

# Lecture 11: **Transformers: Building Blocks**

Instructor: Swabha Swayamdipta USC CSCI 499 LMs in NLP Feb 26, Spring 2024



Slides adapted from Dan Jurafsky, Chris Manning, John Hewitt, Anna Goldie





# Logistics / Announcements

### • Today:



- Quiz 3 in class
- This Wednesday:
  - In-class project discussions
  - Make sure the entire team is present!
- Upcoming guest / TA lectures
- No Office Hours in the Spring Break week



|                              | Feb 26:             | Transformers - Building Blocks I             | HW2 Due      |
|------------------------------|---------------------|----------------------------------------------|--------------|
|                              | Feb 28:             | PROJECT DISCUSSIONS                          |              |
|                              | Mar 4:              | Transformers - Building Blocks II            | HW3 Released |
|                              |                     |                                              | PROGRESS REP |
|                              | Mar 6:              | TA Lecture: PyTorch for Transformers         |              |
|                              | <del>Mar 11</del> : | No Class SPRING BREAK                        |              |
|                              | <del>Mar 13</del> : | No Class SPRING BREAK                        |              |
| Large Language Models (LLMs) |                     |                                              |              |
|                              | Mar 18:             | Pre-training Transformers I                  | HW3 Due      |
|                              | Mar 20:             | Pre-training Transformers II                 | HW4 Released |
|                              | Mar 25:             | Guest Lecture: Limitations and Harms of LLMs |              |
|                              | Mar 27:             | Generating from Language Models I            |              |

d PORT DUE

ed

## Lecture Outline

- Quiz 3: FFNNs and RNNs
- Recap: Seq2Seq and Attention
- More on Attention
- Transformers: Self-Attention
- Transformers: Multi-headed Attention
- Transformers: Positional Embeddings
- Putting it all together: Transformer Blocks





## Quiz 3!

# Recap: Seq2Seq and Attention



## Generation with RNNLMs



/iterbi

cups

 $\hat{y}_4 = P(x_5 | \text{Strawberry ice cream in})$ 

Malibu



## RNNs and parallelizability

- have been computed
- But GPUs can perform a bunch of independent computations at once!



Hidden Layer 1





• Forward and backward passes have **O(sequence length)** unparallelizable operations! • Future RNN hidden states can't be computed in full before past RNN hidden states

# (Neural) Machine Translation

 Sequence Generation Problem (as opposed to sequence classification)

- $\mathbf{x} =$ Source sequence of length n
- y = Target sequence of length m
- Different from regular generation from an LM
  - Since we expect the target sequence to serve a specific utility (translate the source)



Seq2Seq uses rich, task-appropriate context!



Sequence-to-Sequence (Seq2seq)





## Encoder-Decoder Networks

 $x_1$ 

Encoder-decoder networks consist of three components:

- 1. An encoder that accepts an input sequence,  $\mathbf{x}_{1:N}$  and generates a corresponding sequence of contextualized representations,  $\mathbf{h}_{1}^{e} \dots \mathbf{h}_{N}^{e}$
- 2. A encoding vector, c which is a function of  $\mathbf{h}_1^e \dots \mathbf{h}_N^e$  and conveys the essence of the input to the decoder
- 3. A decoder which accepts  $\mathbf{c}$  as input and generates an arbitrary length sequence of hidden states  $\mathbf{h}_1^d \dots \mathbf{h}_M^d$ , from which a corresponding sequence of output states  $\mathbf{y}_{1:M}$  can be obtained

Encoders and decoders can be made of FFNNs, RNNs, or Transformers





 $y_1$ 

 $y_2$ 





Source Sentence **x** 



Language Model that produces the target sentence conditioned on the encoding







Source Sentence **x** 





- Attention mechanisms allow the decoder to focus on a particular part of the source sequence at each time step
- Fixed-length vector  $\mathbf{c}_{t}^{att}$  (attention context vector)
  - Take a weighted sum of all the encoder hidden states
  - One vector per time step of the decoder!
  - Weights attend to part of the source text relevant for the token the decoder is producing at step t
- In general, we have a single **query** vector and multiple key vectors.

We want to score each query-key pair

Note: Notation different from J&M





### Source Sentence **x**

Bahdanau et al., 2015





Source Sentence x

Note: Notation different from J&M 13



Dot product attention





Source Sentence **x** 



On this decoder tilmestep we are mostly focusing on the source token "arrived"

 $\exp \mathbf{h}_t^d \cdot \mathbf{h}_j^e$ 

$$\alpha_t = \mathbf{softmax}(\mathbf{score}(\mathbf{h}_t^d, \mathbf{h}_i^e)) \in \mathbb{R}^N$$

$$\alpha_{t,j} = \sum_{n=1}^{N} \exp \mathbf{h}_t^d \cdot \mathbf{h}_n^e$$

$$\mathbf{score}(\mathbf{h}_t^d, \mathbf{h}_j^e) = \mathbf{h}_t^d \cdot \mathbf{h}_j^e$$

Take softmax to turn into probability distribution







Source Sentence **x** 



Use the attention distribution to take a weighted sum of the encoder hidden states.

 $\alpha_t = \operatorname{softmax}(\operatorname{score}(\mathbf{h}_t^d, \mathbf{h}_i^e)) \in \mathbb{R}^N$ 

 $score(\mathbf{h}_t^d, \mathbf{h}_i^e) = \mathbf{h}_t^d \cdot \mathbf{h}_i^e$ 

< s >









Source Sentence **x** 

**USC**Viterbi

 $\hat{y}_t = \mathbf{softmax}(\mathbf{W}^{[2]}[\mathbf{h}_t^d; \mathbf{c}_t^{att}])$  $\mathbf{W}^{[2]} \in \mathbb{R}^{V \times 2d}$ 

> Concatenate attention output with decoder hidden state, then use to compute  $\hat{y}_0$  as before







Source Sentence **X** 

**USC**Viterbi





- Attention significantly **improves** neural machine translation **performance** 
  - Very useful to allow decoder to focus on certain parts of the source
- Attention solves the information bottleneck problem
  - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
  - Provides shortcut to faraway states
- Attention provides some interpretability
  - By inspecting attention distribution, we can see what the decoder was focusing on  $\rightarrow$
  - We get alignment for free! We never explicitly trained an alignment system! The network just learned alignment by itself

### Viteroi









## More on Attention



## Attention Variants

- In general, we have some keys  $\mathbf{h}_1, \dots, \mathbf{h}_N \in \mathbb{R}^{d_1}$  and a query  $\mathbf{q} \in \mathbb{R}^{d_2}$
- Attention always involves
  - Can be done in multiple ways!

  - 1. Computing the attention scores,  $e(\mathbf{q}, \mathbf{h}_{1:N}) \in \mathbb{R}^{N}$ 2. Taking softmax to get attention distribution  $\alpha_t = \operatorname{softmax}(e(\mathbf{q}, \mathbf{h}_{1:N})) \in [0, 1]^N$ 3. Using attention distribution to take weighted sum of values:

$$\mathbf{c}_t^{att} = \sum_{i=1}^{N}$$



- $\boldsymbol{\alpha}_{t,i} \mathbf{h}_i \in \mathbb{R}^{d_1}$
- This leads to the attention output  $\mathbf{c}_{t}^{att}$  (sometimes called the attention context vector)

### Attention Variants

- There are several ways you can compute  $e(\mathbf{q}, \mathbf{h}_{1:N}) \in \mathbb{R}^N$  from  $\mathbf{h}_1 \dots \mathbf{h}_N \in \mathbb{R}^{d_1}$  and  $\mathbf{q} \in \mathbb{R}^{d_2}$ • Basic dot-product attention:  $e(\mathbf{q}, \mathbf{h}_{1:N}) = [\mathbf{q} \cdot \mathbf{h}_j]_{j=1:N}$
- - This assumes  $d_1 = d_2$
  - We applied this in encoder-decoder RNNs
- Multiplicative attention:  $e(\mathbf{q}, \mathbf{h}_{1:N}) = [\mathbf{q}^T \mathbf{W} \mathbf{h}_j]_{j=1:N}$ 
  - Where  $\mathbf{W} \in \mathbb{R}^{d_2 \times d_1}$  is a learned weight matrix.
  - Also called "bilinear attention"





## More on Attention

Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query

• We sometimes say that the query attends to the values.

• For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)

• Here, keys and values are the same!

- The weighted sum is a **selective summary** of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a **fixed-size representation** of an **arbitrary set of** representations (the values), dependent on some other representation (the query).
- Attention is a powerful, flexible, general deep learning technique in all deep learning models.
  - A new idea from after 2010! Originated in NMT



# Attention and lookup tables

Attention performs fuzzy lookup in a key-value store

In a lookup table, we have a table of keys that map to values. The query matches one of the keys, returning its value.





In attention, the query matches all keys softly, to a weight between 0 and 1. The keys' values are multiplied by the weights and summed.



## Attention in the decoder









# Transformers: Self-Attention Networks



### Keys, Queries, Values from the same sequence

Let  $\mathbf{w}_{1:N}$  be a sequence of words in vocabulary V For each  $\mathbf{w}_i$  , let  $\mathbf{x}_i = \mathbf{E}_{w_i}$ , where  $\mathbf{E} \in \mathbb{R}^{d \times V}$  is an embedding matrix.

1. Transform each word embedding with weight matrices  $\mathbf{Q}, \mathbf{K}, \mathbf{V}$ , each in  $\mathbb{R}^{d \times d}$ 

 $\boldsymbol{q}_i = Q \boldsymbol{x}_i$  (queries)  $k_i = K x_i$  (keys)

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$\boldsymbol{e}_{ij} = \boldsymbol{q}_i^{\mathsf{T}} \boldsymbol{k}_j \qquad \qquad \boldsymbol{\alpha}_{ij} =$$

3. Compute output for each word as weighted sum of values

$$\boldsymbol{o}_i = \sum_{\boldsymbol{j}} \boldsymbol{\alpha}_{ij} \, \boldsymbol{v}_i$$





 $v_i = V x_i$  (values)

 $\exp(\boldsymbol{e}_{ij})$ 

## Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices. • Let  $\mathbf{X} = [\mathbf{x}_1; ...; \mathbf{x}_n] \in \mathbb{R}^{n \times d}$  be the concatenation of input vectors • First, note that  $\mathbf{XK} \in \mathbb{R}^{n \times d}$ ,  $\mathbf{XQ} \in \mathbb{R}^{n \times d}$ , and  $\mathbf{XV} \in \mathbb{R}^{n \times d}$ • The output is defined as  $softmax(\mathbf{XQ}(\mathbf{XK})^T)\mathbf{XV} \in \mathbb{R}^{n \times d}$ 









# Why Self-Attention?





- in RNNs
- Used often with feedforward networks!



 Self-attention allows a network to directly extract and use information from arbitrarily large contexts without the need to pass it through intermediate recurrent connections as

# Transformers are Self-Attention Networks

- Self-Attention is the key innovation behind Transformers!
- Transformers map sequences of input vectors  $(\mathbf{x}_1, \dots, \mathbf{x}_n)$  to sequences of output vectors  $(\mathbf{y}_1, \dots, \mathbf{y}_n)$  of the same length.
- Made up of stacks of Transformer blocks
  - each of which is a multilayer network made by combining
    - simple linear layers,
    - feedforward networks, and
    - self-attention layers

### **USC**Viterbi

### Attention Is All You Need

Ashish Vaswani\* Google Brain avaswani@google.com

Llion Jones\* Google Research llion@google.com

Noam Shazeer\* Google Brain noam@google.com

Aidan N. Gomez\* †

University of Toronto

aidan@cs.toronto.edu

Niki Parmar\* Google Research nikip@google.com

Jakob Uszkoreit\* Google Research usz@google.com

Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* <sup>‡</sup> illia.polosukhin@gmail.com







## Self-Attention and Weighted Averages

- **Problem**: there are no element-wise nonlinearities in self-attention; stacking value vectors
- **Solution**: add a feed-forward network to post-process each output vector.



