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Logistics  / Announcements

• Today: 
• HW2 
• Quiz 3 in class 

• This Wednesday: 
• In-class project discussions 
• Make sure the entire team is present! 

• Upcoming guest / TA lectures 
• No Office Hours in the Spring Break week
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Lecture Outline

• Quiz 3: FFNNs and RNNs 
• Recap: Seq2Seq and Attention 
• More on Attention 
• Transformers: Self-Attention  
• Transformers: Multi-headed Attention 
• Transformers: Positional Embeddings 
• Putting it all together: Transformer Blocks
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Quiz 3!
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Recap:  
Seq2Seq and Attention
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RNNs and parallelizability
• Forward and backward passes have O(sequence length) unparallelizable operations!  

• Future RNN hidden states can’t be computed in full before past RNN hidden states 
have been computed  

• But GPUs can perform a bunch of independent computations at once!
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Numbers indicate min # of steps before a state can be computed

Inhibits training on very large datasets!

Hidden Layer 1

Hidden Layer 2



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

(Neural) Machine Translation

• Sequence Generation Problem (as opposed to 
sequence classification)  

•  = Source sequence of length  

•  = Target sequence of length  

• Different from regular generation from an LM 
• Since we expect the target sequence to 

serve a specific utility (translate the source)

x n
y m
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Seq2Seq uses rich, task-appropriate context!

Sequence-to-Sequence (Seq2seq)

The green witch arrived

Ilegó la bruja verde
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Encoder-Decoder Networks
Encoder-decoder networks consist of three components: 

1. An encoder that accepts an input sequence,  and generates a 
corresponding sequence of contextualized representations,  

2. A encoding vector,  which is a function of  and conveys the 
essence of the input to the decoder 

3. A decoder which accepts  as input and generates an arbitrary 
length sequence of hidden states , from which a 
corresponding sequence of output states  can be obtained
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Attention Mechanism

• Attention mechanisms allow the decoder to focus on 
a particular part of the source sequence at each time 
step 

• Fixed-length vector  (attention context vector) 

• Take a weighted sum of all the encoder hidden  
states 

• One vector per time step of the decoder! 
• Weights attend to part of the source text relevant 

for the token the decoder is producing at step  

• In general, we have a single query vector and 
multiple key vectors.  
• We want to score each query-key pair

catt
t

t
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Bahdanau et al., 2015
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Seq2Seq with Attention
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Why Attention?
• Attention significantly improves neural machine 

translation performance  
• Very useful to allow decoder to focus on certain 

parts of the source  
• Attention solves the information bottleneck problem  

• Attention allows decoder to look directly at 
source; bypass bottleneck  

• Attention helps with vanishing gradient problem  
• Provides shortcut to faraway states  

• Attention provides some interpretability  
• By inspecting attention distribution, we can see 

what the decoder was focusing on →  
• We get alignment for free! We never explicitly 

trained an alignment system! The network just 
learned alignment by itself

18
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More on Attention

19
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Attention Variants

• In general, we have some keys  and a query  

• Attention always involves 
1. Computing the attention scores,  
2. Taking softmax to get attention distribution  
3. Using attention distribution to take weighted sum of values:

h1, …, hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) ∈ ℝN

αt = softmax(e(q, h1:N)) ∈ [0,1]N
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This leads to the attention output  (sometimes called the attention context vector)catt
t

Can be done in multiple ways!

catt
t =
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Attention Variants

• There are several ways you can compute  from  and   

• Basic dot-product attention:  

• This assumes  

• We applied this in encoder-decoder RNNs 

• Multiplicative attention:  

• Where  is a learned weight matrix.  

• Also called “bilinear attention”

e(q, h1:N) ∈ ℝN h1…hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) = [q ⋅ hj]j=1:N
d1 = d2

e(q, h1:N) = [qTWhj]j=1:N
W ∈ ℝd2×d1
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More on Attention

• We sometimes say that the query attends to the values.  
• For example, in the seq2seq + attention model, each decoder hidden state (query) 

attends to all the encoder hidden states (values) 
• Here, keys and values are the same! 

• The weighted sum is a selective summary of the information contained in the values, 
where the query determines which values to focus on.  

• Attention is a way to obtain a fixed-size representation of an arbitrary set of 
representations (the values), dependent on some other representation (the query).  

• Attention is a powerful, flexible, general deep learning technique in all deep learning 
models.  
• A new idea from after 2010! Originated in NMT

22

Given a set of vector values, and a vector query, attention is a technique to 
compute a weighted sum of the values, dependent on the query 
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 Attention and lookup tables
Attention performs fuzzy lookup in a key-value store

23

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.
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Attention in the decoder
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Transformers:  
Self-Attention Networks

25
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 Self-Attention

Let  be a sequence of words in vocabulary  
For each  , let , where  is an 
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V

26

Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values
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Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices.  

• Let  be the concatenation of input vectors 

• First, note that , , and  

• The output is defined as 

X = [x1; …; xn] ∈ ℝn×d

XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

softmax(XQ(XK)T)XV ∈ ℝn×d
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First, take the query-
key dot products in 

one matrix 
multiplication: 

 XQ(XK)T

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.
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Why Self-Attention?

• Self-attention allows a network to directly extract and use information from arbitrarily 
large contexts without the need to pass it through intermediate recurrent connections as 
in RNNs 

• Used often with feedforward networks!

28
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Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind 
Transformers! 

• Transformers map sequences of input vectors 
 to sequences of output vectors 
 of the same length.  

• Made up of stacks of Transformer blocks 
• each of which is a multilayer network made 

by combining  
• simple linear layers,  
• feedforward networks, and  
• self-attention layers

(x1, …, xn)
(y1, …, yn)

29
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Self-Attention and Weighted Averages
• Problem: there are no element-wise 

nonlinearities in self-attention; stacking 
more self-attention layers just re-averages 
value vectors 

• Solution: add a feed-forward network to 
post-process each output vector.
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Input layer: 
vector x

Output layer: 
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU 
or tanh

Hidden layer: 

h = g(Wx) = g(
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