt

But this is expensive!
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• Beam search can be more effective with large beam width, but also more expensive
• Another key issue: 

53

Generation can be bland or 
repetitive (also called degenerate)

Holtzmann et al., 2020
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Scale doesn’t solve this problem: even a 175 billion parameter LM still repeats when we 
decode for the most likely string.

Holtzmann et al., 2020
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• Generation fails to match the uncertainty distribution for human written text
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Holtzmann et al., 2020

Perhaps we should not really be maximizing! 
What else could we do?
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Solution: Don’t Maximize, Pick a Sample

56

• Sample a token from the distribution of tokens.
• But this is not a random sample, it is a sample for the learned model distribution

• Respects the probabilities, without going just for the maximum probability option
• Or else, you would get something meaningless
• Many good options which are not the maximum probability!
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Modern Generation: 
Sampling

57

Next Class!


