Lecture 11:

Transformers: Building Blocks

Instructor: Swabha Swayamdipta USC CSCI 499 LMs in NLP Feb 26, Spring 2024

Logistics / Announcements

- Today:
- HW2
- Quiz 3 in class
- This Wednesday:
- In-class project discussions
- Make sure the entire team is present!
- Upcoming guest / TA lectures
- No Office Hours in the Spring Break week

Feb 26:	Transformers - Building Blocks I
Feb 28:	PROJECT DIScussions
Mar 4:	Transformers - Building Blocks II
Mar 6:	TA Lecture: PyTorch for Transformers
Mar 14:	No Class
SPRING BREAK	
Mar 13:	No Class

Large Language Models (LLMs)

Mar 18: Pre-training Transformers I

HW3 Released
PROGRESS REPORT DUE

Mar 25: Guest Lecture: Limitations and Harms of LLMs

Mar 27: Generating from Language Models

Lecture Outline

- Quiz 3: FFNNs and RNNs
- Recap: Seq2Seq and Attention
- More on Attention
- Transformers: Self-Attention
- Transformers: Multi-headed Attention
- Transformers: Positional Embeddings
- Putting it all together: Transformer Blocks

Recap:
 Seq2Seq and Attention

Generation with RNNLMs
 $\hat{y}_{4}=P\left(x_{5} \mid\right.$ Strawberry ice cream in $)$
 .

RNNs and parallelizability

- Forward and backward passes have \mathbf{O} (sequence length) unparallelizable operations!
- Future RNN hidden states can't be computed in full before past RNN hidden states have been computed
- But GPUs can perform a bunch of independent computations at once! Inhibits training on very large datasets!

Hidden Layer 2

Hidden Layer 1

Numbers indicate min \# of steps before a state can be computed

(Neural) Machine Translation

Seq2Seq uses rich, task-appropriate context!

- Sequence Generation Problem (as opposed to sequence classification)
- $\mathbf{x}=$ Source sequence of length n
- $\mathbf{y}=$ Target sequence of length m
- Different from regular generation from an LM
- Since we expect the target sequence to
 serve a specific utility (translate the source)

Encoder-Decoder Networks

Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence, $\mathbf{x}_{1: N}$ and generates a corresponding sequence of contextualized representations, $\mathbf{h}_{1}^{e} \ldots \mathbf{h}_{N}^{e}$
2. A encoding vector, \mathbf{c} which is a function of $\mathbf{h}_{1}^{e} \ldots \mathbf{h}_{N}^{e}$ and conveys the essence of the input to the decoder
3. A decoder which accepts \mathbf{c} as input and generates an arbitrary length sequence of hidden states $\mathbf{h}_{1}^{d} \ldots \mathbf{h}_{M}^{d}$, from which a corresponding sequence of output states $\mathbf{y}_{1: M}$ can be obtained

Encoders and decoders can be made of FFNNs, RNNs, or

Transformers

Produces an encoding of the source sequence Encoder RNN
\square green

Represents input sequence.
Provides initial hidden state for
Decoder RNN
\uparrow
Encoding
Target Sentence y

Source Sentence \mathbf{x}
Language Model that produces the target sentence conditioned on the encoding

Source Sentence \mathbf{x}

Attention Mechanism

- Attention mechanisms allow the decoder to focus on a particular part of the source sequence at each time step
- Fixed-length vector $\mathbf{c}_{t}^{\text {att }}$ (attention context vector)
- Take a weighted sum of all the encoder hidden states
- One vector per time step of the decoder!
- Weights attend to part of the source text relevant for the token the decoder is producing at step t
- In general, we have a single query vector and multiple key vectors.
- We want to score each query-key pair

Source Sentence \mathbf{x}

Why Attention?

- Attention significantly improves neural machine translation performance
- Very useful to allow decoder to focus on certain parts of the source
- Attention solves the information bottleneck problem
- Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
- Provides shortcut to faraway states
- Attention provides some interpretability
- By inspecting attention distribution, we can see what the decoder was focusing on \rightarrow
- We get alignment for free! We never explicitly trained an alignment system! The network just learned alignment by itself

More on Attention

Attention Variants

- In general, we have some keys $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N} \in \mathbb{R}^{d_{1}}$ and a query $\mathbf{q} \in \mathbb{R}^{d_{2}}$
- Attention always involves

Can be done in multiple ways!

1. Computing the attention scores, $e\left(\mathbf{q}, \mathbf{h}_{1: N}\right) \in \mathbb{R}^{N}$
2. Taking softmax to get attention distribution $\alpha_{t}=\operatorname{softmax}\left(e\left(\mathbf{q}, \mathbf{h}_{1: N}\right)\right) \in[0,1]^{N}$
3. Using attention distribution to take weighted sum of values:

$$
\mathbf{c}_{t}^{a t t}=\sum_{i=1}^{N} \alpha_{t, i} \mathbf{h}_{i} \in \mathbb{R}^{d_{1}}
$$

This leads to the attention output $\mathbf{c}_{t}^{\text {att }}$ (sometimes called the attention context vector)

Attention Variants

- There are several ways you can compute $e\left(\mathbf{q}, \mathbf{h}_{1: N}\right) \in \mathbb{R}^{N}$ from $\mathbf{h}_{1} \ldots \mathbf{h}_{N} \in \mathbb{R}^{d_{1}}$ and $\mathbf{q} \in \mathbb{R}^{d_{2}}$
- Basic dot-product attention: $e\left(\mathbf{q}, \mathbf{h}_{1: N}\right)=\left[\mathbf{q} \cdot \mathbf{h}_{j}\right]_{j=1: N}$
- This assumes $d_{1}=d_{2}$
- We applied this in encoder-decoder RNNs
- Multiplicative attention: $e\left(\mathbf{q}, \mathbf{h}_{1: N}\right)=\left[\mathbf{q}^{T} \mathbf{W h}_{j}\right]_{j=1: N}$
- Where $\mathbf{W} \in \mathbb{R}^{d_{2} \times d_{1}}$ is a learned weight matrix.
- Also called "bilinear attention"

More on Attention

Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the values, dependent on the query

- We sometimes say that the query attends to the values.
- For example, in the seq2seq + attention model, each decoder hidden state (query) attends to all the encoder hidden states (values)
- Here, keys and values are the same!
- The weighted sum is a selective summary of the information contained in the values, where the query determines which values to focus on.
- Attention is a way to obtain a fixed-size representation of an arbitrary set of representations (the values), dependent on some other representation (the query).
- Attention is a powerful, flexible, general deep learning technique in all deep learning models.
- A new idea from after 2010! Originated in NMT

Attention and lookup tables

Attention performs fuzzy lookup in a key-value store

In a lookup table, we have a table of keys that map to values. The query matches one of the keys, returning its value.

In attention, the query matches all keys softly, to a weight between 0 and 1 . The keys' values are multiplied by the weights and summed.

Attention in the decoder

Attention Distribution

Self-Attention!

Transformers:

Self-Attention Networks

Self-Attention

Keys, Queries, Values from the same sequence

Let $\mathbf{w}_{1: N}$ be a sequence of words in vocabulary V For each \mathbf{w}_{i}, let $\mathbf{x}_{i}=\mathbf{E}_{w_{i}}$ where $\mathbf{E} \in \mathbb{R}^{d \times V}$ is an embedding matrix.

1. Transform each word embedding with weight matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}$, each in $\mathbb{R}^{d \times d}$

$$
q_{i}=Q \boldsymbol{x}_{\boldsymbol{i}} \text { (queries) } \quad k_{i}=K \boldsymbol{x}_{\boldsymbol{i}} \text { (keys) } \quad v_{i}=V \boldsymbol{x}_{\boldsymbol{i}} \text { (values) }
$$

2. Compute pairwise similarities between keys and queries; normalize with softmax

$$
\boldsymbol{e}_{i j}=q_{i}^{\top} k_{j} \quad \boldsymbol{\alpha}_{i j}=\frac{\exp \left(\boldsymbol{e}_{i j}\right)}{\sum_{j ;} \exp \left(\boldsymbol{e}_{i j^{\prime}}\right)}
$$

3. Compute output for each word as weighted sum of values

$$
\boldsymbol{o}_{i}=\sum_{j} \alpha_{i j} v_{i}
$$

Self-Attention as Matrix Multiplications

- Key-query-value attention is typically computed as matrices.
- Let $\mathbf{X}=\left[\mathbf{x}_{1} ; \ldots ; \mathbf{x}_{n}\right] \in \mathbb{R}^{n \times d}$ be the concatenation of input vectors
- First, note that $\mathbf{X K} \in \mathbb{R}^{n \times d}, \mathbf{X Q} \in \mathbb{R}^{n \times d}$, and $\mathbf{X V} \in \mathbb{R}^{n \times d}$
- The output is defined as softmax $\left(\mathbf{X Q}(\mathbf{X K})^{T}\right) \mathbf{X V} \in \mathbb{R}^{n \times d}$

First, take the querykey dot products in one matrix multiplication: $\mathbf{X Q}(\mathbf{X K})^{T}$

Why Self-Attention?

- Self-attention allows a network to directly extract and use information from arbitrarily large contexts without the need to pass it through intermediate recurrent connections as in RNNs
- Used often with feedforward networks!

Transformers are Self-Attention Networks

- Self-Attention is the key innovation behind Transformers!
- Transformers map sequences of input vectors $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ to sequences of output vectors $\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)$ of the same length.
- Made up of stacks of Transformer blocks
- each of which is a multilayer network made by combining
- simple linear layers,

Attention Is All You Need
Ashish Vaswani ${ }^{*}$
Google Brain
avaswani@google.com

Niki Parmar ${ }^{*}$ Google Research nikip@google.com usz@google.com

Llion Jones* Google Research 1lion@google.com

Aidan N. Gomez* \dagger University of Toronto aidan@cs.toronto.edu

Lukasz Kaiser*

 Google Brain lukaszkaiser@google.com- feedforward networks, and
- self-attention layers

Self-Attention and Weighted Averages

- Problem: there are no element-wise nonlinearities in self-attention; stacking more self-attention layers just re-averages value vectors
- Solution: add a feed-forward network to post-process each output vector.

