
Lecture 9:

Recurrent Neural Nets

Slides mostly adapted from Dan Jurafsky, and Chris Manning

Instructor: Swabha Swayamdipta

USC CSCI 499 LMs in NLP

Feb 14, 2024 Spring

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Feedforward Neural Nets

• Recurrent Neural Nets

• Language Models

• Training RNNLMs

• The Vanishing Gradient Problem

• LSTMs

2

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Recap:

Feedforward Neural Nets

3

CSCI 499 Spring 2024: Language Models in NLP

Non-Linear Activation Functions

4

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common in the hidden layers

softmax

Most common in the output layers

CSCI 499 Spring 2024: Language Models in NLP

Weighted sum of all incoming, followed by a non-linear activation

Logistic Regression

5

1-layer Network

x1 x2 xd x0 = 1

y

…
bw

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)

x1 x2 xd x0 = 1

y2

…

bW

y1 yK…

matrixscalarvector vector

Output layer: y = softmax(w ⋅ x + b)

Binary Multinomial

CSCI 499 Spring 2024: Language Models in NLP

Two-layer Feedforward Network

6

Input layer: vector x

Output layer: y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Scalar Output /
Binary Outcome

Usually ReLU or tanh

Fully connected single layer network

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

Output layer: y = softmax(U ⋅ h)Hidden layer:

h = g(Wx) = g(
d0

∑
i=0

Wjixi)

CSCI 499 Spring 2024: Language Models in NLP

Simple Feedforward Neural LMs

Task: predict next word given prior words

Problem: Dealing with sequences of arbitrary length….

Solution: Sliding windows (of fixed length of size)

wt wt−1, wt−2, wt−3, …

M

7

P(wt |wt−1:t−M+1) ≈ P(wt |wt−1:1)

CSCI 499 Spring 2024: Language Models in NLP

Simplified Representation

8

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

CSCI 499 Spring 2024: Language Models in NLP

Feedforward LMs: Windows

• The goodness of the language model
depends on the size of the sliding window!

• Fixed window can be too small

• Enlarging window enlarges

• Each word uses different rows of . We
don’t share weights across the window.

• Window can never be large enough!

W
W

9

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Training FFNNs with
Backprop and

Computation Graphs

10

CSCI 499 Spring 2024: Language Models in NLP

Feedforward Nets: Loss Function

• Cross Entropy Again!

• But now we may have many more classes, so we will use the multinomial LR loss

• Replace sigmoid with softmax

• Now both and are vectors of size , for the total #classes

• At any time step, only one class is correct

• The true label has if the correct class is , with all other elements of y being 0

• Classifier will produce an estimate vector , each element represents estimated probability,

y ŷ K

y yc = 1 c
ŷ

ŷk = pθ(yk = 1 |x)

11

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

What is for language modeling?K

Hard Classification

LCE(y, ̂y) = −
K

∑
k=1

yk log ̂yk = − log ̂yc, c being the correct class

= − log
exp(zc)

∑K
j=1 exp(zj)

, c being the correct class

CSCI 499 Spring 2024: Language Models in NLP

Training a 2-layer Network

12

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… }Loss function

L(ŷ, y)

Forward Pass Backward Pass

Training instance y

CSCI 499 Spring 2024: Language Models in NLP

For every training tuple

• Run forward computation to estimate and compute loss between true and

• Run backward computation to update weights:

• Output layer: For every weight from hidden layer to the output layer

• Update the weight by computing gradient

• Hidden layer: For every weight from input layer to the hidden layer

• Update the weight by computing gradient

(x, y)
̂y L y ̂y

Uij
∂L

∂Uij
w

∂L
∂Uij13

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss

function
L(ŷ, y)

Fo
rw

ar
d

Pa
ss

Backw
ard Pass

CSCI 499 Spring 2024: Language Models in NLP

Computation Graphs

14

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss

function
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

For training, we need the derivative of the loss with respect
to each weight in every layer of the network

• But the loss is computed only at the very end of the

network!

Solution: error backpropagation or backward differentiation

• Backprop is a special case of backward differentiation

which relies on computation graphs

Backw
ard Pass

CSCI 499 Spring 2024: Language Models in NLP

Example: Computation Graph

15

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e

CSCI 499 Spring 2024: Language Models in NLP

Example: Forward Pass

16

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass Need the
forward pass to

compute the
loss!

CSCI 499 Spring 2024: Language Models in NLP

Example: Backward Pass Intuition

• The importance of the computation graph comes from the
backward pass

• Used to compute the derivatives needed for the weight updates

17

d = 2 * b

e = a + d

L = c * e
∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer
Gradients

}Hidden Layer
Gradients

CSCI 499 Spring 2024: Language Models in NLP

Example: Applying the chain rule

18

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…

CSCI 499 Spring 2024: Language Models in NLP

Example: Backward Pass

19

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the
gradients of the loss with
respect to parameters…

CSCI 499 Spring 2024: Language Models in NLP

Example

20

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

CSCI 499 Spring 2024: Language Models in NLP

Example: Two Paths

21

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on
a single node we will add these

branches

Such cases arise when considering regularized loss functions

CSCI 499 Spring 2024: Language Models in NLP

Backward Differentiation on a 2-layer MLP

22

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))

CSCI 499 Spring 2024: Language Models in NLP

2 layer MLP with 2 input features

23

CSCI 499 Spring 2024: Language Models in NLP

Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with respect
to weights in early layers of the network

• But loss is computed only at the very end of the network!

• Solution: backward differentiation

24

Given a computation graph and the derivatives of all the functions in it we can automatically
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Recurrent Neural Nets

25

CSCI 499 Spring 2024: Language Models in NLP

Recurrent Neural Networks

• Recurrent Neural Networks processes sequences one element at a time:

• Contains one hidden layer per time step! Serves as a memory of the entire history…

• Output of each neural unit at time based both on

• the current input at and

• the hidden layer from time

• As the name implies, RNNs have a recursive formulation

• dependent on its own earlier outputs as an input!

• RNNs thus don’t have

• the limited context problem that n-gram models have, or

• the fixed context that feedforward language models have,

• since the hidden state can in principle represent information about all of the preceding

words all the way back to the beginning of the sequence

ht
t

t
t − 1

26

CSCI 499 Spring 2024: Language Models in NLP

Recurrent Neural Net Language Models

27

The students studied the

x1 x2 x3 x4

Word Embeddings, xi

book

slides

Hidden layer:
ht = g(Whht−1 + W[1]ct)

h0 h1 h3 h4h2

Output layer: ̂yt = softmax(W[2]ht)
̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

Initial hidden state: h0

CSCI 499 Spring 2024: Language Models in NLP

Why RNNs?

RNN Advantages:

• Can process any length input

• Model size doesn’t increase

for longer input

• Computation for step t can

(in theory) use information
from many steps back

• Weights are shared
(tied) across timesteps →
Condition the neural network
on all previous words

W[1]

28

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

CSCI 499 Spring 2024: Language Models in NLP

Why not RNNs?

RNN Disadvantages:

• Recurrent computation is

slow

• In practice, difficult to access

information from many steps
back

29

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

Training RNNLMs

30

CSCI 499 Spring 2024: Language Models in NLP

Training Outline

• Get a big corpus of text which is a sequence of words

• Feed into RNN-LM; compute output distribution for every step

• i.e. predict probability distribution of every word, given words so far

• Loss function on step is usual cross-entropy between our predicted probability
distribution , and the true next word :

x1, x2, …xT
̂yt t

t
̂yt yt = xt+1

31

LCE(̂yt, yt; θ) = − ∑
v∈V

𝕀[yt = v]log ̂yt

• Average this to get overall loss for entire training set:

= − log pθ(xt+1 |x≤t)

L(θ) =
1
T

T

∑
t=1

LCE(̂yt, yt)

CSCI 499 Spring 2024: Language Models in NLP

32

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log
prob. of
“The”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4

CSCI 499 Spring 2024: Language Models in NLP

33

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log
prob. of

“students”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4

CSCI 499 Spring 2024: Language Models in NLP

34

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss

negative log
prob. of
“book”

L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

book
slides

x1 x2 x3 x4

CSCI 499 Spring 2024: Language Models in NLP

35

The students studied the

L0(θ)

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

book

W[2]W[2]W[2]W[2]W[2]

h0

Loss L1(θ) L2(θ) L3(θ) L4(θ)

̂y0 ̂y1 ̂y2 ̂y3 ̂y4

+ + + + +… = L(θ) =
1
T

T

∑
t=1

Lt(θ)

x1 x2 x3 x4

CSCI 499 Spring 2024: Language Models in NLP

RNNs vs. Other LMs

36

T. Mikolov, S. Kombrink, L. Burget, J. Černocký and S. Khudanpur, "Extensions of recurrent
neural network language model," 2011 IEEE ICASSP, doi: 10.1109/ICASSP.2011.5947611.

CSCI 499 Spring 2024: Language Models in NLP

Practical Issues with training RNNs

• Computing loss and gradients across entire corpus is too expensive!

• Recall: mini-batch Stochastic Gradient Descent allows us to compute loss and gradients

for small chunk of data, and update.

• Solution: consider chunks of text.

• In practice, consider for some as a “sentence” or “single data instance”x1, x2, …xT T

37

L(θ) =
1
T

T

∑
t=1

LCE(̂yt, yt)

• Compute loss for a sentence (actually usually a batch of sentences), compute gradients and
update weights. Repeat.

CSCI 499 Spring 2024: Language Models in NLP

Training RNNs is hard

• Multiply the same matrix at each time
step during forward propagation

• Ideally inputs from many time steps
ago can modify output

• This leads to something called the
vanishing gradient problem

y

38

h1 h3 h4h2

Wh Wh Wh Wh

W[1]

h0

W[1] W[1] W[1]

L4(θ)

̂y4

x1 x2 x3 x4

CSCI 499 Fall 2023: Language Models in NLP CSCI 499 Spring 2024: Language Models in NLP

The Vanishing Gradient
Problem and LSTMs

39

CSCI 499 Spring 2024: Language Models in NLP

The Vanishing Gradient Problem: Intuition

40

∂L4

∂h0
=

h1 h3 h4h2

Wh Wh Wh Wh

h0

̂y4

L4(θ)

∂h1

∂h0
×

∂L4

∂h1

=
∂h1

∂h0
×

∂h2

∂h1
×

∂L4

∂h2

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂L4

∂h3

=
∂h1

∂h0
×

∂h2

∂h1
×

∂h3

∂h2
×

∂h4

∂h3
×

∂L4

∂h4

When these gradients
are small, the gradient
signal gets smaller
and smaller as it
backpropagates
further…

Gradient signal from far
away is lost because it’s
much smaller than
gradient signal from
close-by

CSCI 499 Spring 2024: Language Models in NLP

The Vanishing Gradient Problem: Effects

• In practice, no long-term / long-range effects, contrary to the
RNN promise

• Example language modeling task

• To learn from this training example, the RNN-LM needs to

model the dependency between “tickets” on the 7th step
and the target word “tickets” at the end

• But if the gradient is small, the model can’t learn this
dependency

• So, the model is unable to predict using similar long-

distance dependencies at test time

• In practice a simple RNN will only condition ~7 tokens back

[vague rule-of-thumb]

41

When she tried to
print her tickets, she
found that the printer
was out of toner. She
went to the stationery
store to buy more
toner. It was very
overpriced. After
installing the toner
into the printer, she
finally printed her

CSCI 499 Spring 2024: Language Models in NLP

The Vanishing Gradient Problem: Fixes

• The main problem is that it is too difficult for the RNN to learn to preserve information
over many timesteps

• In a vanilla RNN, the hidden state is constantly being rewritten

42

Solution? Think data structures…

ht = reLU(Whht−1 + W[1]xt)

New design: equip an RNN with separate
memory which is added to

CSCI 499 Spring 2024: Language Models in NLP

Long Short-Term Memory RNNs (LSTMs)

• At time step , introduces a new cell state

• In addition to a hidden state

• The cell stores long-term information (memory)

• The LSTM can read, erase, and write information from the cell!

• The cell becomes conceptually rather like RAM in a computer

• The selection of which information is erased/written/read is controlled by three
corresponding gates:

• Input gate , Output gate and Forget gate

• Each element of the gates can be open (1), closed (0), or somewhere in between

• The gates are dynamic: their value is computed based on the current context

t ct ∈ ℝd

ht ∈ ℝd

it ∈ ℝd ot ∈ ℝd ft ∈ ℝd

43

CSCI 499 Spring 2024: Language Models in NLP

LSTMs

44

Given a sequence of inputs , we will compute a sequence of hidden states and cell states
At timestep :

xt ht ct
t

CSCI 499 Spring 2024: Language Models in NLP

LSTMs: A Visual Representation

45

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 499 Spring 2024: Language Models in NLP

LSTMs: A Visual Representation

46

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 499 Spring 2024: Language Models in NLP

LSTMs: Summary

• The LSTM architecture makes it much easier for an RNN to
preserve information over many timesteps

• e.g., if the forget gate is set to 1 for a cell dimension

and the input gate set to 0, then the information of that
cell is preserved indefinitely

• In 2013–2015, LSTMs started achieving state-of-the-art
results

• Successful tasks include handwriting recognition,

speech recognition, machine translation, parsing, and
image captioning, as well as language models

• LSTMs became the dominant approach for most NLP
tasks

• We’ll look into machine translation next!

47

CSCI 499 Spring 2024: Language Models in NLP

Summarizing RNNs
• Recurrent Neural Networks processes sequences one

element at a time

• RNNs do not have

• the limited context problem of n-gram models

• the fixed context limitation of feedforward LMs

• since the hidden state can in principle represent

information about all of the preceding words all the
way back to the beginning of the sequence

• But training RNNs is hard

• Vanishing gradient problem

• LSTMs address it by incorporating a memory

48

c1 c2 c3 c4

h0 h1 h3 h4h2

Wh Wh Wh Wh

W[1]

W[2]

Next Class: Transformer Language Models!

