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Lecture Outline

• Recap: Feedforward Neural Nets

• Recurrent Neural Nets


• Language Models

• Training RNNLMs

• The Vanishing Gradient Problem

• LSTMs
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Recap: 

Feedforward Neural Nets

3
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Non-Linear Activation Functions

4

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common in the hidden layers

softmax

Most common in the output layers
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Weighted sum of all incoming, followed by a non-linear activation

Logistic Regression

5

1-layer Network

x1 x2 xd x0 = 1

y

…
bw

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)

x1 x2 xd x0 = 1

y2

…

bW

y1 yK…

matrixscalarvector vector

Output layer: y = softmax(w ⋅ x + b)

Binary Multinomial
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Two-layer Feedforward Network

6

Input layer: vector x

Output layer: y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Scalar Output / 
Binary Outcome

Usually ReLU or tanh

Fully connected single layer network

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

Output layer: y = softmax(U ⋅ h)Hidden layer: 

h = g(Wx) = g(
d0

∑
i=0

Wjixi)
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Simple Feedforward Neural LMs

Task: predict next word  given prior words 


Problem: Dealing with sequences of arbitrary length….


Solution: Sliding windows (of fixed length of size )

wt wt−1, wt−2, wt−3, …

M

7

P(wt |wt−1:t−M+1) ≈ P(wt |wt−1:1)
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Simplified Representation

8

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Feedforward LMs: Windows

• The goodness of the language model 
depends on the size of the sliding window!


• Fixed window can be too small


• Enlarging window enlarges 


• Each word uses different rows of . We 
don’t share weights across the window.


• Window can never be large enough! 

W
W

9

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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Training FFNNs with 
Backprop and 


Computation Graphs

10
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Feedforward Nets: Loss Function

• Cross Entropy Again!

• But now we may have many more classes, so we will use the multinomial LR loss 


• Replace sigmoid with softmax


• Now both  and  are vectors of size , for the total #classes


• At any time step, only one class is correct 


• The true label  has if the correct class is , with all other elements of y being 0


• Classifier will produce an estimate vector , each element represents estimated probability, 
 

y ŷ K

y yc = 1 c
ŷ

ŷk = pθ(yk = 1 |x)

11

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

What is  for language modeling?K

Hard Classification

LCE(y, ̂y) = −
K

∑
k=1

yk log ̂yk = − log ̂yc, c being the correct class

= − log
exp(zc)

∑K
j=1 exp(zj)

, c being the correct class
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Training a 2-layer Network

12

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… }Loss function 

L(ŷ, y)

Forward Pass Backward Pass

Training instance y
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For every training tuple 


• Run forward computation to estimate  and compute loss  between true  and 


• Run backward computation to update weights: 


• Output layer: For every weight  from hidden layer to the output layer


• Update the weight by computing gradient 


• Hidden layer: For every weight  from input layer to the hidden layer 


• Update the weight by computing gradient 

(x, y)
̂y L y ̂y

Uij
∂L

∂Uij
w

∂L
∂Uij13

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss 

function 
L(ŷ, y)

Fo
rw

ar
d 

Pa
ss

Backw
ard Pass



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Computation Graphs

14

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss 

function 
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

For training, we need the derivative of the loss with respect 
to each weight in every layer of the network 

• But the loss is computed only at the very end of the 

network! 

Solution: error backpropagation or backward differentiation

• Backprop is a special case of backward differentiation 

which relies on computation graphs

Backw
ard Pass
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Example: Computation Graph

15

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e
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Example: Forward Pass

16

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass Need the 
forward pass to 

compute the 
loss!



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Example: Backward Pass Intuition

• The importance of the computation graph comes from the 
backward pass 


• Used to compute the derivatives needed for the weight updates

17

d = 2 * b

e = a + d

L = c * e
∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer 
Gradients

}Hidden Layer 
Gradients
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Example: Applying the chain rule

18

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…
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Example: Backward Pass

19

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the 
gradients of the loss with 
respect to parameters…
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Example

20

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Example: Two Paths

21

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on 
a single node we will add these 

branches

Such cases arise when considering regularized loss functions
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Backward Differentiation on a 2-layer MLP

22

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU 
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise 

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))
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2 layer MLP with 2 input features

23
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Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with respect 
to weights in early layers of the network 

• But loss is computed only at the very end of the network! 


• Solution: backward differentiation 

24

Given a computation graph and the derivatives of all the functions in it we can automatically 
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Recurrent Neural Nets

25
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Recurrent Neural Networks

• Recurrent Neural Networks processes sequences one element at a time:


• Contains one hidden layer  per time step! Serves as a memory of the entire history…


• Output of each neural unit at time  based both on 


• the current input at  and 


• the hidden layer from time 


• As the name implies, RNNs have a recursive formulation

• dependent on its own earlier outputs as an input!


• RNNs thus don’t have 

• the limited context problem that n-gram models have, or 

• the fixed context that feedforward language models have, 

• since the hidden state can in principle represent information about all of the preceding 

words all the way back to the beginning of the sequence

ht
t

t
t − 1

26
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Recurrent Neural Net Language Models

27

The students studied the

x1 x2 x3 x4

Word Embeddings, xi

book

slides

Hidden layer: 
ht = g(Whht−1 + W[1]ct)

h0 h1 h3 h4h2

Output layer: ̂yt = softmax(W[2]ht)
̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

Initial hidden state: h0
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Why RNNs?

RNN Advantages: 

• Can process any length input

• Model size doesn’t increase 

for longer input

• Computation for step t can 

(in theory) use information 
from many steps back


• Weights  are shared 
(tied) across timesteps → 
Condition the neural network 
on all previous words

W[1]

28

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4
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Why not RNNs?

RNN Disadvantages: 

• Recurrent computation is 

slow 

• In practice, difficult to access 

information from many steps 
back

29

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4
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Training RNNLMs

30
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Training Outline

• Get a big corpus of text which is a sequence of words 


• Feed into RNN-LM; compute output distribution  for every step 


• i.e. predict probability distribution of every word, given words so far


• Loss function on step  is usual cross-entropy between our predicted probability 
distribution , and the true next word :

x1, x2, …xT
̂yt t

t
̂yt yt = xt+1

31

LCE( ̂yt, yt; θ) = − ∑
v∈V

𝕀[yt = v]log ̂yt

• Average this to get overall loss for entire training set:

= − log pθ(xt+1 |x≤t)

L(θ) =
1
T

T

∑
t=1

LCE( ̂yt, yt)
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32

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log 
prob. of  
“The”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

33

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log 
prob. of  

“students”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4
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34

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log 
prob. of  
“book”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4
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The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

+ + + + +… = L(θ) =
1
T

T

∑
t=1

Lt(θ)

x1 x2 x3 x4
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RNNs vs. Other LMs

36

T. Mikolov, S. Kombrink, L. Burget, J. Černocký and S. Khudanpur, "Extensions of recurrent 
neural network language model," 2011 IEEE ICASSP, doi: 10.1109/ICASSP.2011.5947611.
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Practical Issues with training RNNs

• Computing loss and gradients across entire corpus is too expensive!

• Recall: mini-batch Stochastic Gradient Descent allows us to compute loss and gradients 

for small chunk of data, and update.

• Solution: consider chunks of text.


• In practice, consider  for some  as a “sentence” or “single data instance”x1, x2, …xT T

37

L(θ) =
1
T

T

∑
t=1

LCE( ̂yt, yt)

• Compute loss for a sentence (actually usually a batch of sentences), compute gradients and 
update weights. Repeat.
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Training RNNs is hard

• Multiply the same matrix at each time 
step during forward propagation


• Ideally inputs from many time steps 
ago can modify output 


• This leads to something called the 
vanishing gradient problem

y

38

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

h0

W[1] W[1] W[1]

L4(θ)

̂y4

x1 x2 x3 x4
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The Vanishing Gradient 
Problem and LSTMs

39
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The Vanishing Gradient Problem: Intuition

40

∂L4

∂h0
=

h1 h3 h4h2

Wh Wh Wh Wh

h0

̂y4

L4(θ)

∂h1

∂h0
×

∂L4

∂h1

=
∂h1

∂h0
×

∂h2

∂h1
×

∂L4

∂h2

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂L4

∂h3

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂h4

∂h3
×

∂L4

∂h4

When these gradients 
are small, the gradient 
signal gets smaller 
and smaller as it 
backpropagates 
further…

Gradient signal from far 
away is lost because it’s 
much smaller than 
gradient signal from 
close-by
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The Vanishing Gradient Problem: Effects

• In practice, no long-term / long-range effects, contrary to the 
RNN promise


• Example language modeling task

• To learn from this training example, the RNN-LM needs to 

model the dependency between “tickets” on the 7th step 
and the target word “tickets” at the end 


• But if the gradient is small, the model can’t learn this 
dependency 

• So, the model is unable to predict using similar long-

distance dependencies at test time

• In practice a simple RNN will only condition ~7 tokens back 

[vague rule-of-thumb]

41

When she tried to 
print her tickets, she 
found that the printer 
was out of toner. She 
went to the stationery 
store to buy more 
toner. It was very 
overpriced. After 
installing the toner 
into the printer, she 
finally printed her 
________
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The Vanishing Gradient Problem: Fixes

• The main problem is that it is too difficult for the RNN to learn to preserve information 
over many timesteps


• In a vanilla RNN, the hidden state is constantly being rewritten

42

Solution? Think data structures…

ht = reLU(Whht−1 + W[1]xt)

New design: equip an RNN with separate 
memory which is added to
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Long Short-Term Memory RNNs (LSTMs)

• At time step , introduces a new cell state 


• In addition to a hidden state 


• The cell stores long-term information (memory)

• The LSTM can read, erase, and write information from the cell!


• The cell becomes conceptually rather like RAM in a computer 


• The selection of which information is erased/written/read is controlled by three 
corresponding gates:


• Input gate , Output gate  and Forget gate 


• Each element of the gates can be open (1), closed (0), or somewhere in between 

• The gates are dynamic: their value is computed based on the current context

t ct ∈ ℝd

ht ∈ ℝd

it ∈ ℝd ot ∈ ℝd ft ∈ ℝd

43
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LSTMs

44

Given a sequence of inputs  , we will compute a sequence of hidden states  and cell states  
At timestep  :

xt ht ct
t
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LSTMs: A Visual Representation

45

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs: A Visual Representation

46

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTMs: Summary

• The LSTM architecture makes it much easier for an RNN to 
preserve information over many timesteps 

• e.g., if the forget gate is set to 1 for a cell dimension 

and the input gate set to 0, then the information of that 
cell is preserved indefinitely


• In 2013–2015, LSTMs started achieving state-of-the-art 
results 

• Successful tasks include handwriting recognition, 

speech recognition, machine translation, parsing, and 
image captioning, as well as language models 


• LSTMs became the dominant approach for most NLP 
tasks


• We’ll look into machine translation next!

47
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Summarizing RNNs
• Recurrent Neural Networks processes sequences one 

element at a time

• RNNs do not have 


• the limited context problem of n-gram models

• the fixed context limitation of feedforward LMs

• since the hidden state can in principle represent 

information about all of the preceding words all the 
way back to the beginning of the sequence


• But training RNNs is hard

• Vanishing gradient problem

• LSTMs address it by incorporating a memory

48

c1 c2 c3 c4

h0 h1 h3 h4h2

Wh Wh Wh Wh

W[1]

W[2]

Next Class: Transformer Language Models!


