

Lecture 16: Natural Language Generation

Instructor: Swabha Swayamdipta USC CSCI 499 LMs in NLP Mar 27, Spring 2024

Slides adapted from Chris Manning, Xiang Lisa Li

Logistics / Announcements

Logistics / Announcements

- HW4 due on Wed, 3rd April
- Project discussions on 8th April
- Next Monday: Quiz 5

Outline

- Recap: Pretraining with Encoder-Decoder Models
- Recap: Tokenization in Transformers
- Natural Language Generation
- Classic Inference Algorithms: Greedy and Beam Search

Recap: Pretraining with Encoder-Decoder Models

Recap: Transformer Encoder-Decoders

Pretraining

• Not restricted to language modeling!

- Can be any task.
- But most successful if the task definition is very general
- Hence, language modeling is a great pretraining option
- Three options!

Decoders Language Models

Encoders

Token / Sequence Classification

Encoder-

Decoders

Sequence-to-sequence

Pretraining Encoder-Decoder Models

prefix of every input is provided to the encoder and is not predicted.

$$\begin{aligned} h_1, \dots, h_T &= \text{Encoder}(w_i) \\ h_{T+1}, \dots, h_2 &= Decoder(w_1, \dots \\ y_i \sim Ah_i + b, i > \end{aligned}$$

The encoder portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling.

For encoder-decoders, we could do something like language modeling, but where a

T5: A Pretrained Encoder-Decoder Model

• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

Original text

Thank you for inviting me to your party last week.

Still uses an objective that looks like language modeling at the decoder side.

Inputs

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

T5 can be finetuned to answer a wide range of tasks, where the input and output are expressed as a sequence of tokens

Pre-training Fine-tuning

T5: Task Preparation

Recap: Tokenization in Transformers

The Input Layer

 So far, we have made some assumptions about a language's vocabulary

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary Built from training data, with tens of thousands of components

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary
 - Built from training data, with tens of thousands of components
 - However, even with the largest vocabulary, we may encounter out-of-vocabulary words at test time

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary
 - Built from training data, with tens of thousands of components
 - However, even with the largest vocabulary, we may encounter out-of-vocabulary words at test time
 - Our approach so far: map novel words seen at test time (OOV) to a single UNK

How to get the words?

How to get the words?

Or, more accurately, the tokens?

How to get the words?

Or, more accurately, the tokens?

• Problem: break the text into a sequence of discrete tokens

How to get the words?

Or, more accurately, the tokens?

- Problem: break the text into a sequence of discrete tokens
- accurate tokenization

• For alphabetic languages such as English, deterministic scripts usually suffice to achieve

How to get the words?

Or, more accurately, the tokens?

- Problem: break the text into a sequence of discrete tokens
- accurate tokenization
- small number of characters, without intervening whitespace

• For alphabetic languages such as English, deterministic scripts usually suffice to achieve

• However, in languages such as Chinese and Swahili, words are typically composed of a

Word Structure in Language

Word Structure in Language

• Finite vocabulary assumptions make even less sense in many languages.

Word Structure in Language

• Finite vocabulary assumptions make even less sense in many languages. Many languages exhibit complex morphology, or word structure.

Word Structure in Language

- Finite vocabulary assumptions make even less sense in many languages. Many languages exhibit complex morphology, or word structure.
 - The effect is more word types, each occurring fewer times.

Word Structure in Language

• Finite vocabulary assumptions make even less sense in many languages. • Many languages exhibit complex morphology, or word structure.

- The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have hundreds of conjugations, each encoding a wide variety of information. (Tense, mood, definiteness, negation, information about the object, ++)

Source: Wiktionary

Conjug	ation of -	ambia																		
								No	n-finite fo	rms										
Form						Positive								Negative						
Infinitive					kuambia							kutoambia								
Decitive forms									ple finite f		Dissed									
Positive form						Singular ambia							Plural							
Imperative Habitual							ampia			hua	mbia			ambieni						
		Tustuut						Com	olex finite	forms	nua									
Polarity	Persons				Pers	Persons / Classes Classes														
				3rd / M-wa		M-mi		Ma		Ki	Ki-vi		N	U	U Ku					
	Sg.	PI.	Sg.	PI.	Sg. / 1	PI. / 2	3	4	5	6	7	8	9	10	11 / 14	15/17	Pa 16			
			- 5-						Past											
Positive	niliambia naliambia	tuliambia twaliambia	uliambia waliambia	mliambia mwaliambia		waliambia	uliambia	iliambia	liliambia	yaliambia	kiliambia	viliambia	iliambia	ziliambia	uliambia	kuliambia		m		
Negative	sikuambia	hatukuambia	hukuambia	hamkuambia	hakuambia	hawakuambi a	haukuambia	haikuambia	halikuambia	hayakuambi a	hakikuambia	havikuambia	haikuambia	hazikuambia	haukuambia	hakukuambi a	hapakuambi a	har		
								Pr	resent											
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia		vinaambia	inaambia	zinaambia	unaambia		panaambia			
Negative	siambii	hatuambii	huambii	hamambii	haambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	haviambii	haiambii	haziambii	hauambii	hakuambii	hapaambii	ha		
Desitive	- the sect of s	tute end is	and a second day	and a secolation	at a sechia	in the second large	a de sechie		uture	and a second day	Lite and Lie	a dia ampiri da	the end of a		a de ser la la	lude en bie				
Positive	nitaambia	tutaambia	utaambia	mtaambia	ataambia	wataambia hawataambi	utaambia	itaambia	litaambia	yataambia	kitaambia	vitaambia	itaambia	zitaambia	utaambia	kutaambia	pataambia			
Negative	sitaambia	hatutaambia	hutaambia	hamtaambia	hataambia	a	hautaambia	haitaambia	halitaambia	hayataambia	hakitaambia	havitaambia	haitaambia	hazitaambia	hautaambia	hakutaambia	hapataambia	IIa		
									junctive											
Positive	niambie	tuambie	uambie	mambie	aambie	waambie	uambie	iambie	liambie	yaambie	kiambie	viambie	iambie	ziambie	uambie	kuambie	paambie			
Negative	nisiambie	tusiambie	usiambie	msiambie	asiambie	wasiambie	usiambie	isiambie Procont	lisiambie	yasiambie	kisiambie	visiambie	isiambie	zisiambie	usiambie	kusiambie	pasiambie	m		
Positive	ningeambia	tungeambia	ungeambia	mngeambia	angeambia	wangeambia	ungeambia	ingeambia	Conditio		kingeambia	vingeambia	ingeambia	zingeambia	ungeambia	kungeambia	pangeambia	mu		
		tusingeambi		msingeambi		wasingeamb		ngounnu	lisingeambia	yasingeambi	kisingeambi	visingeambi	ngoanna	zisingeambi	usingeambia	kusingeambi				
Negative	a	a	usingeambia	a a	asingeambia hangeambia	ia	haungeambi	isingeambia	halingeambi	a	a	a	isingeambia	zisingeambi a hazingeambi	haungeambi	a				
0	singeambia	ia	nungeambla	a	nangeambia	bia	a	naingeambia	a	ia	a	a	naingeambla	a nazingeambi a	a	ia	hapangeam bia	nai		
								Past C	onditiona	al										
Positive	ningaliambia	tungaliambia	ungaliambia	mngaliambia	angaliambia	wangaliambi a	ungaliambia				kingaliambia	vingaliambia	ingaliambia	zingaliambia	ungaliambia	kungaliambi a	pangaliambi a	mu		
	nisingaliamb	tusingaliamb	usingaliambi	i msingaliamb	asingaliambi	wasingaliam	usingaliambi	isingaliambia	lisingaliambi	yasingaliam	kisingaliambi	visingaliambi	isingaliambia	a zisingaliambi	usingaliambi	kusingaliam	pasingaliam	mu		
Negative	ia singaliambia	hatungaliam bia	a hungaliambi a	i hamngaliam bia	a hangaliambi a	bia hawangalia mbia	a haungaliamb ia	haingaliambi a	a halingaliamb ia	hayangaliam bia	a hakingaliam bia	a havingaliam bia	haingaliamb a	i hazingaliam bia	a	bia hakungaliam bia	Dia			
		10 TO	u	171M		11010	Cor	ditional	Contrary	to Fact	1010	10 Tu		1010d	10	Dia	10 TO			
Positive	ningeliambia	tungeliambia	ungeliambia	mngeliambia	angeliambia	wangeliambi a					kingeliambia	vingeliambia	ingeliambia	zingeliambia	ungeliambia	kungeliambi a	pangeliambi a	mu		
								G	nomic											
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	laambia	yaambia	chaambia	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia	m		
								P	erfect											

[less]

Subword Modeling

• Solution: look at subwords!

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:
 - Byte-Pair Encoding

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:
 - Byte-Pair Encoding
 - WordPiece Modeling

Subword Modeling

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:
 - Byte-Pair Encoding
 - WordPiece Modeling
 - Follow different strategies. Often contain prepending / appending special tokens (##, </w>)

Word structure and subword models

- split into (sometimes intuitive, sometimes not) components.
- In the worst case, words are split into as many subwords as they have characters.

• Common words end up being a part of the subword vocabulary, while rarer words are

Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary

Byte-pair encoding

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary
- Adapted for word segmentation from data compression technique (Gage, 1994)

y for defining a subword vocabulary pression technique (Gage, 1994)

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994)
- - Instead of merging frequent pairs of bytes, we merge characters or character sequences

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994)
- Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - 1. Start with a vocabulary containing only characters and an "end-of-word" symbol.

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol.
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994)
- Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol.
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994)
- Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol.
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!
 - Only combine pairs (hence the name!)

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol.
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!
 - Only combine pairs (hence the name!)
 - 3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:

 - 1. Start with a vocabulary containing only characters and an "end-of-word" symbol. 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!
 - Only combine pairs (hence the name!)
- 3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. • At test time, first split words into sequences of characters, then apply the learned operations to merge
- the characters into larger, known symbols

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol.
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!
 - Only combine pairs (hence the name!)
- 3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. • At test time, first split words into sequences of characters, then apply the learned operations to merge the characters into larger, known symbols
- Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained models.

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low	lower	new
low	lower	new
low	widest	new
low	widest	new
low	widest	new

est	
/w>	

vest</w>

vest</w>

vest</w>

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

	-	
low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus				
l o w	lower	newest		
l o w	lower	newest		
l o w	widest	newest		
low	widest	newest		
l o w	widest	newest		

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

lower	newest
lower	newest
widest	newest
widest	newest
widest	newest
	lower widest

Vocabulary

 vocabulary								
d	е	i	I	n	0	S	t	W

Corpus				
l o w	lower	newest		
l o w	lower	newest		
l o w	widest	newest		
l o w	widest	newest		
l o w	widest	newest		

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

lower	newest
lower	newest
widest	newest
widest	newest
widest	newest
	lower widest

	Vocabulary								
d	1	е	i	I	n	0	S	t	W

	lower	newest
v		
	lower	newest
v	widest	newest
v	widest	newest
v	widest	newest
	v	v >widest

	Frequency	
d-e (3)	I-o (7)	t- (8)
e-r (2)	n-e (5)	w- (5)
e-s (8)	o-w (7)	w-e (7)
e-w (5)	r- (2)	w-i (3)
i-d (3)	s-t (8)	

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Vocabulary								
d	е	i	I	n	0	S	t	w
es								

Corpus							
low	lower	newest					
low	lower	newest					
low	widest	newest					
low	widest	newest					
low	widest	newest					

	Frequency	
d-e (3)	I-o (7)	t- (8)
e-r (2)	n-e (5)	w- (5)
e-s (8)	o-w (7)	w-e (7)
e-w (5)	r- (2)	w-i (3)
i-d (3)	s-t (8)	

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

lower	newest
lower	newest
widest	newest
widest	newest
widest	newest
	lower widest

Vocabulary								
d	е	i	I	n	0	S	t	w
es								

Corpus						
l o w	lower	n e w <mark>es</mark> t				
l o w	lower	n e w <mark>es</mark> t				
l o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				
l o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				
l o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				

Frequency						
d-es (3)	l-o (7)	w- (5)				
e-r (2)	n-e (5)	w-es (5)				
e-w (5)	o-w (7)	w-e (2)				
es-t (8)	r- (2)	w-i (3)				
i-d (3)	t- (8)					

BPE in action

Corpus

low	lower	newest	
low	lower	newest	
low	widest	newest	
low	widest	newest	
low	widest	newest	

Corpus

lower	newest
lower	newest
widest	newest
widest	newest
widest	newest
	lower widest

Vocabulary								
d	е	i	I	n	0	S	t	w
es	est							

	Corpus						
lo	o w	lower	n e w <mark>es</mark> t				
	o w	lower	n e w <mark>es</mark> t				
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t				

Frequency						
d-es (3)	l-o (7)	w- (5)				
e-r (2)	n-e (5)	w-es (5)				
e-w (5)	o-w (7)	w-e (2)				
es-t (8)	r- (2)	w-i (3)				
i-d (3)	t- (8)					

BPE in action

Corpus

low	lower	newest	
low	lower	newest	
low	widest	newest	
low	widest	newest	
low	widest	newest	

Corpus

Vocabulary								
d	е	i	I	n	0	S	t	w
es	est							

BPE in action

Corpus

low	lower	newest	
low	lower	newest	
low	widest	newest	
low	widest	newest	
low	widest	newest	

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Vocabularv

				, ocusa	J			
d	е	i	I	n	0	S	t	W
es	est	est	lo	low	low	ne	new	newest

After 10 merges

Corpus

WordPiece Modeling

• Algorithm from Google, similar to BPE

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d
 - For this vocabulary:
 - ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

WordPiece Modeling

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d
 - For this vocabulary:
 - ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
 - Splits may look like:
 - "##n", 4), ("h" "##u" "##g" "##s", 5)

● ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u"

WordPiece Modeling

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d
 - For this vocabulary:
 - ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
 - Splits may look like:
 - "##n", 4), ("h" "##u" "##g" "##s", 5)
- On merging, ## **between** the two tokens is removed

● ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u"

WordPiece Modeling

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d
 - For this vocabulary:
 - ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
 - Splits may look like:
 - "##n", 4), ("h" "##u" "##g" "##s", 5)
- On merging, ## **between** the two tokens is removed This explains the presence of the token "##ing"

● ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u"

WordPiece Modeling Outcome

- Different stopping criteria: number of merges or size of resulting vocabulary
- into (sometimes intuitive, sometimes not) components

• In the worst case, at test time, words are split into as many subwords as they have characters • Common words end up being a part of the subword vocabulary, while rarer words are split

Tokenization: Questions

• Where does the token "##ing" come from? In WordPiece tokenization, all non-starting characters are initialized as ##x. • Like: h, ##e, ##l, ##l, ##o. Upon merging, only the first segment keeps its ##. • How is tokenization done in Chinese? • Follows the same broad overall algorithm, but the initial split into characters involve language-specific rules • e.g. stroke-level tokenization

Source: https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

Natural Language Generation

Natural Language Generation

 Natural language understanding and natural language generation are two sides of the same coin

- Natural language understanding and natural language generation are two sides of the same coin
 - In order to generate good language, you need to understand language

- Natural language understanding and natural language generation are two sides of the same coin
 - In order to generate good language, you need to understand language
 - If you understand language, you should be able to generate it (with some effort)

- Natural language understanding and natural language generation are two sides of the same coin
 - In order to generate good language, you need to understand language
 - If you understand language, you should be able to generate it (with some effort)
- NLG is the workhorse of many classic and novel applications
 - Al Assistants
 - Translators
 - Search summarizers

NLG Use Cases

NLG Use Cases

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark, Matt Gardner · Computer Science · ACL · 29 October 2017

TLDR We propose a state-of-the-art pipelined method for training neural paragraph-level question answering models on document QA data. Expand

🔓 236) (PDF) · 📓 View PDF on arXiv 📕 Save 🌲 Alert 🔓 Cite 📫 Research Feed

Summarization

NLG Use Cases

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark, Matt Gardner · Computer Science · ACL · 29 October 2017

TLDR We propose a state-of-the-art pipelined method for training neural paragraph-level question answering models on document QA data. Expand

🔓 236) (PDF) · 📓 View PDF on arXiv 📕 Save 🌲 Alert 💕 Cite 📫 Research Feed

Summarization

NLG Use Cases

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark, Matt Gardner · Computer Science · ACL · 29 October 2017

TLDR We propose a state-of-the-art pipelined method for training neural paragraph-level question answering models on document QA data. Expand

🔓 236) (PDF) · 📓 View PDF on arXiv 📕 Save 🌲 Alert 🔓 Cite 📫 Research Feed

More Interesting NLG Uses

More Interesting NLG Uses

Creative stories

Rashkin et al., 2020

More Interesting NLG Uses

Creative stories

Table Title: Robert Craig (American football) Section Title: National Football League statistics Table Description None

RUSHING						RECEIVING					
YEAR	TEAM	ATT	YDS	AVG	LNG	TD	NO.	YDS	AVG	LNG	TD
1983	SF	176	725	4.1	71	8	48	427	8.9	23	4
1984	SF	155	649	4.2	28	4	71	675	9.5	64	3
1985	SF	214	1050	4.9	62	9	92	1016	11	73	6
1986	SF	204	830	4.1	25	7	81	624	7.7	48	0
1987	SF	215	815	3.8	25	3	66	492	7.5	35	1
1988	SF	310	1502	4.8	46	9	76	534	7.0	22	1
1989	SF	271	1054	3.9	27	6	49	473	9.7	44	1
1990	SF	141	439	3.1	26	1	25	201	8.0	31	0
1991	RAI	162	590	3.6	15	1	17	136	8.0	20	0
1992	MIN	105	416	4.0	21	4	22	164	7.5	22	0
1993	MIN	38	119	3.1	11	1	19	169	8.9	31	1
Totals	-	1991	8189	4.1	71	56	566	4911	8.7	73	17

Craig finished his eleven NFL seasons with 8,189 rushing yards and 566 receptions for 4,911 receiving yards.

Rashkin et al., 2020

Data-to-text

Parikh et al., 2020

More Interesting NLG Uses

Creative stories

Table Title: Robert Craig (American football) ction Title: National Football League statistics

	RUSHING						RECEIVING					
YEAR	TEAM	ATT	YDS	AVG	LNG	TD	NO.	YDS	AVG	LNG	TD	
1983	SF	176	725	4.1	71	8	48	427	8.9	23	4	
1984	SF	155	649	4.2	28	4	71	675	9.5	64	3	
1985	SF	214	1050	4.9	62	9	92	1016	11	73	6	
1986	SF	204	830	4.1	25	7	81	624	7.7	48	0	
1987	SF	215	815	3.8	25	3	66	492	7.5	35	1	
1988	SF	310	1502	4.8	46	9	76	534	7.0	22	1	
1989	SF	271	1054	3.9	27	6	49	473	9.7	44	1	
1990	SF	141	439	3.1	26	1	25	201	8.0	31	0	
1991	RAI	162	590	3.6	15	1	17	136	8.0	20	0	
1992	MIN	105	416	4.0	21	4	22	164	7.5	22	0	
1993	MIN	38	119	3.1	11	1	19	169	8.9	31	1	
Totals	-	1991	8189	4.1	71	56	566	4911	8.7	73	17	

Rashkin et al., 2020

Data-to-text

Craig finished his eleven NFL seasons with 8,189 rushing yards and 566 receptions for 4,911 receiving yards.

Visual description

Two children are sitting at a table in a restaurant. The children are one little girl and one little boy. The little girl is eating a pink frosted donut with white icing lines on top of it. The girl has blonde hair and is wearing a green jacket with a black long sleeve shirt underneath. The little boy is wearing a black zip up jacket and is holding his finger to his lip but is not eating. A metal napkin dispenser is in between them at the table. The wall next to them is white brick. Two adults are on the other side of the short white brick wall. The room has white circular lights on the ceiling and a large window in the front of the restaurant. It is daylight outside.

Krause et al., 2017

Broad Spectrum of NLG Tasks

Less Open-Ended

Broad Spectrum of NLG Tasks

Broad Spectrum of NLG Tasks

Broad Spectrum of NLG Tasks

More Open-Ended

Chitchat Dialog

Broad Spectrum of NLG Tasks

Open-ended generation: the output distribution still has high freedom.

Open-ended generation: the output distribution still has high freedom.

Non-open-ended generation: the input mostly determines the output generation.

Broad Spectrum of NLG Tasks

Broad Spectrum of NLG Tasks

Encoder-Decoders

Broad Spectrum of NLG Tasks

Encoder-Decoders

More Open-Ended

Decoders

Language Generation: Fundamentals

 $S = f_{\theta}(y_{< t}) \in \mathbb{R}^{V}$ and outputs a new token, \hat{y}_{t}

For model $f_{\theta}(\cdot)$ and vocabulary V, we get scores $S = f_{\theta}(y_{< t}) \in \mathbb{R}^{V}$

In autoregressive text generation models, at each time step t, our model takes in a sequence of tokens as input

Language Generation: Training

words $y_{<t}^*$

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding

Language Generation: Training

words $y_{<t}^*$

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding

$$_{t}) = -\sum_{t=1}^{T} \log \frac{\exp(S_{y_{t}|y_{< t}})}{\sum_{v \in V} \exp(S_{v|y_{< t}})}$$

Language Generation: Training

words $y_{<t}^*$

$$\mathscr{L} = -\sum_{t=1}^{T} \log P(y_t | y_{< t}) = -\sum_{t=1}^{T} \log \frac{\exp(S_{y_t | y_{< t}})}{\sum_{v \in V} \exp(S_{v | y_{< t}})}$$

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding

• Classification task at each time step trying to predict the actual word y_{r}^{*} in the training data

Language Generation: Training

words $y_{<t}^*$

$$\mathscr{L} = -\sum_{t=1}^{T} \log P(y_t | y_{< t}) = -\sum_{t=1}^{T} \log \frac{\exp(S_{y_t | y_{< t}})}{\sum_{v \in V} \exp(S_{v | y_{< t}})}$$

• "Teacher forcing" (reset at each time step to the ground truth)

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding

• Classification task at each time step trying to predict the actual word y_t^* in the training data

Teacher Forcing

• Strategy for **training** decoders / language models

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t
- Runs the risk of **exposure bias**!

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t
- Runs the risk of **exposure bias**!
 - During training, our model's inputs are gold context tokens from real, humangenerated texts

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t
- Runs the risk of **exposure bias**!
 - During training, our model's inputs are gold context tokens from real, humangenerated texts
 - At generation time, our model's inputs are previously-decoded tokens

Language Generation: Inference

distribution:

• At inference time, our decoding algorithm defines a function to select a token from this

Inference / Decoding Algorithm

 $\hat{y}_t = g(P(y_t | y_{< t}))$
Language Generation: Inference

distribution:

 $\hat{y}_t = g(P(y_t \mid y_{< t}))$

token according to the model at each time step

• At inference time, our decoding algorithm defines a function to select a token from this

Inference / Decoding Algorithm

The "obvious" decoding algorithm is to greedily choose the highest probability next

Language Generation: Inference

distribution:

 $\hat{y}_t = g(P(y_t | y_{< t}))$

token according to the model at each time step

 $g = \arg \max$

• At inference time, our decoding algorithm defines a function to select a token from this Inference / Decoding Algorithm

• The "obvious" decoding algorithm is to greedily choose the highest probability next

Language Generation: Inference

- At inference time, our decoding algorithm defines a function to select a token from this distribution:
- token according to the model at each time step
 - $g = \arg \max$

Inference / Decoding Algorithm $\hat{y}_t = g(P(y_t | y_{< t}))$

• The "obvious" decoding algorithm is to greedily choose the highest probability next

 $\hat{y}_t = \arg \max(P(y_t = w | y_{< t}))$ $w \in V$

Classic Inference Algorithms: Greedy and Beam Search

Decoding

Decoding

• Generation from a language model is also called decoding

Decoding

Generation from a language model is also called decoding • Think encoder-decoder

Decoding

• Generation from a language model is also called decoding

- Think encoder-decoder
- Also called inference

Decoding

- Generation from a language model is also called decoding.
 - Think encoder-decoder
 - Also called inference
- word on each step

• Strategy so far: Take arg max on each step of the decoder to produce the most probable

Decoding

- Generation from a language model is also called decoding.
 - Think encoder-decoder
 - Also called inference
- word on each step
- This is called greedy decoding

• Strategy so far: Take arg max on each step of the decoder to produce the most probable

Decoding

- Generation from a language model is also called decoding
 - Think encoder-decoder
 - Also called inference
- word on each step
- This is called greedy decoding
 - given all the information we have

• Strategy so far: Take arg max on each step of the decoder to produce the most probable

• Greedy Strategy: we are not looking ahead, we are making the hastiest decision

Greedy Decoding: Issues

Greedy Decoding: Issues

• Greedy decoding has no wiggle room for errors!

- Input: the green witch arrived
 - Output: llego
 - Output: llego la
 - Output: llego la verde

Greedy Decoding: Issues

Greedy decoding has no wiggle room for errors!

- Input: the green witch arrived
 - Output: llego
 - Output: llego la
 - Output: llego la verde
- How to fix this?
 - Need a lookahead strategy / longer-term planning

Exhaustive Search Decoding

• Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P$$
$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x) P(y_t|y_1, \dots, y_{t-1}, y_$$

 $P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$

x)

Exhaustive Search Decoding

• Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P$$
$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x) P(y_t|y_1, \dots, y_{t-1}, y_$$

• We could try computing all possible sequences y

 $P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$

x)

Exhaustive Search Decoding

• Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

• We could try computing all possible sequences ytranslations, where V is vocab size

• This means that on each step t of the decoder, we're tracking V^t possible partial

Exhaustive Search Decoding

• Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - translations, where V is vocab size
 - This $O(V^T)$ complexity is far too expensive!

• This means that on each step t of the decoder, we're tracking V^t possible partial

Beam Search Decoding

Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT)

Beam Search Decoding

 Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

 $score(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

• k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability:

Beam Search Decoding

- Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - score $(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$
- k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better

Beam Search Decoding

- Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - score $(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$
- k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability:

- Scores are all negative, and higher score is better
- We search for high-scoring hypotheses, tracking top k on each step

Beam Search Decoding

 Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability: $score(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

• Scores are all negative, and higher score is better • We search for high-scoring hypotheses, tracking top k on each step Beam search is not guaranteed to find optimal solution

Beam Search Decoding

 Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability: $score(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

 Scores are all negative, and higher score is better • We search for high-scoring hypotheses, tracking top k on each step Beam search is not guaranteed to find optimal solution • But much more efficient than exhaustive search!

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1

<START>

Calculate prob dist of next word

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1

:: Chris Manning

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

Of these k² hypotheses, just keep k with highest scores

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1


```
-2.8 = \log P_{LM}(a | < START > he hit) + -1.7
-2.5 = \log P_{LM}(me | < START > he hit) + -1.7
-2.9 = \log P_{LM}(hit) < START > 1 was) + -1.6
```

 $-3.8 = \log P_{IM}(struck | < START > I was) + -1.6$

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

For each of the k hypotheses, find top k next words and calculate scores

-4.0

- tart
- pie
- -3.4
- -3.3
- with
- on
- -3.5

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1

Of these k^2 hypotheses, just keep k with highest scores

-4.0

tart

pie

-3.4

-3.3

with

on

-3.5

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1

For each of the k hypotheses, find top k next words and calculate scores

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1

Of these k^2 hypotheses, just keep k with highest scores

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1

For each of the k hypotheses, find top k next words and calculate scores

Slide credit: Chris Manning

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = score $(y_1, \ldots, y_t) = \sum \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$ i=1

This is the top-scoring hypothesis!

Slide credit: Chris Manning

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1

Backtrack to obtain the full hypothesis

Slide credit: Chris Manning

Beam Search Decoding: Stopping Criterion

Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token • For e.g. <s> he hit me with a pie </s>

Beam Search Decoding: Stopping Criterion

- Greedy Decoding is done until the model produces an </s> token • For e.g. $\langle s \rangle$ he hit me with a pie $\langle s \rangle$ time steps
 - When a hypothesis produces </s>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different

Beam Search Decoding: Stopping Criterion

- Greedy Decoding is done until the model produces an </s> token • For e.g. $\langle s \rangle$ he hit me with a pie $\langle s \rangle$ time steps
 - When a hypothesis produces </s>, that hypothesis is complete.
 - Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:
 - We reach time step T (where T is some pre-defined cutoff), or
 - We have at least n completed hypotheses (where n is pre-defined cutoff)

In Beam Search Decoding, different hypotheses may produce </s> tokens at different

Beam Search Decoding: Parting Thoughts

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one?

Beam Search Decoding: Parting Thoughts

- We have our list of completed hypotheses. Now how to select top one?
- Each hypothesis y_1, \ldots, y_t on our list has a score

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

 $\operatorname{score}(y_1,\ldots,y_t) = \log P_{\mathrm{LM}}(y_1,\ldots)$

$$(x, y_t | x) = \sum_{i=1}^t \log P_{\mathrm{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

score
$$(y_1, \dots, y_t) = \log P_{\text{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\text{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

Problem with this: longer hypotheses have lower score

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

score
$$(y_1, \dots, y_t) = \log P_{\text{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\text{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

 Problem with this: longer hypotheses have lower score • Fix: Normalize by length. Use this to select top one instead

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

score
$$(y_1, \dots, y_t) = \log P_{\mathrm{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\mathrm{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

 Problem with this: longer hypotheses have lower score • Fix: Normalize by length. Use this to select top one instead

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\rm LM}(y_i | y_1, \dots, y_{i-1}, x)$$

Beam Search Decoding: Parting Thoughts

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

score
$$(y_1, \ldots, y_t) = \log P_{LM}(y_1, \ldots, y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, \ldots, y_{i-1}, x)$$

 Problem with this: longer hypotheses have lower score • Fix: Normalize by length. Use this to select top one instead

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\rm LM}(y_i | y_1, \dots, y_{i-1}, x)$$

But this is expensive!

Maximization Based Decoding

• Either greedy or beam search

Maximization Based Decoding

- Either greedy or beam search

Maximization Based Decoding

• Beam search can be more effective with large beam width, but also more expensive

- Either greedy or beam search
- Another key issue:

Maximization Based Decoding

• Beam search can be more effective with large beam width, but also more expensive

- Either greedy or beam search
- Another key issue:

Maximization Based Decoding

• Beam search can be more effective with large beam width, but also more expensive

In a shocking finding, scientist discovered a herd **Context:** of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Continuation: The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the **Universidad Nacional Autónoma de México (UNAM)** and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México...

- Either greedy or beam search
- Another key issue:

Continuation: The study, published in the Proceedings of the Generation can be bland or National Academy of Sciences of the United States of repetitive (also called degenerate) America (PNAS), was conducted by researchers from the **Universidad Nacional Autónoma de México (UNAM)** and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México... Holtzmann et al., 2020

Maximization Based Decoding

• Beam search can be more effective with large beam width, but also more expensive

In a shocking finding, scientist discovered a herd **Context:** of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Degenerate Outputs

I'm tired. I'm tired.

Negative Loglikelihood

Holtzmann et al., 2020

openai --- Istm

Degenerate Outputs

I'm tired. I'm tired.

Scale doesn't solve this problem: even a 175 billion parameter LM still repeats when we decode for the most likely string.

Holtzmann et al., 2020

Why does repetition happen?

Why does repetition happen?

Probability amplification due to maximization based decoding

Why does repetition happen?

 Probability amplification due to maximization based decoding • Generation fails to match the uncertainty distribution for human written text

Why does repetition happen?

- Probability amplification due to maximization based decoding • Generation fails to match the uncertainty distribution for human written text

Perhaps we should not really be maximizing! What else could we do?

Solution: Don't Maximize, Pick a Sample

Solution: Don't Maximize, Pick a Sample

Sample a token from the distribution of tokens.

Solution: Don't Maximize, Pick a Sample

Sample a token from the distribution of tokens.

• But this is not a random sample, it is a sample for the learned model distribution

Solution: Don't Maximize, Pick a Sample

- Sample a token from the distribution of tokens.

• But this is not a random sample, it is a sample for the learned model distribution

• Respects the probabilities, without going just for the maximum probability option

Solution: Don't Maximize, Pick a Sample

- Sample a token from the distribution of tokens. • But this is not a random sample, it is a sample for the learned model distribution

 - Or else, you would get something meaningless

• Respects the probabilities, without going just for the maximum probability option

Solution: Don't Maximize, Pick a Sample

- Sample a token from the distribution of tokens.
 - - Respects the probabilities, without going just for the maximum probability option • Or else, you would get something meaningless
 - Many good options which are not the maximum probability!

• But this is not a random sample, it is a sample for the learned model distribution

grocery airport bathroom doctor hospital pub gym

Modern Generation: Sampling

