
Lecture 14:

Finetuning Transformers

Slides adapted from Dan Jurafsky, Chris Manning, John Hewitt, Anna Goldie

Instructor: Swabha Swayamdipta

USC CSCI 499 LMs in NLP


Mar 20, Spring 2024



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Logistics  / Announcements

• HW3 due tonight

• HW4 out today, due Fri, 4/3

• Next class: Guest Lecture by Prof. Jieyu Zhao


• Harms of LLMs

• Next week:


• Instructor OH cancelled

• Email me if you need anything and I’ll set 

something up
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Recap: 

Transformer Encoder-Decoders
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The Transformer Encoder-Decoder Model
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Teacher Forcing

• Strategy in training decoders

• Decoder-only models

• Encoder-decoder models


• Force the decoder to consider ground truth, regardless of the probability assigned to a 
predicted token


• At each time step  in decoding we force the system to use the gold target token from 
training as the next input , rather than allowing it to rely on the (possibly erroneous) 
decoder output 

t
xt+1

̂yt
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Recap: The Pre-training 
and Fine-tuning Paradigm
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– Unknown, yet common practice in natural language processing

“Pretrain once, finetune many times.” 

10
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The Pretraining / Finetuning Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.

11

Step 1: Pretrain (on language corpora)

Lots of text; learn general things!

Step 2: Finetune (on your task data)

Not many labels; adapt to the task!

Key idea: “Pretrain once, finetune many times.” 
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Pretraining

• Central Approach: Pretraining methods hide 
parts of the input from the model, and train 
the model to reconstruct those parts. 


• Abstracts away from the task of “learning the 
language”

12

Step 1: Pretrain (on language corpora)

Lots of text; learn general things!
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13

Partial network Full network

Pretraining: Parameter Initialization
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Pretraining: Language Models
• Recall the language modeling task: 


• Model , the probability 
distribution over words given their past 
contexts. There’s lots of data for this! (In 
English.) 


• Pretraining through language modeling:

• Train a neural network to perform 

language modeling on a large amount of 
text. 


• Save the network parameters.

• Pretraining is not restricted to language 

modeling! Can be any task

• But most successful if the task definition is 

very general. Hence, language modeling is a 
great pretraining option

pθ(wt |w1:t−1)

14
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Pretraining for three types of architectures

15

Bidirectional Context

Sequence-to-sequence

Language Models
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Pretraining for three types of architectures

16

Bidirectional Context

Sequence-to-sequence

Language Models
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Pretraining Decoders: Classifiers

• When using language model pretrained decoders, we 
can ignore that they were trained to model 

 


• We can finetune them by training a classifier on the 
last word’s hidden state


• 


• 


• Where  and  are randomly initialized and 
specified by the downstream task. 


• Gradients backpropagate through the whole network.

pθ(wt |w1:t−1)

h1, …, hT = Decoder(w1, …, wT)
y ≈ AhT + b

A b

17

The linear layer hasn’t been 
pretrained and must be learned 

from scratch.
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Pretraining Decoders: Generators

• More natural: pretrain decoders as language models and 
then use them as generators, finetuning their 


• 


• 


• Where 𝐴, 𝑏 were pretrained in the language model!

pθ(wt |w1:t−1)
h1, …, hT = Decoder(w1, …, wT)

wt ≈ Aht−1 + b

18

The linear layer has been pretrained

• This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time! 

• Dialogue (context=dialogue history) 

• Summarization (context=document) 
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Pretraining for three types of architectures

19

Bidirectional Context

Sequence-to-sequence

Language Models
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Pretraining Encoders: Bidirectional Context

20

Universal Studios Theme Park is located in ______________, California

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

‘Cause darling i'm a _______ dressed like a daydream

Bidirectional context is important to reconstruct the input!

Problem: Input 
Reconstruction
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Pretraining Encoders: Objective

• Encoders get bidirectional context, so we can’t do language modeling! 

• Idea: replace some fraction of words in the input with a special [MASK] token; predict 

these words. 


• 


•  
h1, …, hT = Encoder(w1, …, wT)
yi ≈ Ahi + b

21

• Only add loss terms from words that are “masked out.” 


• If  is the masked version of 𝑥, we’re learning . 


• Called Masked LM

• Special type of language modeling

x̃ pθ(x̃ |x)
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Masked Language 
Modeling

22
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BERT: Bidirectional Encoder Representations from Transformers

23

• 15% of the input tokens in a training sequence are 
sampled for learning, these are to be predicted by the 
model


• Of these

• 80% are replaced with [MASK] 

• 10% are replaced with randomly selected tokens, 

• Remaining 10% are left unchanged 

Devlin et al., 2018 proposed the “Masked LM” objective and released BERT, a Transformer, 
pretrained to:

Why? Doesn’t let the model get complacent and not build strong representations 
of non-masked words. (No masks are seen at fine-tuning time!)
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BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:

24

• BERT was trained to predict whether one chunk follows the other or is randomly sampled. 

• [CLS] and [SEP] tokens

• [SEP] is used for next sentence prediction - do these sentences follow each other?

• [CLS] for text classification / connection to fine-tuning
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BERT: Training Details

• Two models were released: 

• BERT-base: 12 layers, 768-dim hidden states, 12 attention 

heads, 110 million params. 

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention 

heads, 340 million params. 

• Trained on: 


• BooksCorpus (800 million words) 

• English Wikipedia (2,500 million words) 


• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days. 


• (TPUs are special tensor operation acceleration 
hardware) 


• Finetuning is practical and common on a single GPU 

• “Pretrain once, finetune many times.”

25
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BERT: Contextual Embeddings

• BERT results in contextual embeddings 

• Embeddings for tokens in context, not just type embeddings like word2vec, GloVe

• Can be used for measuring the semantic similarity of two words in context

• Useful in linguistic tasks that require precise models of word meaning

26
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BERT: Results

• BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks.

27

Various Text Classification tasks like sentiment classification
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BERT: Extensions

• Some generally accepted improvements to the BERT pretraining formula: 

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction! 

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining 

task 

• A lot of BERT variants that used the BERT formula 


• ALBERT: BERT with parameter-reduction techniques

• DistilBERT: 

• DeBERTa: Decoding-enhanced BERT with disentangled attention

• FlauBERT: BERT for French

• XLNet: Multilingual BERT

• Etc.


• BERTology: How and why BERT worked so well

28
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BERT: Overview

• [SEP]: Later work has argued this “next sentence prediction” is 
not necessary 


• In general, more compute, more data can improve pretraining 
even when not changing the underlying Transformer encoder


• Results in contextual embeddings 

• Key Limitation:


• Cannot be used for generation

• No pretraining encoders can be used for autoregressive 

generation very naturally

• There are clunky ways in which you could try…but not a 

natural fit

• For this, we need to have a decoder!

29
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Pretraining for three types of architectures

30

Bidirectional Context

Sequence-to-sequence

Language Models
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Pretraining Encoder-Decoder Models

• For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

31

The encoder portion benefits from 
bidirectional context; the decoder 
portion is used to train the whole 
model through language modeling.
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T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

32

Replace different-length spans from the 
input with unique placeholders; decode out 
the spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective that 
looks like language modeling at the 
decoder side.
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T5: Task Preparation

33

A fascinating property of 
T5: it can be finetuned to 
answer a wide range of 
questions, retrieving 
knowledge from its 
parameters.
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T5 Results

• Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks, 
and span corruption (denoising) to work better than language modeling.

34
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Tokenization in 
Transformers

35
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The Input Layer

• So far, we have made some assumptions about a 
language’s vocabulary


• Our approach so far: use a known, fixed vocabulary 

• Built from training data, with tens of thousands of 

components

• However, even with the largest vocabulary, we may 

encounter out-of-vocabulary words at test time

• Our approach so far: map novel words seen at test 

time (OOV) to a single UNK

36
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How to get the words?

• Problem: break the text into a sequence of discrete tokens

• For alphabetic languages such as English, deterministic scripts usually suffice to achieve 

accurate tokenization

• However, in languages such as Chinese and Swahili, words are typically composed of a 

small number of characters, without intervening whitespace 

37

Or, more accurately, the tokens?
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Word Structure in Language
• Finite vocabulary assumptions make even less sense in many languages. 


• Many languages exhibit complex morphology, or word structure. 

• The effect is more word types, each occurring fewer times.

38

Source: Wiktionary

Example: Swahili verbs 
can have hundreds of 
conjugations, each 
encoding a wide variety 
of information. (Tense, 
mood, definiteness, 
negation, information 
about the object, ++)

-ambia = to tell
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Subword Modeling

• Solution: look at subwords!

• Subword modeling encompasses a wide range of methods for 

reasoning about structure below the word level

• Subwords may be parts of words, characters, bytes


• The dominant modern paradigm is to learn a vocabulary of parts of 
words (subword tokens) 


• At training and testing time, each word is split into a sequence of 
known subwords


• Different algorithms:

• Byte-Pair Encoding

• WordPiece Modeling

• Follow different strategies. Often contain prepending / appending 

special tokens (##, </w>)

39
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 Word structure and subword models

• Common words end up being a part of the subword vocabulary, while rarer words are 
split into (sometimes intuitive, sometimes not) components. 


• In the worst case, words are split into as many subwords as they have characters.

40
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Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary

• Adapted for word segmentation from data compression technique (Gage, 1994)


• Instead of merging frequent pairs of bytes, we merge characters or character sequences

• Algorithm:


1. Start with a vocabulary containing only characters and an “end-of-word” symbol. 

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword 


• This is a learned operation!

• Only combine pairs (hence the name!)


3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. 

• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols

• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 

models.

41
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BPE in action

42
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/


CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

BPE in action

43
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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BPE in action

44
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

