

Lecture 14: Finetuning Transformers

Instructor: Swabha Swayamdipta USC CSCI 499 LMs in NLP Mar 20, Spring 2024

Slides adapted from Dan Jurafsky, Chris Manning, John Hewitt, Anna Goldie

Logistics / Announcements

- HW3 due tonight
- HW4 out today, due Fri, 4/3
- Next class: Guest Lecture by Prof. Jieyu Zhao • Harms of LLMs
- Next week:
 - Instructor OH cancelled
 - Email me if you need anything and I'll set something up

Large Language Models (LLMs)

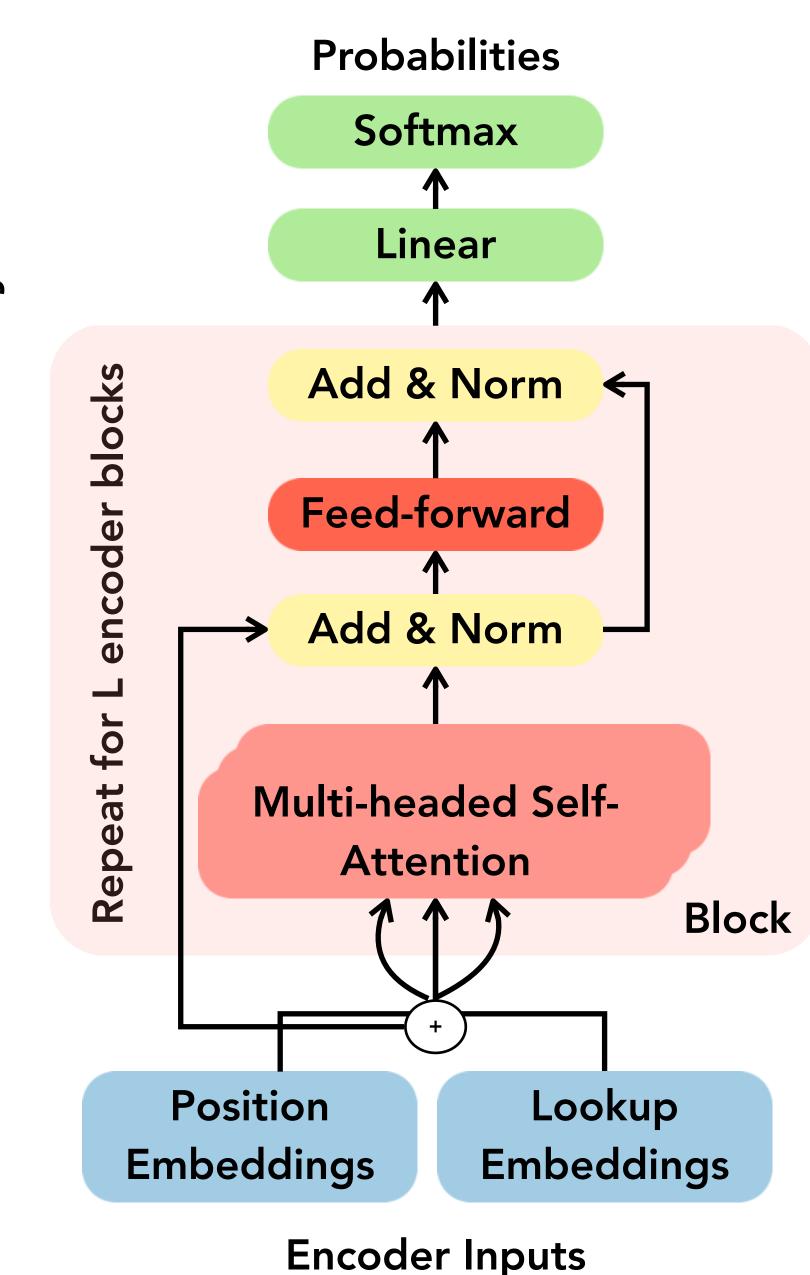
Outro and Project Presentations

Mar 18:	Pre-training Transformers I SLIDES	
Mar 20:	Pre-training Transformers II	HW3 Due; HW4
Mar 25:	Guest Lecture: Limitations and Harms of LLMs	
Mar 27:	Generating from Language Models I	
Apr 1:	Generating from Language Models II	
Apr 3:	Prompting LLMs	HW4 Due
Apr 8:	PROJECT DISCUSSIONS	
Apr 10:	Aligning LLMs	

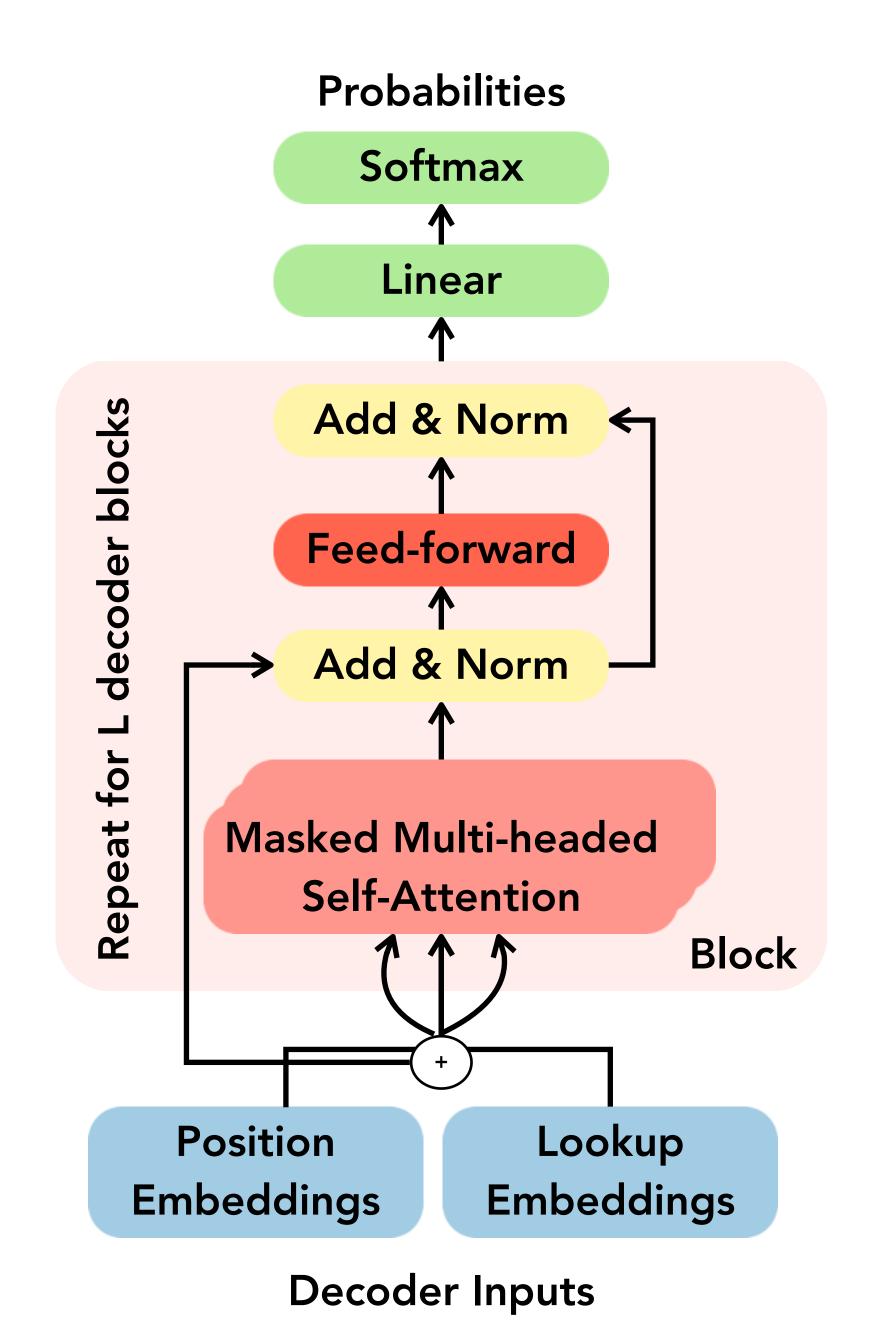
Apr 15:	Putting it all together	No Additional R
Apr 17:	PROJECT PRESENTATIONS	
Apr 22:	PROJECT PRESENTATIONS	
Apr 24:	PROJECT PRESENTATIONS	

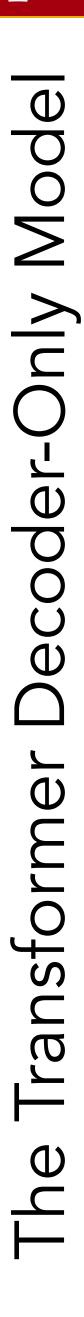
Recap: Transformer Encoder-Decoders

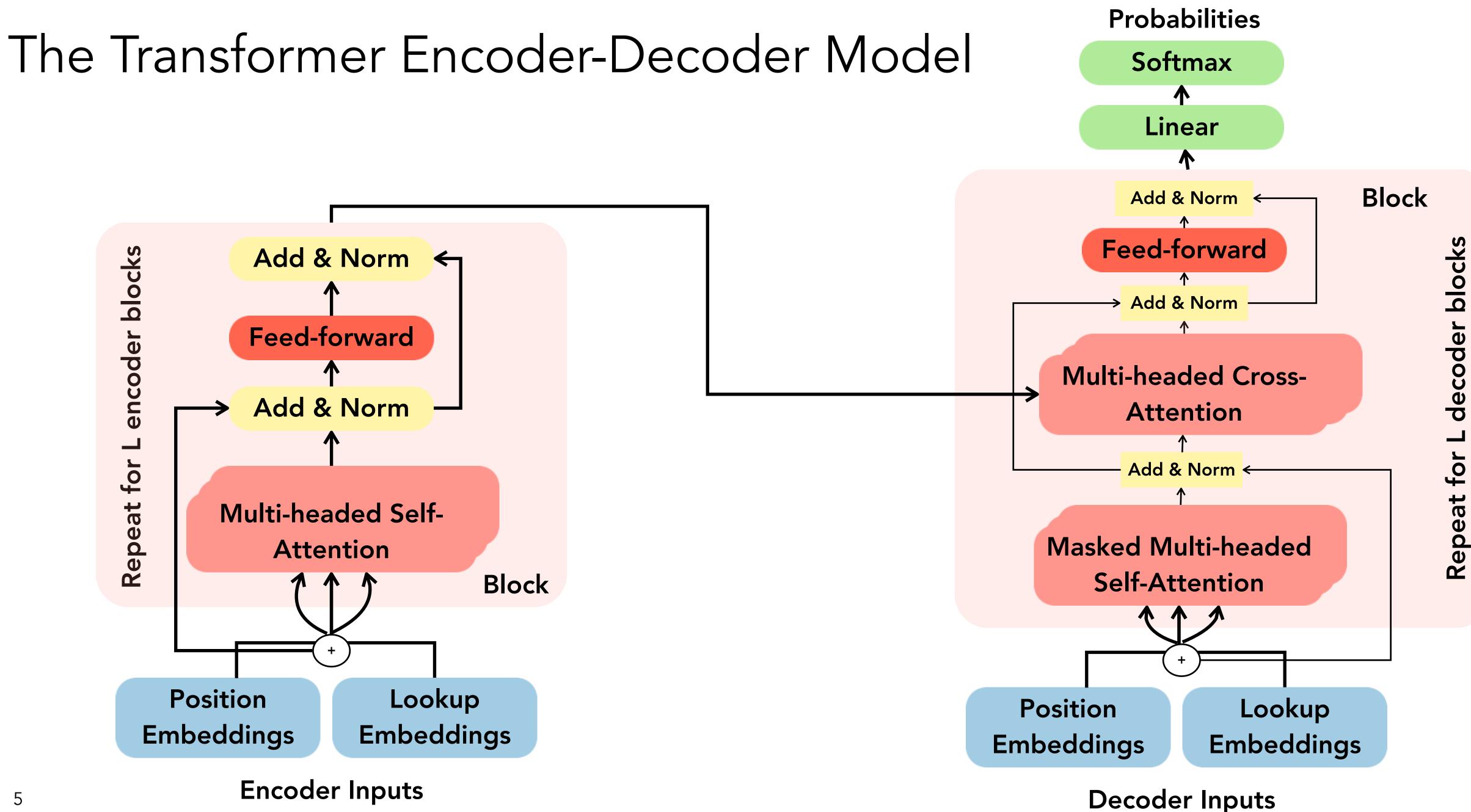
Only Mode ransformer Encoder-The



USCViterbi







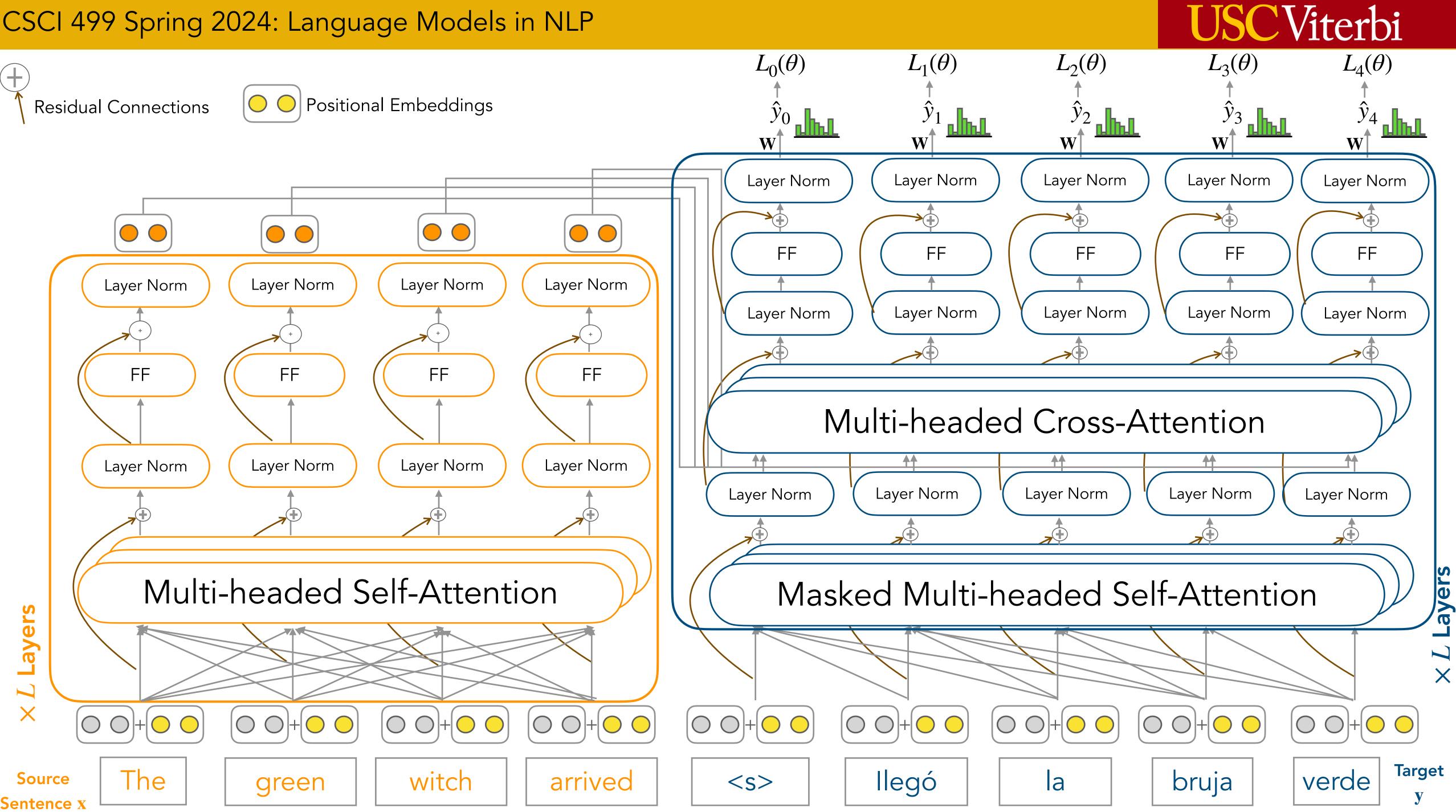
USCViterbi

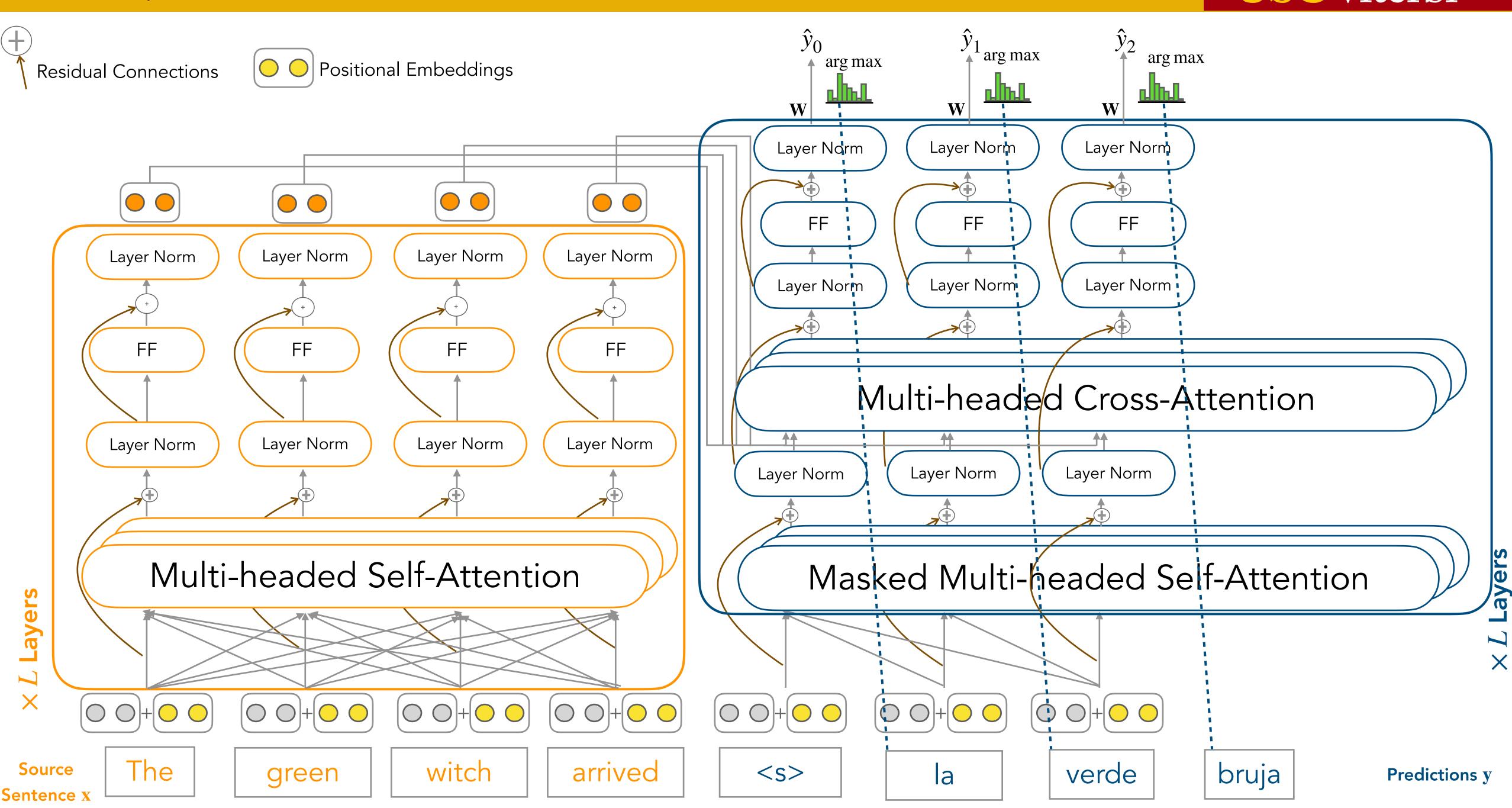
Teacher Forcing

- Strategy in **training** decoders
 - Decoder-only models
 - Encoder-decoder models
- predicted token
- decoder output \hat{y}_t

• Force the decoder to consider ground truth, regardless of the probability assigned to a

• At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous)





Recap: The Pre-training and Fine-tuning Paradigm

"Pretrain once, finetune many times."

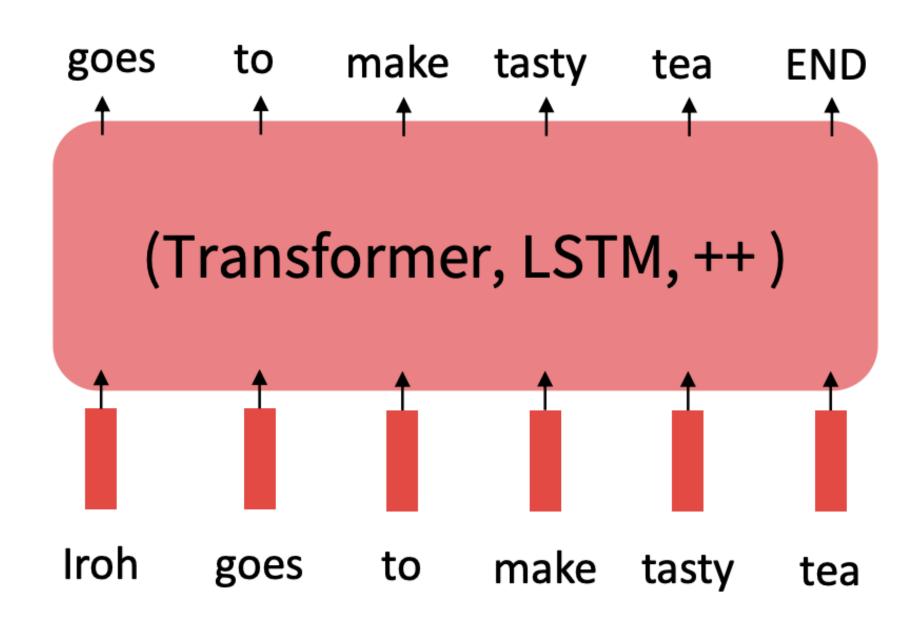
– Unknown, yet common practice in natural language processing

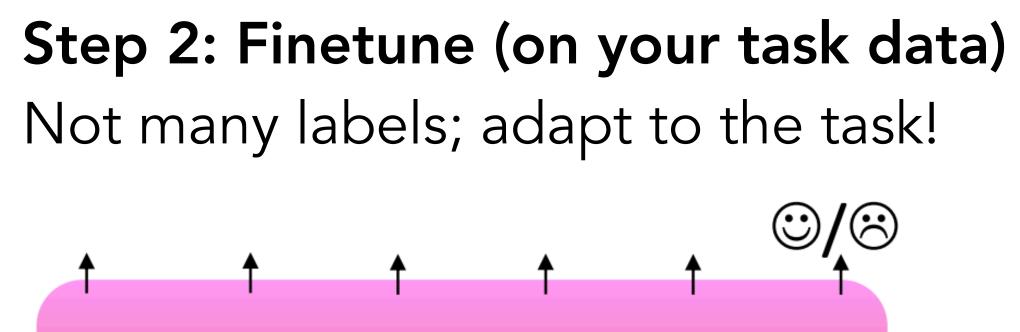
The Pretraining / Finetuning Paradigm

• Pretraining can improve NLP applications by serving as parameter initialization.

Key idea: "Pretrain once, finetune many times."

Step 1: Pretrain (on language corpora) Lots of text; learn general things!





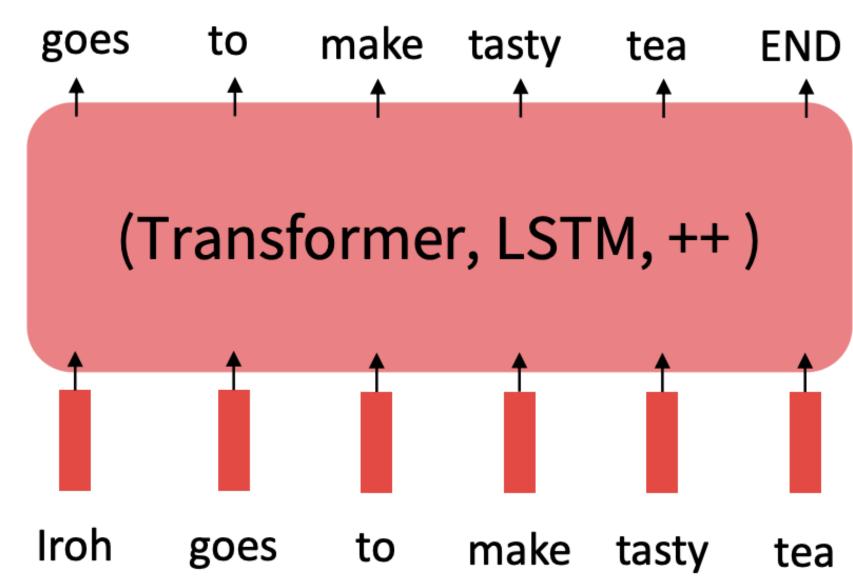
(Transformer, LSTM, ++)

... the movie was ...

Pretraining

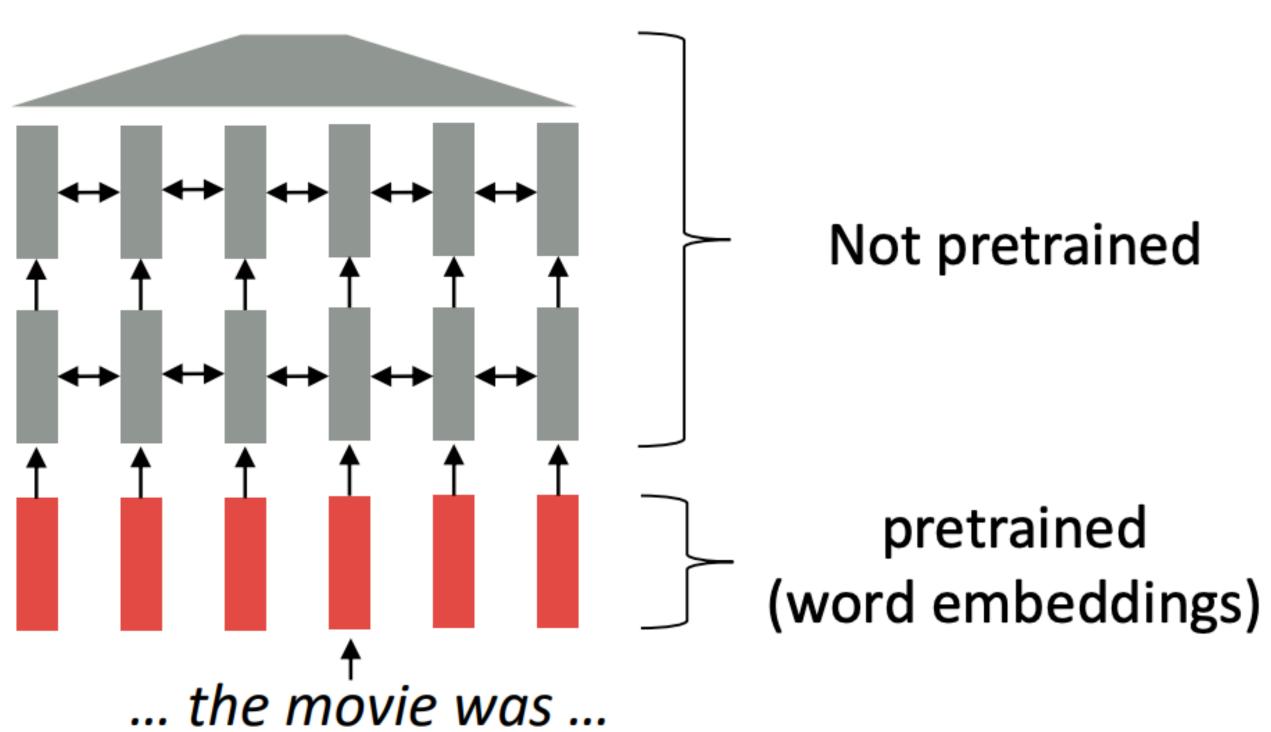
- Central Approach: Pretraining methods hide parts of the input from the model, and train the model to reconstruct those parts.
- Abstracts away from the task of "learning the language"

Step 1: Pretrain (on language corpora) Lots of text; learn general things!

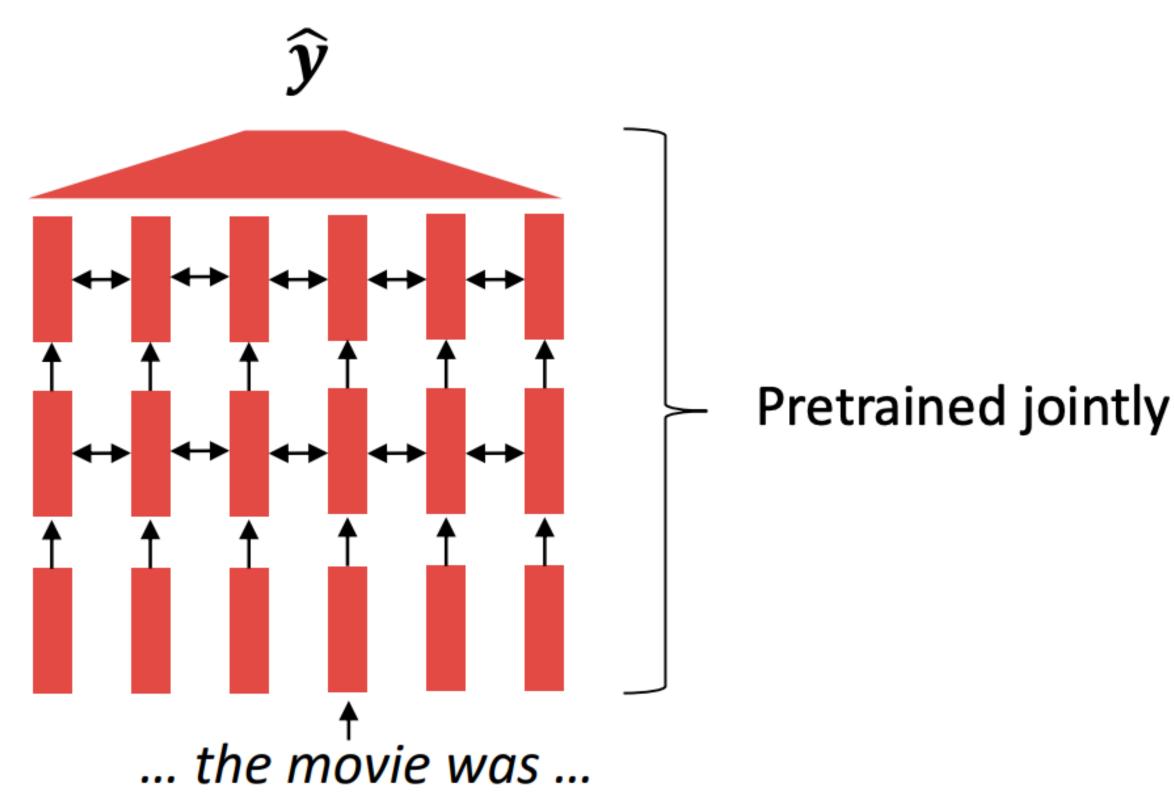


Ŷ

Pretraining: Parameter Initialization



Partial network



Full network

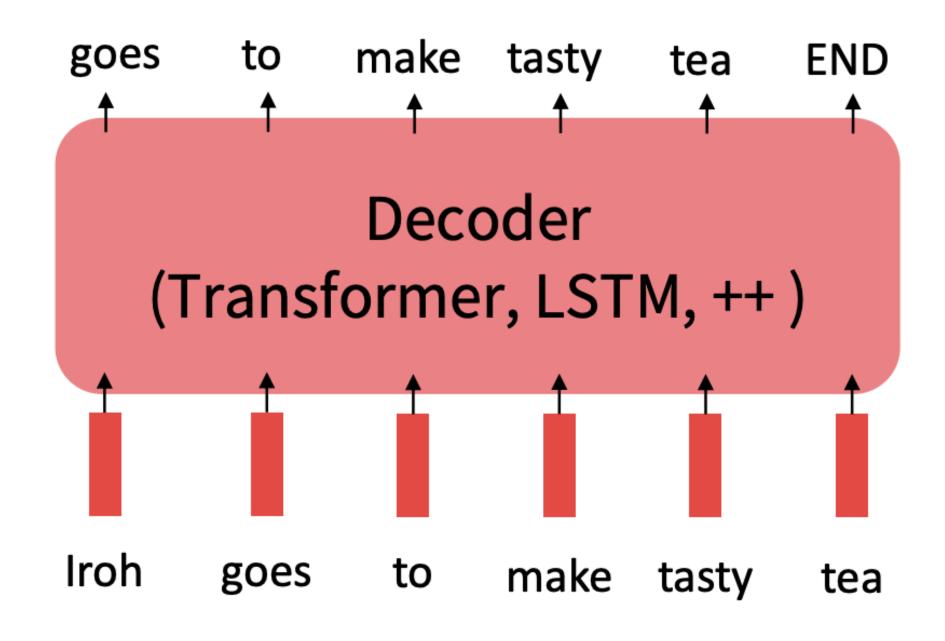
Pretraining: Language Models

• Recall the language modeling task:

• Model $p_{\theta}(w_t | w_{1:t-1})$, the probability distribution over words given their past contexts. There's lots of data for this! (In English.)

• Pretraining through language modeling:

- Train a neural network to perform language modeling on a large amount of text.
- Save the network parameters.
- Pretraining is not restricted to language modeling! Can be any task
- But most successful if the task definition is very general. Hence, language modeling is a great pretraining option

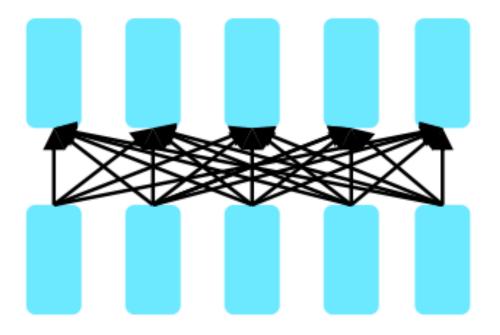


Semi-supervised Sequence Learning

Andrew M. Dai Google Inc. adai@google.com Quoc V. Le Google Inc. qvl@google.com

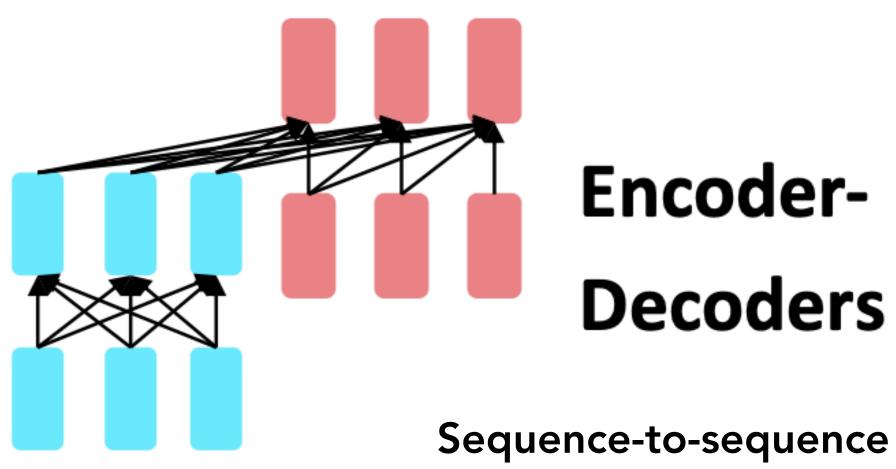
-

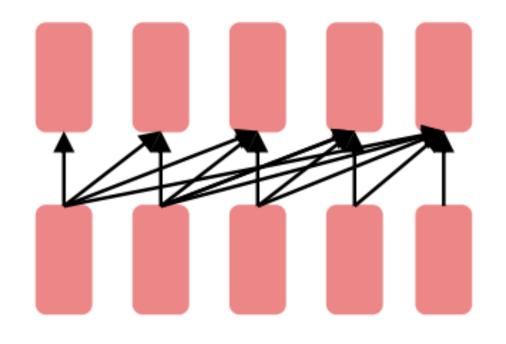
Pretraining for three types of architectures



Encoders

Bidirectional Context

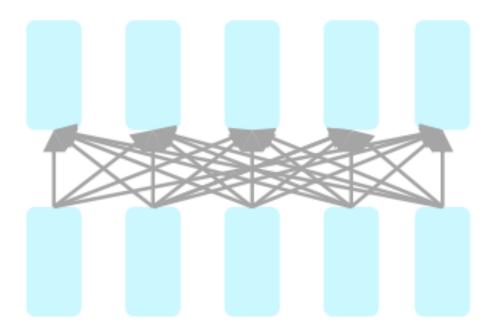




Decoders

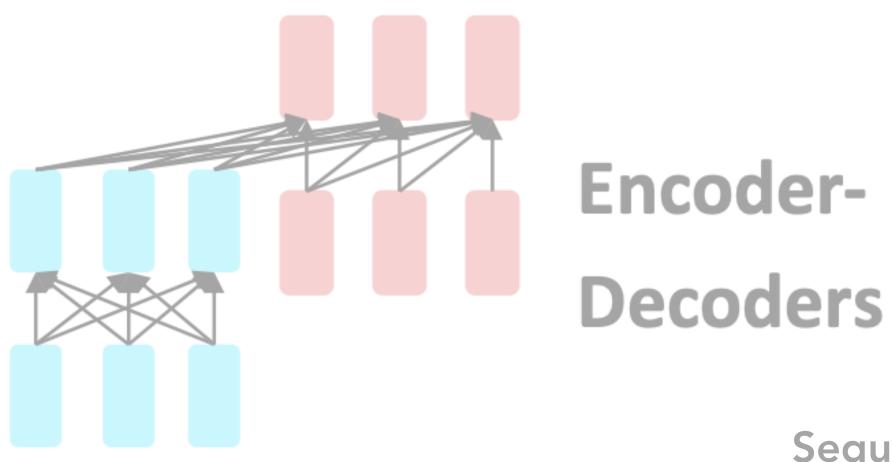
Language Models

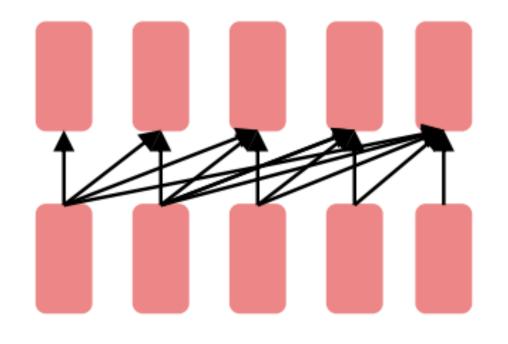
Pretraining for three types of architectures



Encoders

Bidirectional Context





Decoders

Language Models

Sequence-to-sequence

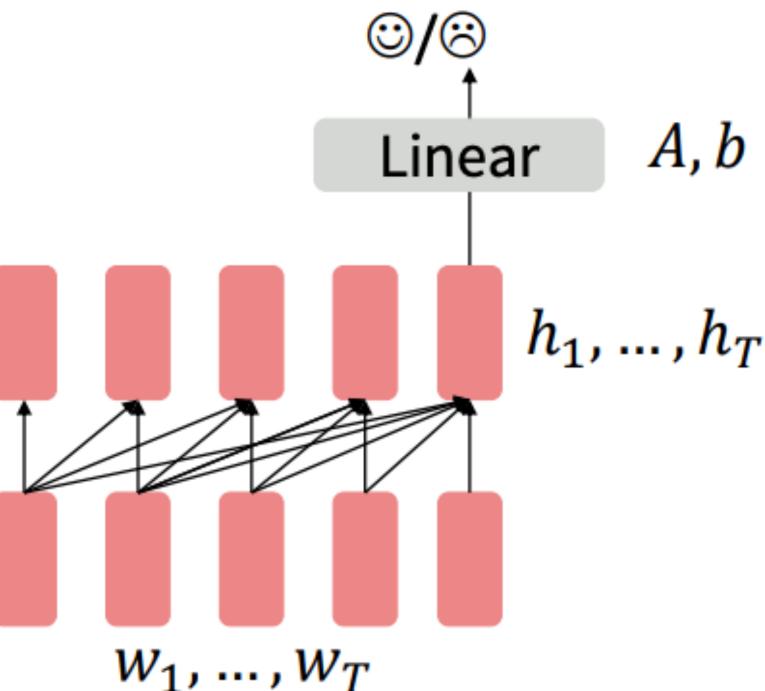
Pretraining Decoders: Classifiers

- When using language model pretrained decoders, we can ignore that they were trained to model $p_{\theta}(w_t | w_{1:t-1})$
- We can finetune them by training a classifier on the last word's hidden state

•
$$h_1, ..., h_T = Decoder(w_1, ..., w_T)$$

• $y \approx Ah_T + b$

- Where A and b are randomly initialized and specified by the downstream task.
- Gradients backpropagate through the whole network.



The linear layer hasn't been pretrained and must be learned from scratch.

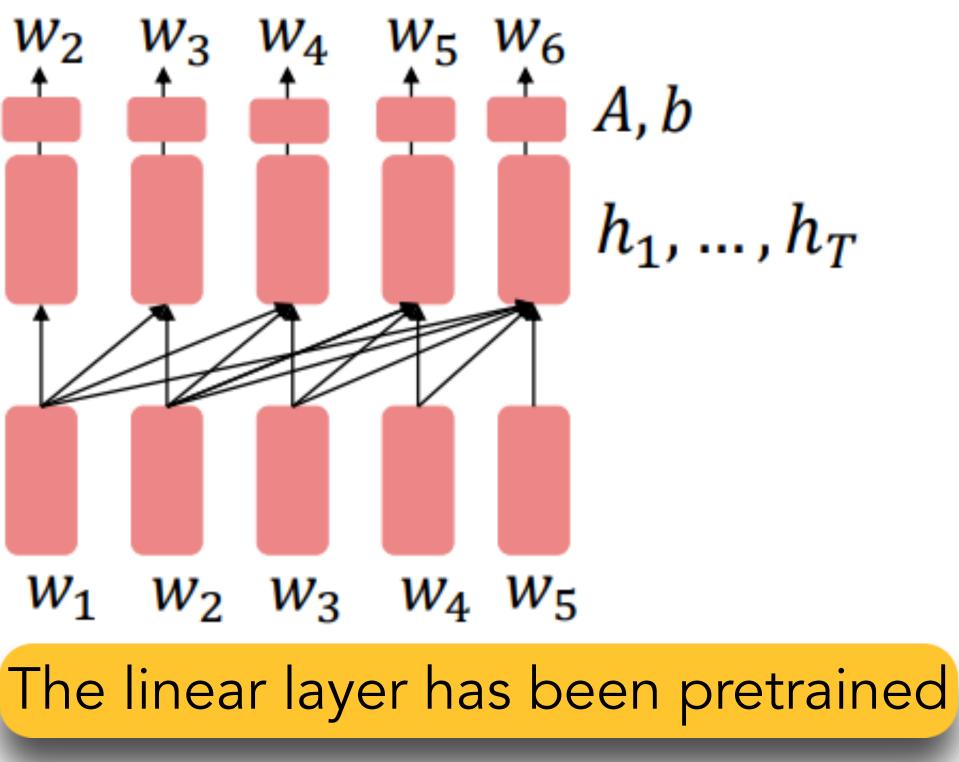
Pretraining Decoders: Generators

 More natural: pretrain decoders as language models and then use them as generators, finetuning their $p_{\theta}(w_t | w_{1:t-1})$

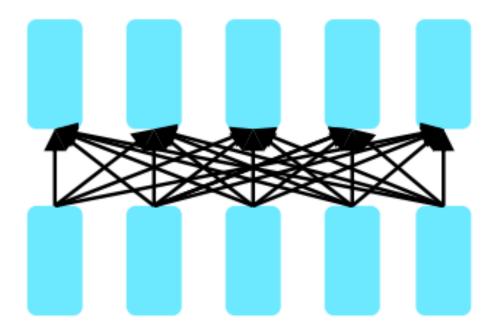
•
$$h_1, ..., h_T = Decoder(w_1, ..., w_T)$$

•
$$w_t \approx Ah_{t-1} + b$$

- Where A, b were pretrained in the language model!
- This is helpful in tasks where the output is a sequence with a vocabulary like that at pretraining time!
 - Dialogue (context=dialogue history)
 - Summarization (context=document)

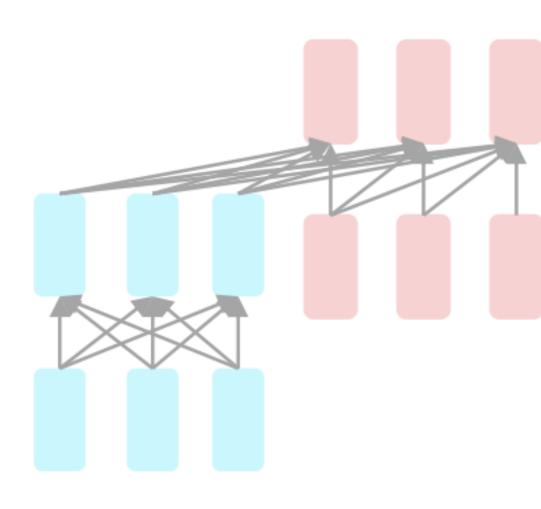


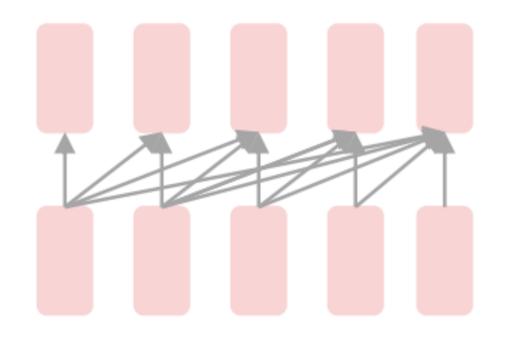
Pretraining for three types of architectures



Encoders

Bidirectional Context





Decoders

Language Models

Sequence-to-sequence

Pretraining Encoders: Bidirectional Context

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, _____

Universal Studios Theme Park is located in _____ , California

Problem: Input Reconstruction

Bidirectional context is important to reconstruct the input!

'Cause darling i'm a _____ dressed like a daydream

Pretraining Encoders: Objective

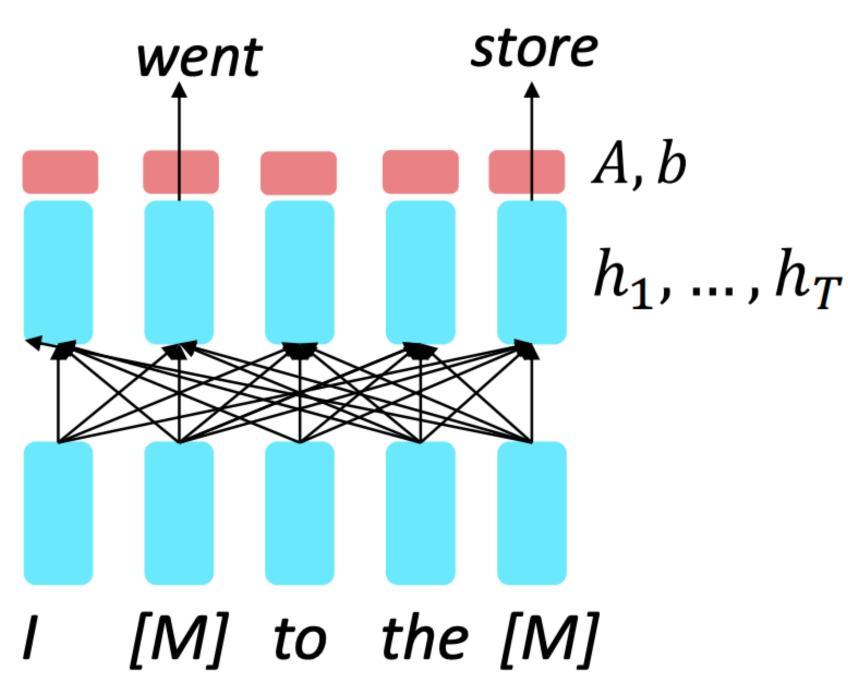
• Encoders get bidirectional context, so we can't do language modeling! these words.

•
$$h_1, ..., h_T = \text{Encoder}(w_1, ..., w_T)$$

•
$$y_i \approx Ah_i + b$$

- Only add loss terms from words that are "masked out."
- If \tilde{x} is the masked version of x, we're learning $p_{\theta}(\tilde{x} \mid x)$.
- Called Masked LM
- Special type of language modeling

• Idea: replace some fraction of words in the input with a special [MASK] token; predict



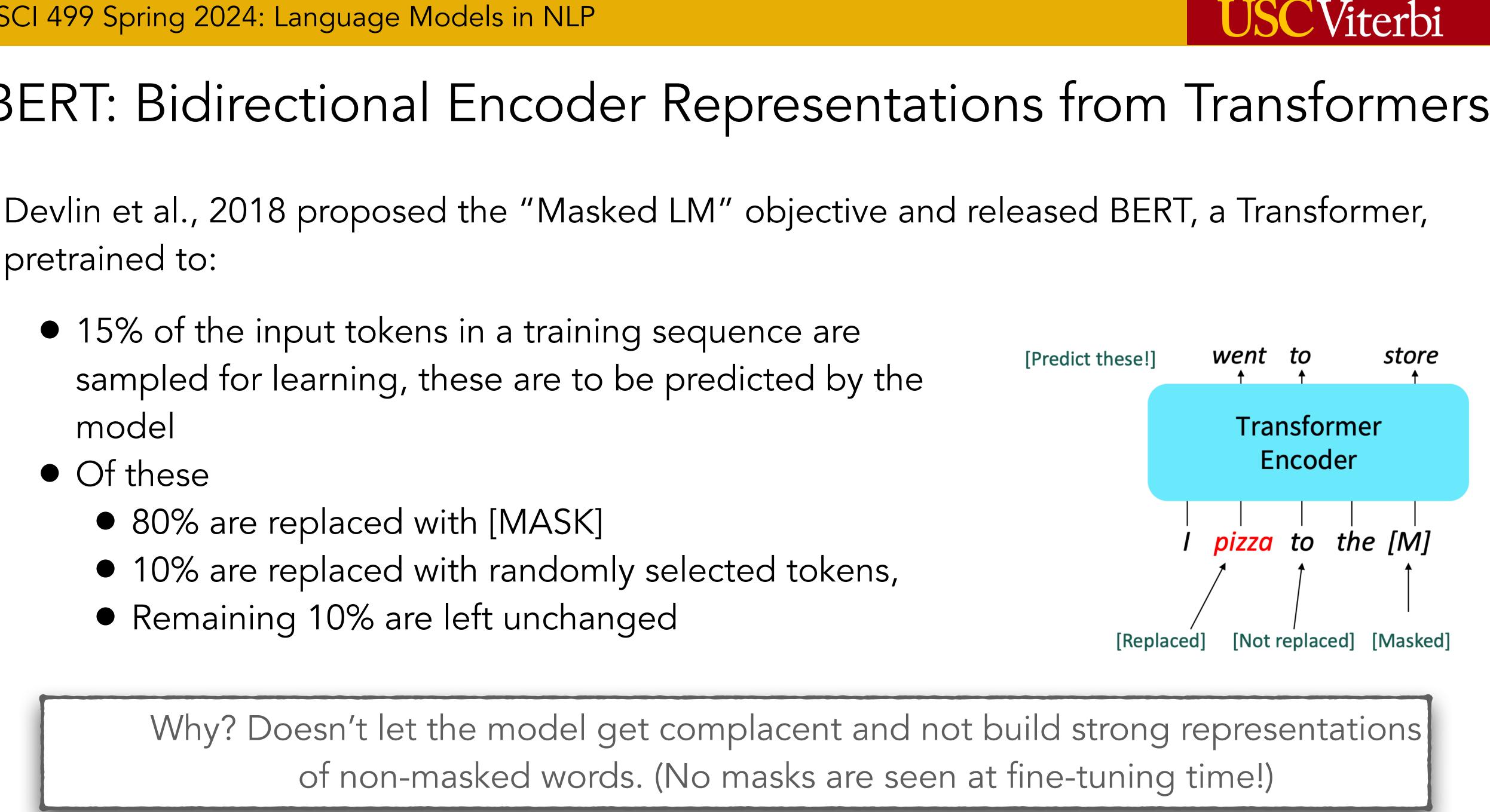
Masked Language Modeling

BERT: Bidirectional Encoder Representations from Transformers

pretrained to:

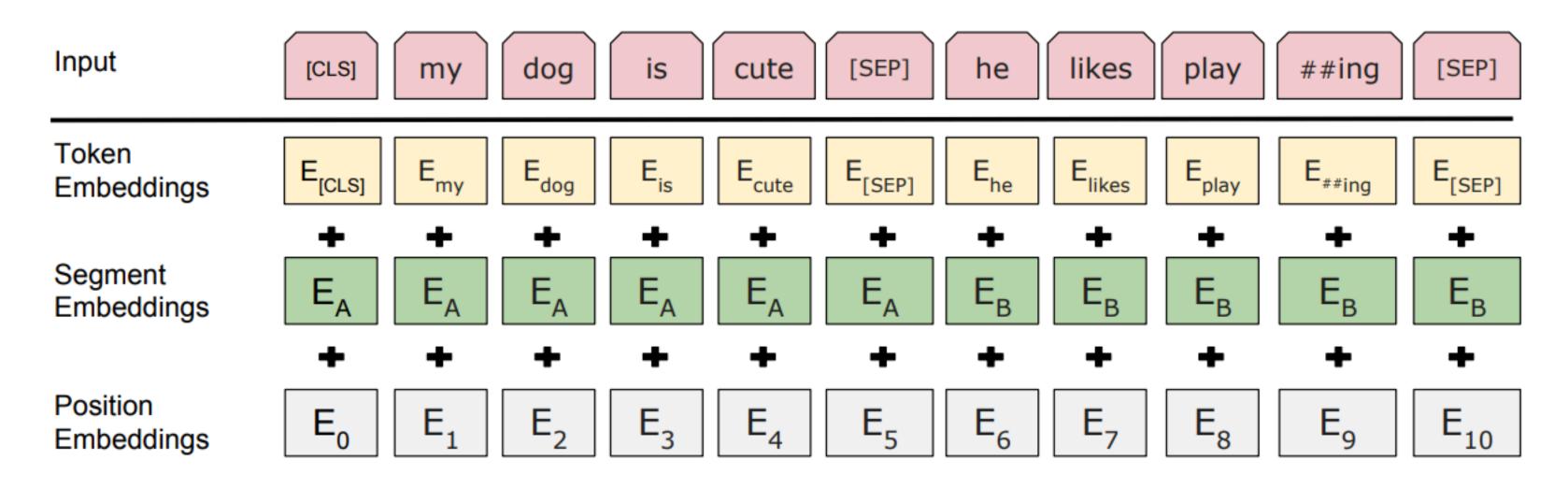
- 15% of the input tokens in a training sequence are sampled for learning, these are to be predicted by the model
- Of these
 - 80% are replaced with [MASK]
 - 10% are replaced with randomly selected tokens,
 - Remaining 10% are left unchanged

Why? Doesn't let the model get complacent and not build strong representations of non-masked words. (No masks are seen at fine-tuning time!)



BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:



- BERT was trained to predict whether one chunk follows the other or is randomly sampled.
 - [CLS] and [SEP] tokens

 - [SEP] is used for next sentence prediction do these sentences follow each other? • [CLS] for text classification / connection to fine-tuning



BERT: Training Details

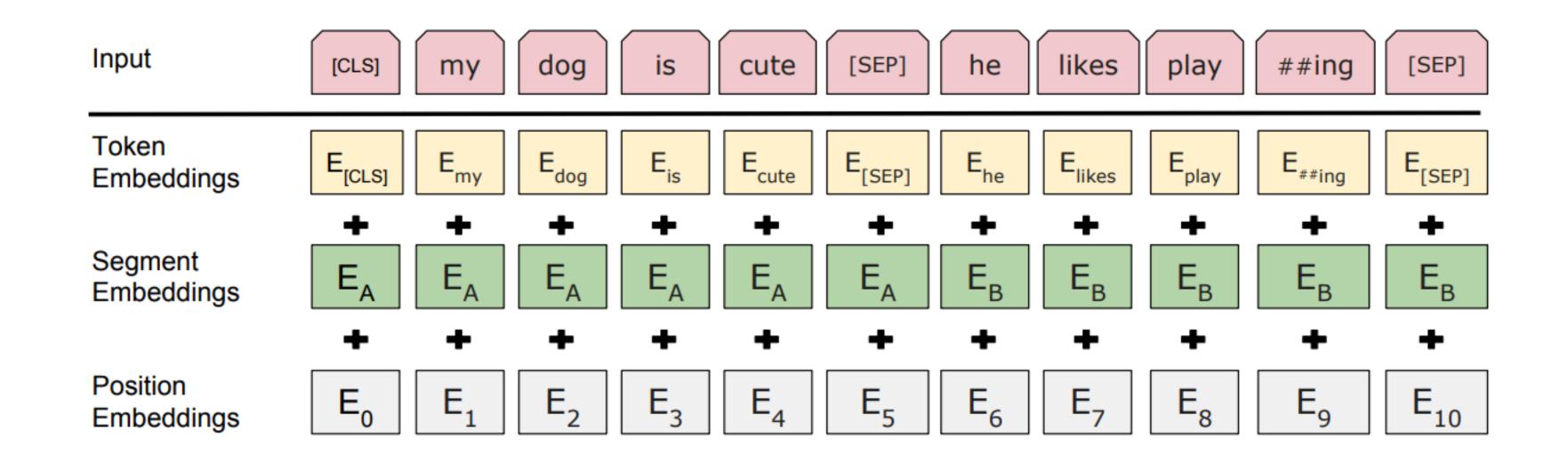
• Two models were released:

- BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
- BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

- BooksCorpus (800 million words)
- English Wikipedia (2,500 million words)
- Pretraining is expensive and impractical on a single GPU.
 - BERT was pretrained with 64 TPU chips for a total of 4 days.
 - (TPUs are special tensor operation acceleration hardware)
- Finetuning is practical and common on a single GPU
 - "Pretrain once, finetune many times."

BERT: Contextual Embeddings



BERT results in contextual embeddings

- Can be used for measuring the semantic similarity of two words in context
- Useful in linguistic tasks that require precise models of word meaning

• Embeddings for tokens in context, not just type embeddings like word2vec, GloVe

BERT: Results

• BERT was massively popular and hugely the-art results on a broad range of tasks.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Various Text Classification tasks like sentiment classification

• BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-

BERT: Extensions

- Some generally accepted improvements to the BERT pretraining formula:

 - task

• A lot of BERT variants that used the BERT formula

- ALBERT: BERT with parameter-reduction techniques
- DistilBERT:
- DeBERTa: Decoding-enhanced BERT with disentangled attention
- FlauBERT: BERT for French
- XLNet: Multilingual BERT
- Etc.

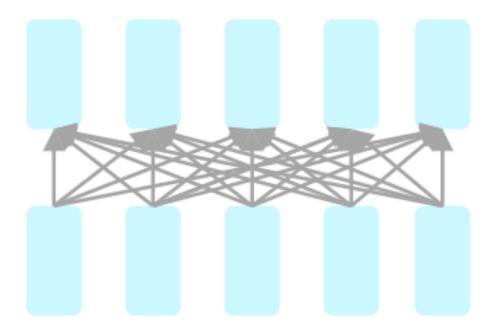
• **BERTology**: How and why BERT worked so well

• **RoBERTa**: mainly just train BERT for longer and remove next sentence prediction! • SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining

BERT: Overview

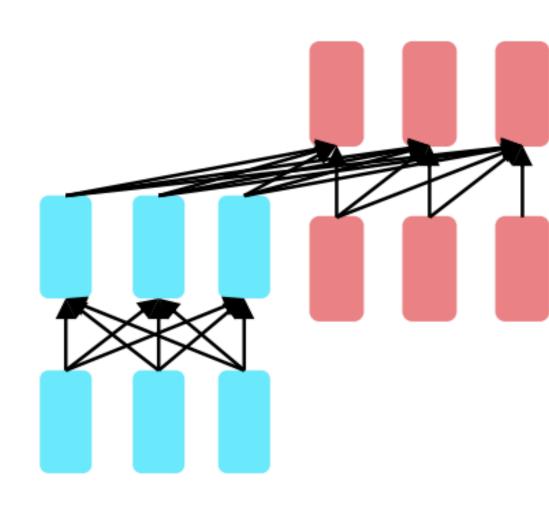
- [SEP]: Later work has argued this "next sentence prediction" is not necessary
- In general, more compute, more data can improve pretraining even when not changing the underlying Transformer encoder
- Results in contextual embeddings
- Key Limitation:
 - Cannot be used for generation
 - No pretraining encoders can be used for autoregressive generation very naturally
 - There are clunky ways in which you could try...but not a natural fit
 - For this, we need to have a decoder!

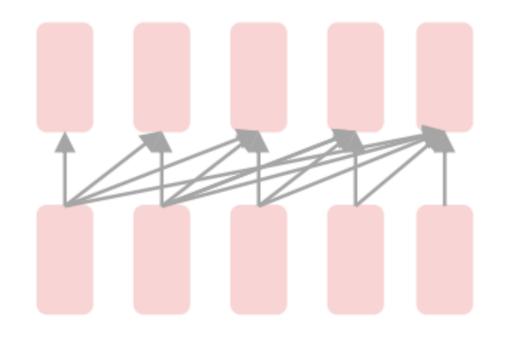
Pretraining for three types of architectures



Encoders

Bidirectional Context





Decoders

Language Models

Sequence-to-sequence

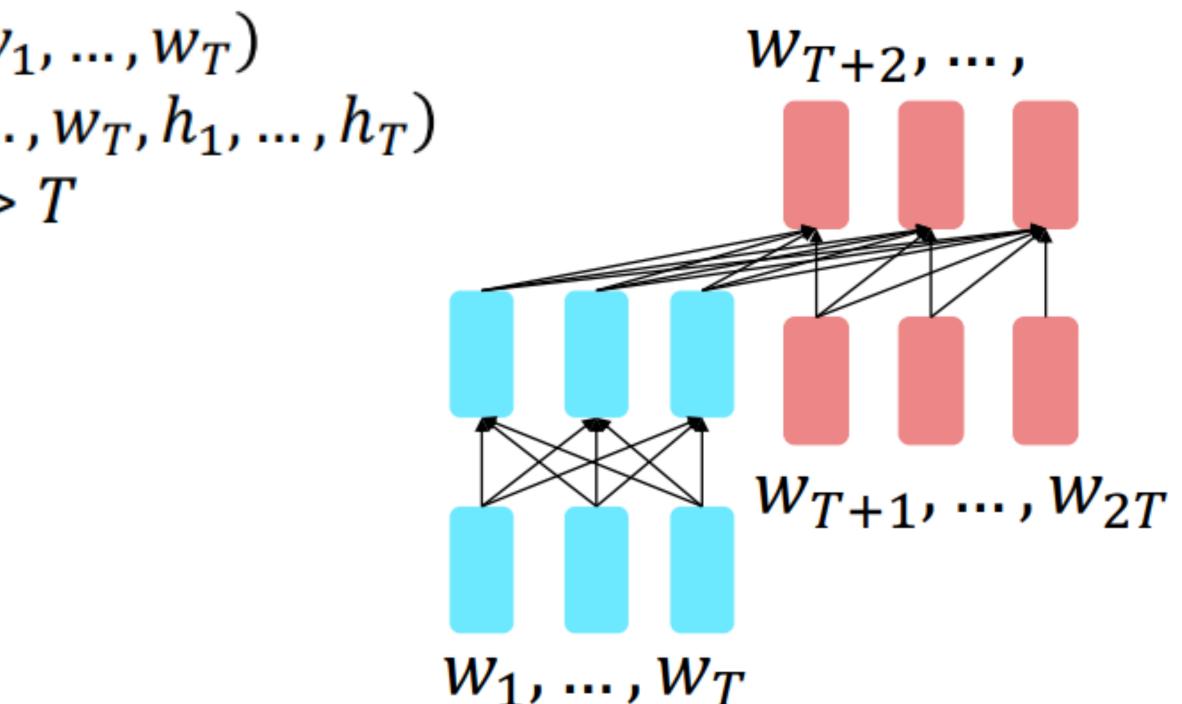
Pretraining Encoder-Decoder Models

prefix of every input is provided to the encoder and is not predicted.

$$\begin{aligned} h_1, \dots, h_T &= \text{Encoder}(w_1) \\ h_{T+1}, \dots, h_2 &= Decoder(w_1, \dots \\ y_i \sim Ah_i + b, i > \end{aligned}$$

The encoder portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling.

For encoder-decoders, we could do something like language modeling, but where a



T5: A Pretrained Encoder-Decoder Model

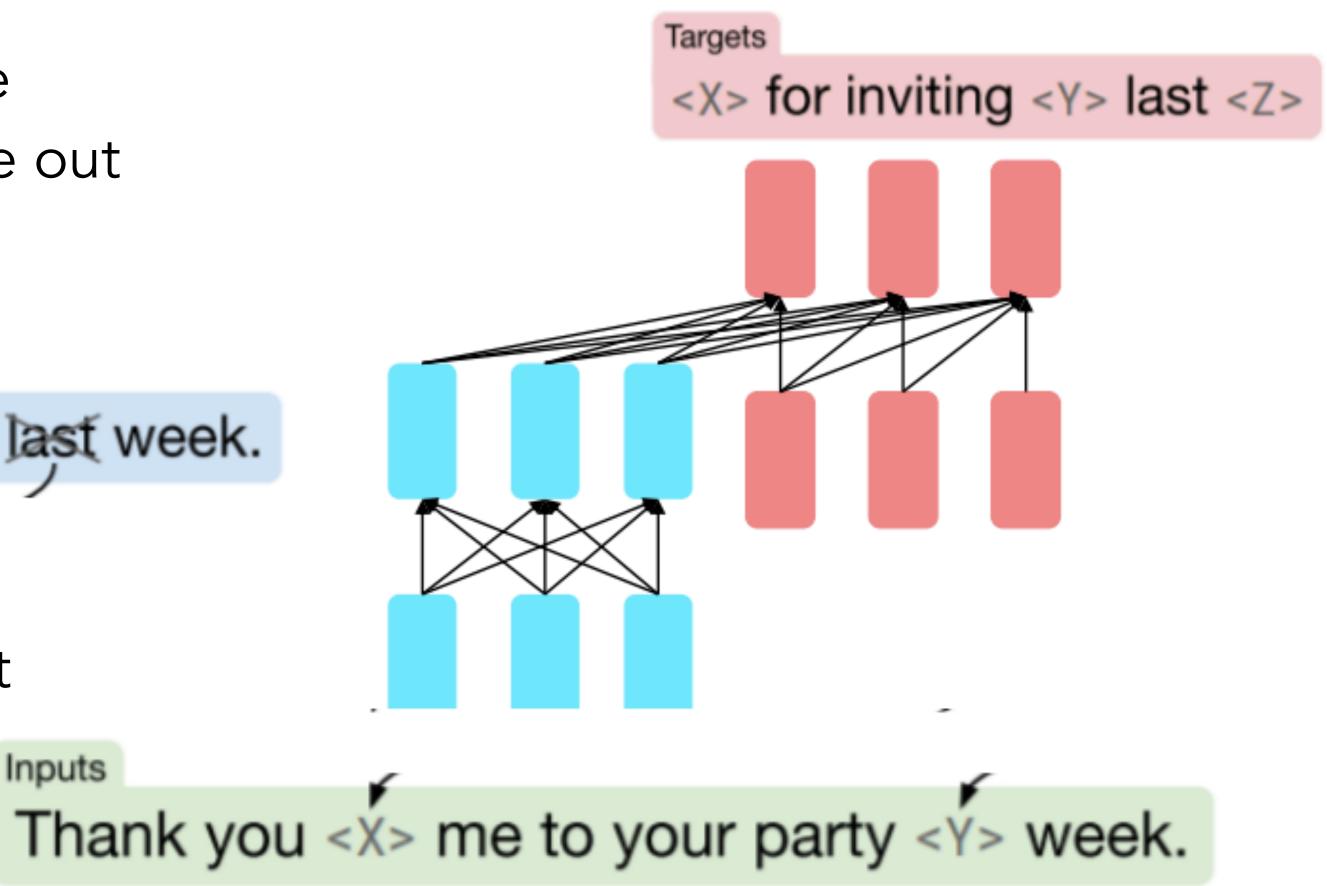
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

Original text

Thank you for inviting me to your party last week.

This is implemented in text preprocessing: it's still an objective that looks like language modeling at the decoder side.



"translate English to German: That is good."

"cola sentence: The course is jumping well."

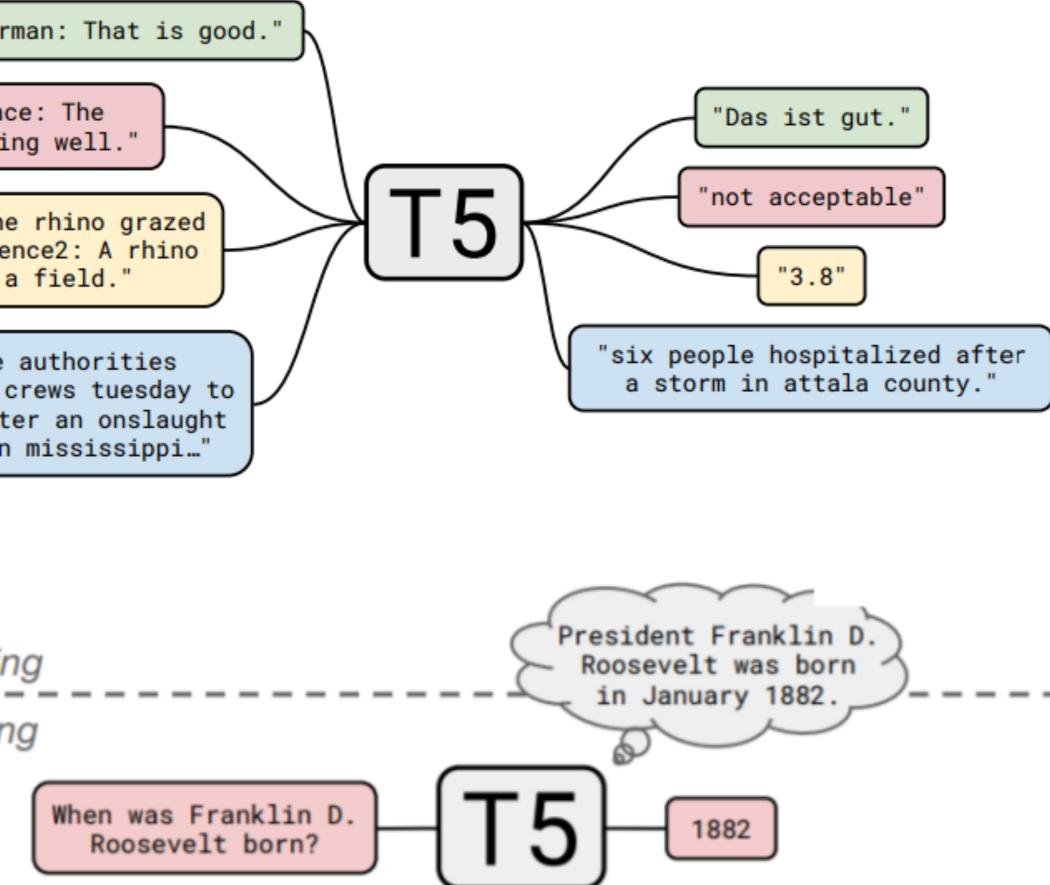
"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

> Pre-training Fine-tuning

A fascinating property of T5: it can be finetuned to answer a wide range of questions, retrieving knowledge from its parameters.

T5: Task Preparation



T5 Results

and span corruption (denoising) to work better than language modeling.

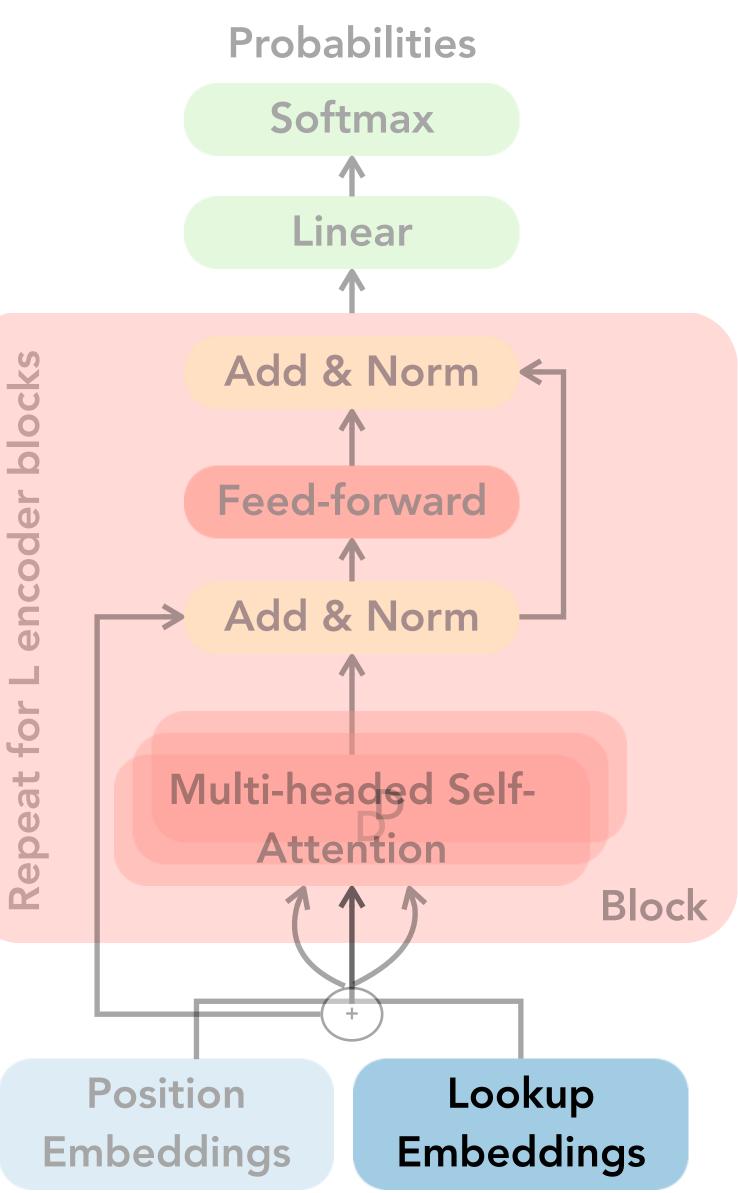
Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	$_{ m LM}$	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$\mathbf{L}\mathbf{M}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$\mathbf{L}\mathbf{M}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	LM	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

• Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

Tokenization in Transformers

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary
 - Built from training data, with tens of thousands of components
 - However, even with the largest vocabulary, we may encounter out-of-vocabulary words at test time
 - Our approach so far: map novel words seen at test time (OOV) to a single UNK



Encoder Inputs

How to get the words?

Or, more accurately, the tokens?

- Problem: break the text into a sequence of discrete tokens
- accurate tokenization
- small number of characters, without intervening whitespace

• For alphabetic languages such as English, deterministic scripts usually suffice to achieve

• However, in languages such as Chinese and Swahili, words are typically composed of a

Word Structure in Language

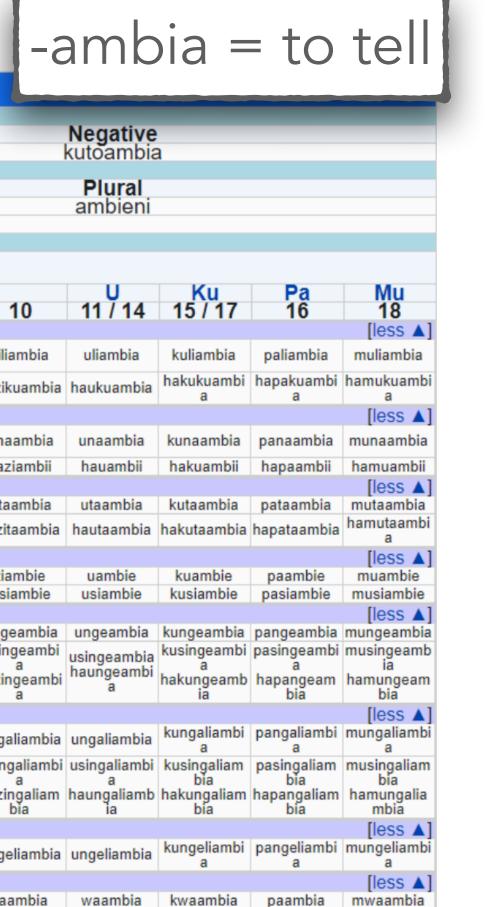
• Finite vocabulary assumptions make even less sense in many languages. • Many languages exhibit complex morphology, or word structure.

- The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have hundreds of conjugations, each encoding a wide variety of information. (Tense, mood, definiteness, negation, information about the object, ++)

Source: Wiktionary

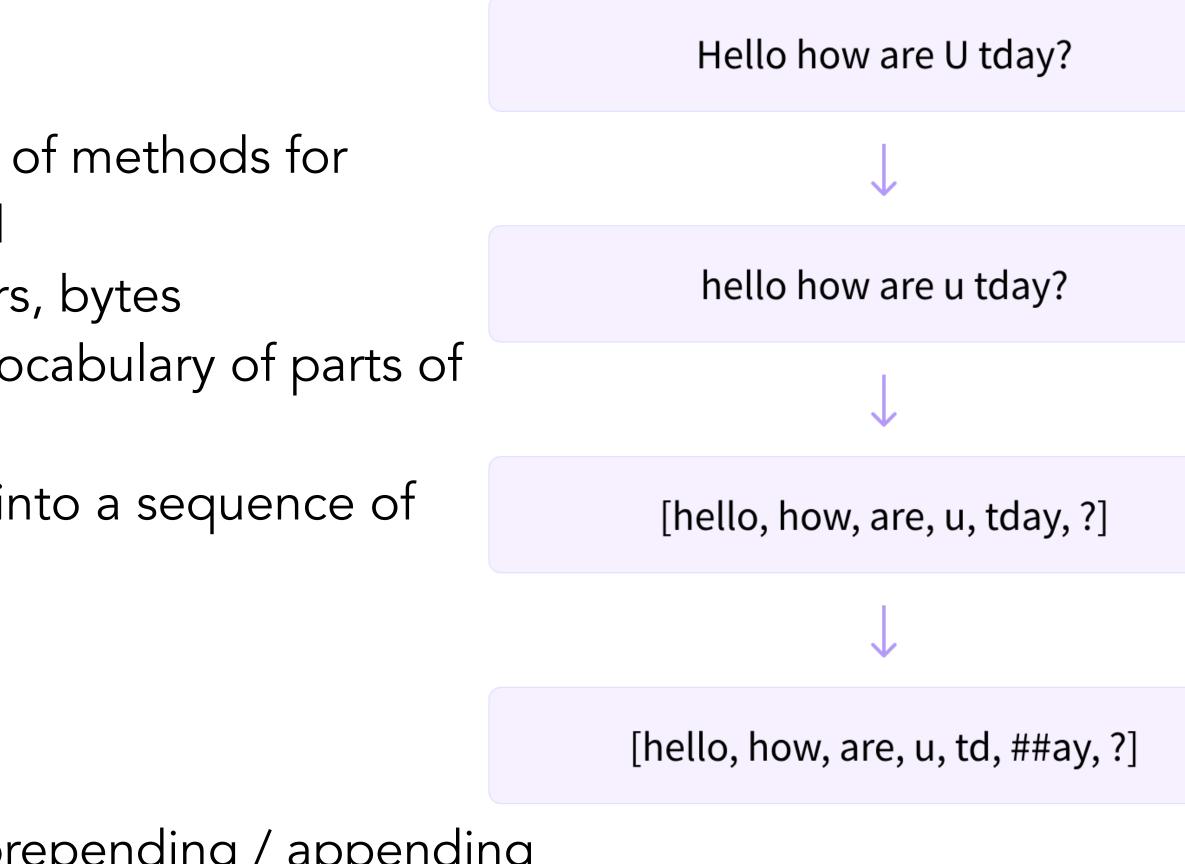
		-																
Conjug	ation of -	ambia																
								No	n-finite fo	rms								
		Form						Positive							Negative			
		Infinitive						kuambia		_					kutoambia	a		
	_							Simp	ole finite f	forms								
		sitive for						Singular ambia	•						Plural			
		mperative Habitual	e					ampia			bua	mbia			ambieni			
		паріциаі						Comr	olex finite	forms	nua	mpia						
		Borg	one		Pers	ons /		Comp		Torms		Clar	2000					
Polarity		Pers			Cla	sons /							sses					_
Folding		st		nd		M-wa		·mi	N	la	KI	-vi	•	N	U	Ku 15 / 17	Pa 16	
	Sg.	PI.	Sg.	PI.	Sg. / 1	PI. / 2	3	4	Deet	6	(8	9	10	11 / 14	15/1/	10	
	niliambia	tuliambia	uliambia	mliambia					Past									
Positive	naliambia	twaliambia	waliambia	mwaliambia	aliambia	waliambia	uliambia	iliambia	liliambia	yaliambia	kiliambia	viliambia	iliambia	ziliambia	uliambia	kuliambia	paliambia	m
Negative	sikuambia	hatukuambia	hukuambia	hamkuambia	hakuambia	hawakuambi a	haukuambia	haikuambia	halikuambia	hayakuambi a	hakikuambia	havikuambia	haikuambia	hazikuambia	haukuambia	hakukuambi a	hapakuambi a	har
	Present																	
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia	kinaambia	vinaambia	inaambia	zinaambia	unaambia	kunaambia	panaambia	m
Negative	siambii	hatuambii	huambii	hamambii	haambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	haviambii	haiambii	haziambii	hauambii	hakuambii	hapaambii	ha
									uture									
Positive	nitaambia	tutaambia	utaambia	mtaambia	ataambia	wataambia	utaambia	itaambia	litaambia	yataambia	kitaambia	vitaambia	itaambia	zitaambia	utaambia	kutaambia	pataambia	
Negative	sitaambia	hatutaambia	hutaambia	hamtaambia	hataambia	hawataambi a	hautaambia			hayataambia	hakitaambia	havitaambia	haitaambia	hazitaambia	hautaambia	hakutaambia	hapataambia	ha
									junctive									
Positive	niambie	tuambie	uambie	mambie	aambie	waambie	uambie	iambie	liambie	yaambie	kiambie	viambie	iambie	ziambie	uambie	kuambie	paambie	_
Negative	nisiambie	tusiambie	usiambie	msiambie	asiambie	wasiambie	usiambie	isiambie	lisiambie	yasiambie	kisiambie	visiambie	isiambie	zisiambie	usiambie	kusiambie	pasiambie	m
Positive	ningoambia	tungoambia	ungoambia	mngoamhia	angoamhia	wangeambia	ungoambia		Conditio	vangoambia	kingoambia	vingeambia	ingoamhia	zingoambia	ungoambia	kungeambia	pangoambia	10011
Fositive																		
Negative	nisingeambi	a	usingeambia	a	asingeambia	wasingeamb ia hawangeam	usingeambia	isingeambia	lisingeambia	a	a	a	isingeambia	a	usingeambia	kusingeambi a hakungeamb	a	
negutive	singeambia	hatungeamb	hungeambia	hamngeambi	i hangeambia	hawangeam	a	haingeambia	a	hayangeamb	hakingeambi	havingeambi	haingeambia	hazingeambi	a	hakungeamb	hapangeam	har
	-	Id		d		Dia		Dact C	onditiona		d	d		d		Id	Dia	
Dositivo	ningaliambia	tungaliamhia	ungaliambia	mngaliamhia	angaliamhia	wangaliambi	ungaliambia				kingaliambia	vingeliembie	ingaliamhia	zingaliambia	ungaliamhia	kungaliambi	pangaliambi	mu
Positive	-	-	-	-	-	d	-	-	-	d	-	-	-	-	-	а	а	
	nisingaliamb	tusingaliamb	usingaliambi	msingaliamb	asingaliambi	wasingaliam	usingaliambi	isingaliambia	lisingaliambi	yasingaliam	kisingaliambi	visingaliambi	isingaliambia	zisingaliambi	usingaliambi	kusingaliam	pasingaliam	mu
Negative						hawangalia			halingaliamb	hayangaliam	hakingaliam	a havingaliam	haingaliamb	hazingaliam	haungaliamb	bia hakungaliam	hapangaliam	ha
	singaliambia	bĭa	ă	bia	a	mbia	Id		Id	Dia	bĭa	bĭa	d	bĭa	Ĭa	bía	bia	
									Contrary									
Positive	ningeliambia	tungeliambia	ungeliambia	mngeliambia	angeliambia	wangeliambi a	ungeliambia	ingeliambia	lingeliambia	yangeliambi a	kingeliambia	vingeliambia	ingeliambia	zingeliambia	ungeliambia	kungeliambi a	pangeliambi a	mu
									nomic									
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	laambia	yaambia	chaambia	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia	m
								Pe	erfect									



[less]

Subword Modeling

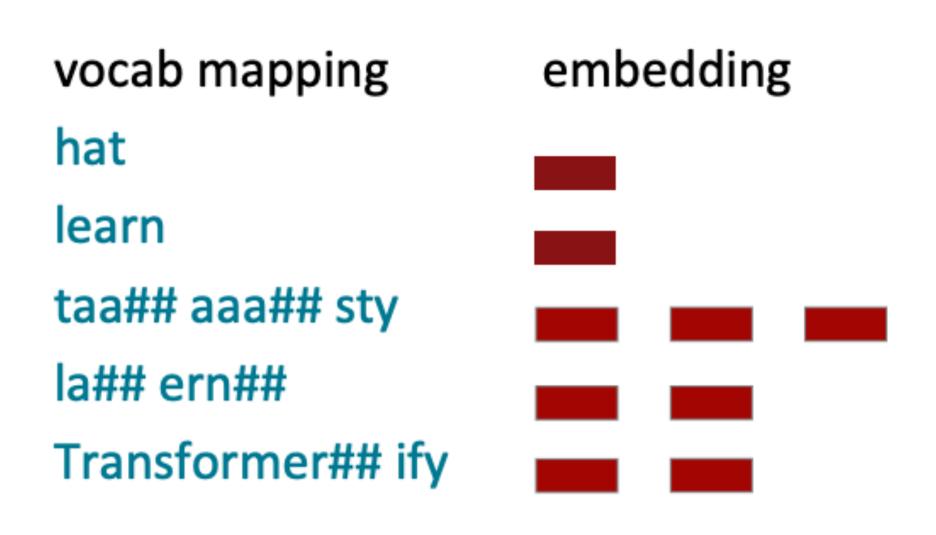
- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:
 - Byte-Pair Encoding
 - WordPiece Modeling
 - Follow different strategies. Often contain prepending / appending special tokens (##, </w>)



Word structure and subword models

- split into (sometimes intuitive, sometimes not) components.
- In the worst case, words are split into as many subwords as they have characters.

• Common words end up being a part of the subword vocabulary, while rarer words are



Byte-pair encoding

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences

• Algorithm:

- Start with a vocabulary containing only characters and an "end-of-word" symbol.
- 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
 - This is a learned operation!
 - Only combine pairs (hence the name!)
- 3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. • At test time, first split words into sequences of characters, then apply the learned operations to merge the characters into larger, known symbols
- Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained models.

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

				Vocabul	ary			
d	е	i	I	n	0	S	t	w
es								

	Corpus									
low	lower	newest								
low	lower	newest								
low	widest	newest								
low	widest	newest								
low	widest	newest								

Frequency								
d-e (3)	I-o (7)	t- (8)						
e-r (2)	n-e (5)	w- (5)						
e-s (8)	o-w (7)	w-e (7)						
e-w (5)	r- (2)	w-i (3)						
i-d (3)	s-t (8)							

Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

				Vocabul	lary			
d	е	i	I	n	0	S	t	W
es	est							

		Corpus	
lo	o w	lower	n e w <mark>es</mark> t
	o w	lower	n e w <mark>es</mark> t
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t
	o w	w i d <mark>es</mark> t	n e w <mark>es</mark> t

	Frequency	
d-es (3)	l-o (7)	w- (5)
e-r (2)	n-e (5)	w-es (5)
e-w (5)	o-w (7)	w-e (2)
es-t (8)	r- (2)	w-i (3)
i-d (3)	t- (8)	

Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low> lower newest low low er
low widest newest I o w w i d est
low> widest newest I o w w i d est
low widest newest No widest widest

Vocabularv

				, ocusa	J			
d	е	i		n	0	S	t	W
es	est	est	lo	low	low	ne	new	newest

After 10 merges

Corpus

Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/