
Lecture 12:
Transformers: Building Blocks

Slides adapted from Dan Jurafsky, Chris Manning, John Hewitt, Anna Goldie

Instructor: Swabha Swayamdipta
USC CSCI 499 LMs in NLP

Mar 4, Spring 2024

CSCI 499 Spring 2024: Language Models in NLP

Logistics / Announcements

• Today:
• Project Progress Report Deadline
• Graded Quiz 3 sheets will be distributed
• HW3 will be out
• Piazza post for final project presentations

• This week:
• TA lecture on PyTorch
• Quiz 4 on Wednesday
• Graded Project Progress Reports will be out

2

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Quiz 3 Answers
• Recap: Transformers as Self-Attention Networks
• Transformers: Multiheaded Attention
• Transformers: Positional Embeddings
• Putting it all together: Transformer Blocks
• Transformers as Encoders, Decoders and Encoder-Decoders

3

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Quiz 3 Answers

4

CSCI 499 Spring 2024: Language Models in NLP

Quiz 3

1. Draw the computation graph for the following example and use it to find the gradients
for with respect to all variables, and .

2. Which is more expensive: forward propagation or backpropagation? Explain why.
3. Why is non-linearity important in neural networks? What happens if we remove the non-

linear activation function in neural networks?
4. Why are vanishing gradients a problem for RNNs? Why is the problem not as severe in

feedforward NNs?
5. What’s the advantage of weight tying in RNNs? Remember, weight tying is the use of

the same weight parameters and —representing the th layer of the RNN—at all
time steps.

L a, b, c, d, e f
e = a * c + b; f = c

d ; L = e * f; a = 3; b = 1; c = − 4; d = 2

Wh W[l] l

5

CSCI 499 Spring 2024: Language Models in NLP

1. Draw the computation graph for the following example and use it to find the gradients
for with respect to all variables, and . L a, b, c, d, e f

6

a

b

c

f =
c
d

e = a * c + b

L = e * f

d

e = a * c + b; f = c
d ; L = e * f; a = 3; b = 1; c = − 4; d = 2

∂L
∂e

∂e
∂a

∂e
∂c

∂L
∂f

∂f
∂d

∂e
∂b

∂f
∂c

∂L
∂c

=
∂L
∂e

∂e
∂c

+
∂L
∂f

∂f
∂c

= af +
e
d

= − 6 − 11/2 = − 23/2

∂L
∂e

= f

∂L
∂f

= e

∂f
∂d

= −
c
d2

e = − 11

f = − 2

∂L
∂d

=
∂L
∂f

∂f
∂d

= −
ec
d2

= 11

∂L
∂a

=
∂L
∂e

∂e
∂a

= fc = 8

∂e
∂a

= c

∂L
∂b

=
∂L
∂e

∂e
∂b

= f = − 2∂e
∂b

= 1 ∂e
∂c

= a

∂f
∂c

=
1
d

CSCI 499 Spring 2024: Language Models in NLP

2. Which is more expensive: forward propagation or backpropagation? Explain why.

7

For every training tuple

• Run forward computation to find our estimate

• Run backward computation to update weights:
• For every output node

• Compute loss between true and the estimated

• For every weight from hidden layer to the output layer

• Update the weight
• For every hidden node

• Assess how much blame it deserves for the current answer

• For every weight from input layer to the hidden layer

• Update the weight

(x, y)
̂y

L y ̂y
w

w

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

A single run of back propagation is more computationally expensive than forward
propagation, because it involves computing all gradients and updating the weights.

However, once a model has been trained, we only run forward propagation with it -
which amounts to all the costs of running the model.

CSCI 499 Spring 2024: Language Models in NLP

3. Why is non-linearity important in neural networks? What happens if we remove the
non-linear activation function in neural networks?

8

If we remove the non- linear activation
functions, the resulting (multi-layer)
network is exactly equivalent to a
single-layer linear network.

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input
Features

Weights and
Biases

Weighted
Sum

Activation
Function

Output = y

…

z σ(z)

Non-linear
transformation

Non-linearity enables arbitrarily complex
boundaries between data points; therefore it
can represent any function!

Non-linearity enables probabilistic models

CSCI 499 Spring 2024: Language Models in NLP

4. Why are vanishing gradients a problem for RNNs? Why is the problem not as
severe in feedforward NNs?

9

∂L4

∂h0
=

h1 h3 h4h2

Wh Wh Wh Wh

h0

̂y4

L4(θ)
∂h1

∂h0
×

∂L4

∂h1

=
∂h1

∂h0
×

∂h2

∂h1
×

∂L4

∂h2

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂L4

∂h3

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂h4

∂h3
×

∂L4

∂h4

When these gradients are small, the
gradient signal gets smaller and smaller as
it backpropagates further…

Gradient signal from far away
is lost because it’s much
smaller than gradient signal
from close-by

Feedforward
networks do not
consider arbitrarily
long contexts, just a
fixed window.
Barring a very large
window size, there is
lower risk of
gradient
dependence at long
ranges

CSCI 499 Spring 2024: Language Models in NLP

5. What’s the advantage of weight tying in RNNs? What would be the
disadvantages, if any?

10

Remember, weight tying is the use of the same weight parameters and —representing the th
layer of the RNN—at all time steps

Wh W[l] l

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

• Weights are shared
(tied) across timesteps →
Condition the neural
network on all previous
words

• Advantage: Keeps the
number of parameters
manageable

• Disadvantage: The same
weights are responsible for
all words in the history

W[1]

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Recap: Transformers as
Self-Attention Networks

11

CSCI 499 Spring 2024: Language Models in NLP

 Self-Attention

Let be a sequence of words in vocabulary
For each , let , where is an
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V

12

Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values

CSCI 499 Spring 2024: Language Models in NLP

Attention Variants

• In general, we have some keys and a query

• Attention always involves
1. Computing the attention scores,
2. Taking softmax to get attention distribution
3. Using attention distribution to take weighted sum of values:

h1, …, hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) ∈ ℝN

αt = softmax(e(q, h1:N)) ∈ ΔN

13

This leads to the attention output (sometimes called the attention context vector)catt
t

Can be done in multiple ways!

catt
t =

N

∑
i=1

αt,ihi ∈ ℝd1

CSCI 499 Spring 2024: Language Models in NLP

Attention Variants

• There are several ways you can compute from and

• Basic dot-product attention:

• This assumes

• We applied this in encoder-decoder RNNs

• Multiplicative attention:

• Where is a learned weight matrix.

• Also called “bilinear attention”

e(q, h1:N) ∈ ℝN h1…hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) = [q ⋅ hj]j=1:N
d1 = d2

e(q, h1:N) = [qTWhj]j=1:N
W ∈ ℝd2×d1

14

CSCI 499 Spring 2024: Language Models in NLP

More on Attention

• We sometimes say that the query attends to the values.
• For example, in the seq2seq + attention model, each decoder hidden state (query)

attends to all the encoder hidden states (values)
• You use the keys to get to the values

• The weighted sum is a selective summary of the information contained in the values,
where the query determines which values to focus on.

• Attention is a way to obtain a fixed-size representation of an arbitrary set of
representations (the values), dependent on some other representation (the query).

• Attention is a powerful, flexible, general deep learning technique in all deep learning
models.
• A new idea from after 2010! Originated in NMT

15

Given a set of vector values, and a vector query, attention is a technique to
compute a weighted sum of the values, dependent on the query

CSCI 499 Spring 2024: Language Models in NLP

 Attention and lookup tables
Attention performs fuzzy lookup in a key-value store

16

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

CSCI 499 Spring 2024: Language Models in NLP

Attention in the decoder

17

The monkey ate the banana because it

k

v

q

k

v

k

v

k

v

k

v

k

v

k

v

A
tt

en
tio

n
D

ist
rib

ut
io

n

Self-Attention!

CSCI 499 Spring 2024: Language Models in NLP

Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices.

• Let be the concatenation of input vectors

• First, note that , , and

• The output is defined as

X = [x1; …; xn] ∈ ℝn×d

XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

softmax(XQ(XK)T)XV ∈ ℝn×d

18

First, take the query-
key dot products in

one matrix
multiplication:

 XQ(XK)T

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

CSCI 499 Spring 2024: Language Models in NLP

Why Self-Attention?

• Self-attention allows a network to directly extract and use information from arbitrarily
large contexts without the need to pass it through intermediate recurrent connections as
in RNNs

• Used often with feedforward networks!

19

CSCI 499 Spring 2024: Language Models in NLP

Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind
Transformers!

• Transformers map sequences of input vectors
 to sequences of output vectors
 of the same length.

• Made up of stacks of Transformer blocks
• each of which is a multilayer network made

by combining
• simple linear layers,
• feedforward networks, and
• self-attention layers

(x1, …, xn)
(y1, …, yn)

20

CSCI 499 Spring 2024: Language Models in NLP

Self-Attention and Weighted Averages
• Problem: there are no element-wise

nonlinearities in self-attention; stacking
more self-attention layers just re-averages
value vectors

• Solution: add a feed-forward network to
post-process each output vector.

21
Input layer: vector x

Output layer: y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

ReLU or tanh

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)

CSCI 499 Spring 2024: Language Models in NLP

Self Attention and Future Information

• Problem: Need to ensure we don’t “look at the future” when
predicting a sequence
• e.g. Target sentence in machine translation or generated

sentence in language modeling
• To use self-attention in decoders, we need to ensure we

can’t peek at the future.
• Solution (Naïve): At every time step, we could change the set

of keys and queries to include only past words.
• (Inefficient!)

• Solution: To enable parallelization, we mask out attention to
future words by setting attention scores to −∞

22

CSCI 499 Spring 2024: Language Models in NLP

Self-Attention and Heads

23

• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax
• Solution: Consider multiple attention computations in parallel

Multiheaded attention

The monkey ate the banana because it

k

v

q

k

v

k

v

k

v

k

v

k

v

k

v

A
tt

en
tio

n
D

ist
rib

ut
io

n

CSCI 499 Spring 2024: Language Models in NLP

Transformers:
Multiheaded Attention

24

CSCI 499 Spring 2024: Language Models in NLP

Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word , self-attention “looks” where is high, but maybe
we want to focus on different for different reasons?

• We’ll define multiple attention “heads” through multiple matrices

• Let , each in , where is the number of attention heads,
and .

• Each attention head performs attention independently:
• Then the outputs of all the heads are combined!

i xT
i QT(Kxj)

j
Q, K, V

Ql, Kl, Vl ℝd× d
h h

1 ≤ l ≤ h

25

Each head gets to “look” at different things, and construct value vectors differently

CSCI 499 Spring 2024: Language Models in NLP

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

26

First, take the query-key
dot products in one
matrix multiplication:

 XQl(XKl)T

Tensor!

CSCI 499 Spring 2024: Language Models in NLP

Scaled Dot Product Attention

• So far: Dot product self-attention
• When dimensionality 𝑑 becomes large, dot products between vectors tend

to become large
• Because of this, inputs to the softmax function can be large, making the

gradients small
• Now: Scaled Dot product self-attention to aid in training

27

• We divide the attention scores by , to stop the scores from becoming large just as a
function of , where is the number of heads

d/h
d/h h

outputℓ = softmax(XQℓKT
ℓ XT

d/h) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)

CSCI 499 Spring 2024: Language Models in NLP

Self-Attention: Order Information?

• Not necessarily (and not typically) based on
Recurrent Neural Nets

• No more order information!
• Since self-attention doesn’t build in order

information, we need to encode the order
of the sentence in our keys, queries, and
values.

28

Do feedforward nets contain order
information?

The green witch arrived
A

tt
en

tio
n

Sc
or

es
A

tt
en

tio
n

D
ist

rib
ut

io
n

hj q

CSCI 499 Spring 2024: Language Models in NLP

Transformers:
Positional Embeddings

29

CSCI 499 Spring 2024: Language Models in NLP

Missing: Order Information

• Consider representing each sequence index as a vector

• , for 𝑖 ∈ {1,2, … , 𝑛} are position vectors

• Don’t worry about what the are made of yet!

• Easy to incorporate this info: just add the to our inputs!

• Recall that is the embedding of the word at index 𝑖. The positioned embedding is:

•

pi ∈ ℝd

pi
pi

xi

x̃i = xi + pi

30

In deep self-attention networks, we do this at the first layer! You could
concatenate them as well, but people mostly just add…

CSCI 499 Spring 2024: Language Models in NLP

Positional Embeddings

• Maps integer inputs (for positions) to real-valued vectors
• one per position in the entire context

• Can be randomly initialized and can let all be learnable parameters (most common)

• Pros:
• Flexibility: each position gets to be learned to fit the data

• Cons:
• Definitely can’t extrapolate to indices outside 1, … , 𝑛.

• There will be plenty of training examples for the initial positions in our inputs and
correspondingly fewer at the outer length limits

pi

31

CSCI 499 Spring 2024: Language Models in NLP

Putting it all together:
Transformer Blocks

32

CSCI 499 Spring 2024: Language Models in NLP

Self-Attention Transformer Building Block
• Self-attention:

• the basis of the method; with multiple heads
• Position representations:

• Specify the sequence order, since self-attention is an
unordered function of its inputs.

• Nonlinearities:
• At the output of the self-attention block
• Frequently implemented as a simple feedforward network.

• Masking:
• In order to parallelize operations while not looking at the

future.
• Keeps information about the future from “leaking” to the

past.

33

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Quiz 3 Answers
• Recap: Transformers as Self-Attention Networks
• Transformers: Multiheaded Attention
• Transformers: Positional Embeddings
• Putting it all together: Transformer Blocks
• Transformers as Encoders, Decoders and Encoder-Decoders

34

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Transformers as
Encoders, Decoders and

Encoder-Decoders

35

CSCI 499 Spring 2024: Language Models in NLP

The Transformer Model

• Transformers are made up of stacks of transformer
blocks, each of which is a multilayer network made by
combining feedforward networks and self-attention
layers, the key innovation of self-attention transformers

• The Transformer Decoder-only model corresponds to
• a Transformer language model

• Lookup embeddings can be randomly initialized (more
common) or taken from existing resources such as
word2vec
• We will look at tokenization (next week)

36

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Inputs

Re
pe

at
 fo

r
 b

lo
ck

s
L

Block

+

D

DMasked Multi-headed

Self-Attention

CSCI 499 Spring 2024: Language Models in NLP

The Transformer Decoder

• Two optimization tricks that help training:
• Residual Connections
• Layer Normalization

• In most Transformer diagrams, these are often
written together as “Add & Norm”
• Add: Residual Connections
• Norm: Layer Normalization

37

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Decoder Inputs

Re
pe

at
 fo

r
 d

ec
od

er
 b

lo
ck

s
L

Block

+

D

DMasked Multi-headed

Self-Attention

Transformer Decoder

CSCI 499 Spring 2024: Language Models in NLP

Residual Connections

• Original Connections: where represents the layer

• Residual Connections : trick to help models train better.

• We let

• so we only have to learn “the residual” from the previous layer

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

38

Allowing information to skip a layer improves learning and gives higher level layers direct
access to information from lower layers (He et al., 2016).

CSCI 499 Spring 2024: Language Models in NLP

Layer Normalization

• Layer normalization is another trick to help models train faster
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer
• Let be an individual (word) vector in the model. x ∈ ℝd

39
LayerNorm = γ ̂x + β

Xu et al., 2019

μ =
1
d

d

∑
j=1

xj; μ ∈ ℝ σ =
1
d

d

∑
j=1

(xj − μ)2 ; σ ∈ ℝ

• Let and be learned “gain” and “bias” parameters. (Can omit!) γ ∈ ℝ β ∈ ℝd

̂x =
x − μ

σ
Result: New vector with zero mean and

a standard deviation of one Component-wise subtraction

CSCI 499 Spring 2024: Language Models in NLP

The Transformer Decoder

• The Transformer Decoder is a stack of Transformer
Decoder Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• Output layer is as always a softmax layer

40

Re
pe

at
 fo

r
 d

ec
od

er
 b

lo
ck

s
L

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Decoder Inputs

Block

+

D

DMasked Multi-headed

Self-Attention

Probabilities
Softmax

Linear

CSCI 499 Spring 2024: Language Models in NLP

The Transformer Encoder

• The Transformer Decoder constrains to unidirectional
context, as for language models.

• What if we want bidirectional context, i.e. both left to
right as well as right to left?

• The only difference is that we remove the masking in
the self-attention.

• Commonly used in sequence prediction tasks such as
POS tagging

• One output token per input token y x

41

Re
pe

at
 fo

r L
 e

nc
od

er
 b

lo
ck

s Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Encoder Inputs

Block

+

D

DMulti-headed Self-

Attention

Probabilities
Softmax

Linear

No Masking!

CSCI 499 Spring 2024: Language Models in NLP

The Transformer Encoder-Decoder

• Recall that in machine translation, we processed
the source sentence with a bidirectional model
and generated the target with a unidirectional
model.

• For this kind of seq2seq format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer Encoder.
• Our Transformer Decoder is modified to perform

cross-attention to the output of the Encoder.

42

CSCI 499 Spring 2024: Language Models in NLP

Cross Attention
• We saw that self -attention is when keys, queries, and

values come from the same source.
• In the decoder, we have attention that looks more like

what we saw last week.

• Let be output vectors from the Transformer
encoder;

• Let be input vectors from the Transformer
decoder,

• Then keys and values are drawn from the encoder
(like a memory):

•

• And the queries are drawn from the decoder,

h1, …, hn
hi ∈ ℝd

z1, …, zn
hi ∈ ℝd

ki = Khi, vi = Vhi

qi = Qzi

43

CSCI 499 Spring 2024: Language Models in NLP

Transformer Diagram

44
Attention is all you need (Vaswani et al., 2017)

CSCI 499 Spring 2024: Language Models in NLP

Transformers: Performance
Machine Translation

45

Language Modeling

The real power of Transformers comes from pretraining language models which are then
adapted for different tasks

After Spring Break!

