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Recap:
Feedforward Neural Nets



USC Viterbi
Non-Linear Activation Functions

The key ingredient of a neural network is the non-linear activation tunction

Most common in the output layers

Most common in the hidden layers

softmax

=
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Logistic Regression

Output layer: y = o(w - X + b) W Output layer: y = softmax(w - X + b)

%

vector W \\ar b matrix W /’;"‘ § vector b
A Xy wee Ay Xg =1 X, X

Xl xozl

Input layer: vector x
| 1-layer Network |

Weighted sum of all incoming, followed by a non-linear activation
S




Two-layer Feedtorward Network

Output layer: y = o(uh) Output layer: y = softmax(U - h)
\

Scalar Output /
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Hidden layer:
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h = g(Wx) = 8( Z Wjixi>
i=0 u

Usually ReLU or tanh f
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Input layer: vector x

Fully connected single layer network




Simple Feedforward Neural LMs

Task: predict next word w, given prior words w,_, w,_», W,_s, ...

Problem: Dealing with sequences of arbitrary length....

Solution: Sliding windows (of fixed length of size M)

PWi | w,_1.—ps1) ® Pwi[w,_1.1)
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Simp
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ified Representation

p(aardvark|...) p(fish|...)  p(for|...) p(zebra|...) < ~
A : a 200
1 ) ; T
A A :
Outputlayer yl A Y42 .. --- 351 . Y|V |V|Xl [...............)
softmax ; "
Hidden layer  |(I) hy hy ) ... dy X1 ' cexexxxxxrxy
W Wt- dhx3d W
Prgfrelgg(;);n:asyer .e ? XN X ] .o f e O 0@ - Too () 3dxl :
g eeee o000 0000
E embedding for  embedding for embedding for 2 3 3
word 35 word 9925 word 45180 ;
——r— —— I
t-landthanks Yor 1 a1 the PR LS ([ thanks [ for | the | 7
Wt-3 e Wt Wi .
ﬁ



Feedforward LMs: Windows

fish .
wishes

’ }

[ —

>
d Z00

® The goodness of the language model 00000000000000
depends on the size of the sliding window!
. . U
® Fixed window can be too small
® Enlarging window enlarges W 0000000000
® Each word uses different rows of W. We W

don’t share weights across the window.

® \Window can never be large enough! @000 0000 0000
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Training FFNNs with

Backprop and
Computation Graphs
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Feedforward Nets: Loss Function

® Cross Entropy Again! LCE(ya j}) — = lng(y ‘X) — = [y lOgj\} T (1 o y)lOg(l o j\})]

® But now we may have many more classes, so we will use the multinomial LR loss

® Replace sigmoid with softmax What is K for language modeling?
classes
Hard Classification

® Now both y and y are vectors of size K, for the total

® At any time step, only one class is correct

® The true label y has y. = lif the correct class is ¢, with all other elements ot y being O
® Classitier will produce an estimate vector y, each element represents estimated probability,

Vi =P = 1|x)

K
Lor(y,y) = — Zyk logy, = -—logy,.c being the correct class

= exp(z,)

Zszl CXP (Z])

, ¢ being the correct class

= — log
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Training a 2-layer Network

Training instance y @ @ : f
Loss Tunction

L(y,y)

Model Output ¥ = softmax(U - h)

Forward Pass | | Backward Pass

Training instance X Xy = 1

12
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USC Viterbi

Loss
function

L(y,y)

Forward Pass

ssed pliempeg

For every training tuple (x, y)
® Run forward computation to estimate y and compute loss L between true y and y
® Run backward computation to update weights:

® Output layer: For every weight U;; from hidden layer to the output layer
oL

oU,,

® Hidden layer: For every weight w from input layer to the hidden layer
oL

oU

e Update the weight by computing gradient

e Update the weight by computing gradient
I



Computation Grapnhs

Graph representing the process of computing a mathematical expression

For training, we need the derivative of the loss with respect @ @ Loss

to each weight in every layer of the network G @ ?(;Cic)’” -
® But the loss is computed only at the very end of the . A o
network! /?"*\ g
Solution: error backpropagation or backward difterentiation %@ @ 3
® Backprop is a special case of backward differentiation IS A
NS> Q)

which relies on computation graphs xl\xd 7

14 Rumelhart, Hinton, Williams, 1986

Cem— ———t———
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Example: Computation Grapnh

d=2%b
e=a+d

L =c%e

15
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Example: Forward Pass

_ N %
d=2%b Forwa rd Pass
e=a+d ———
L=c*e

16
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USC Viterbi
EFxample: Backward Pass Intuition

d=2%b . |
® The importance of the computation graph comes from the
e =a-+d backward pass o |
® Used to compute the derivatives needed for the weight updates

L=c*e
oL _ 9 oL _ 9 oL _ 9 Input Layer
0_61 o E o % o Gradients
Hidden Layer a_L _ 9 a_L — 9
Gradients Od o Oe o

Chain Rule of Differentiation!
S ———
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Example: Applying the chain rule

oL
P oL
— =7
d=2%b OL 0L de oe
e=a+d 0a_aeaa a_L:a_L%
) od  Ode dd
L=c~ e 0L 0L de od
ob  Oe dd b

Cannot do all at once, need to tollow an order...
B
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Example: Backward Pass

But we need the
gradients of the loss with
respect to parameters...

oL B oL. de
od  Oe od
0L 0L de od

b e dd ob

19
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oL

— = C = —
oe

oL
—=e=95
ac
&L_dLae_
da  Oe da
6L_8L0€_
od de od

0L 0L de od
ob  Oe od ob

20
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Example: Two Paths

When multiple branches converge on
a single node we will add these
branches

30 00 L 90 R

- — 4+—

. d 0L dc ' OR oc

Such cases arise when considering regularized loss functions

—

21



Backward Difterentiation on a 2-layer MLP

Softmax Activation @ A [2]
y = o(z')

W[Z]
S "
Activation o
/ —
< H
\ L >
VI\

o121 = wi2l . pli]

h[l] — Re LU(Z[l]) Element-wise

Z11 — Willx

will ;‘\ /

X1 %% Ad

|
) &z

|
|

dReLU(z) { 0 ?

% z20

22
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2 layer MLP with 2 input features

'«
O

@3

dReLU(z) [0 for z<0
dz 11 for z>0

do(z)

2 =0()(1-0()

dz {1 for z>0

23



Summary: Backprop / Backward Ditterentiation

® For training, we need the derivative of the loss with respect od
b

=9
0

to weights in early layers of the network

® But loss is computed only at the very end of the network!
® Solution: backward differentiation

Given a computation graph and the derivatives of all the functions in it we can automatically
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()
e —

24
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Recurrent Neural Nets



26

Recurrent Neura

USC Viterbi
| Networks

® Recurrent Neural Networks processes sequences one element at a time:

® Contains one hidden layer h, per time step! Serves

® Output of each neural unit at time 7 based both on

® the current input at f ana

® the hidden layer from time r — 1

as a memory of the entire history...

® As the name implies, RNNs have a recursive formulation

® dependent on its own earlier outputs as an input!
® RNNs thus don't have

® the
® the

® since the hidden state can in principle represent in

imited context problem that n-gram models have, or
fixed context that feedforward language mode

s have,

‘ormation about all of the preceding

words all the way back to the beginning of the sequence
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Recurrent Neural Net Language Moaels

book

l

slides
y, = P(xs| The students studied the) l
Output layer: ¥, = softmax(W!*'h,)
W2
Hidden layer:
17 O O O O O
h =g(W,h_, + W) @ W, o W, @ W, o W |0
O O O O O
hy | @ h | @ h | @ | @ h | @
Initial hidden state: hy,
Wil
O O O O
: O o O O
Word Embeddings, X; p ° ° °
x, L O x, | O © ©

X, X4

The students studied the ?
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book

Why RNNs?

y, = P(xs| The students studied the) !

RNN Advantages:

® Can process any length input —
® Model size doesn't increase

for longer input
® Computation for step t can
(in theory) use information
from many steps back
® Weights W'l are shared Wi

(tied) across timesteps —

Q000
Q000
Q000
Q000
Q000

Condition the neural network

Q000
Q000
Q000
Q000

on all previous words X, X, X; X,

The students studied the ?
28
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Why not RNNs?

RNN Disadvantages:
® Recurrent computation is
slow

cxexx)

® |n practice, difficult to access
information from many steps

back

29

y, = P(xs| The students studied the)

USC Viterbi

book

W[2]

) ‘@ ) )

W, i O W, i O W, i O W, i O

O O O O

mlel  mle  mle  nle
W[l]

‘@ ‘@ @ @

O O O O

O O O O

x; O x, O x; O x, O

The students studied the




CSCl 499 Spring 2024: Language Models in NLP Llu\flterbl

Training RNNLMs
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USC Viterbi
Training Outline

® Get a big corpus of text which is a sequence of words x{, x,, ...Xx7

® Feed into RNN-LM; compute output distribution y, for every step ¢
® i.e. predict probability distribution of every word, given words so far

® | oss function on step ¢ is usual cross-entropy between our predicted probability
distribution y,, and the true next word y, = x,_ ;:

LCE(j}tﬁ Yts 9) — = Z ”[yt — V]lOg j\/t: o Inge(X;H ‘xgt)

veV

® Average this to get overall loss for entire training set:

1 T
L(O) = — LV,
(0) = 2} v )
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_Viterbi

negative log
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The students studied the book
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L oss

negative log
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_Viterbi

negative log

prob. of
"book”
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s g ~d
| | ) |
1 \ ) )
I
.
| | "’r [ V4
h ;\ 7 N e’ O

1 T
| oss L@ + LO + LO + LO 4+ LO 4= LO=—)LO)

i i ] i 1 -

Y0 V1 2 Y3 V4
w2l w2l wll wll w2l
@ @ @ @ @
@ W, e W, | W, o W |0@
O O O O O
we  mle) mle)  mle) ale
Wi
@ @ @ @
O O O O
O O O O
x; 1O X, 1O x; | O ATD
The students studied the book
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RNINs vs. Other LMs

Table 2. Comparison of different neural network architectures on
Penn Corpus (1M words) and Switchboard (4M words).

|| PemCorpus || Switchboard
| Model || NN | NN+KN || NN | NN+KN

KN35 (baseline) - 141
feedforward NN 141 118
RNN trained by BP 137 113

RNN trained by BPTT || 123 106

T. Mikolov, S. Kombrink, L. Burget, J. Cernocky and S. Khudanpur, "Extensions of recurrent
neural network language model," 2011 IEEE ICASSP, doi: 10.1109/ICASSP.2011.5947611.
, , : N |




Practical Issues with training RNNs

® Computing loss and gradients across entire corpus is too expensivel

® Recall: mini-batch Stochastic Gradient Descent allows us to compute loss and gradients
for small chunk of data, and update.

® Solution: consider chunks of text.

® |n practice, consider x;, x,, ...x; for some T as a "sentence” or “single data instance”

1 T
L[L(6O) = — LV,
(0) = Z:, ey,

® Compute loss for a sentence (actually usually a batch of sentences), compute gradients and
update weights. Repeat.

37
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Training RNNs is hard

® Multiply the same matrix at each time

step during fo

rward propagation

® |deally inputs from many time steps

ago can modi

'y output y

® This leads to something called the
vanishing gradient problem

Q000

USC Viterbi

L,(0)




CSCI 499 Spring 2024: Language Models in NLP USC\/].tCI'bl

The Vanishing Gradient
Problem and LSTMs



The Vanishing Gradient Problem: Intuition

L,(0)
t

s When these gradients
are small, the gradient

O O O O ) signal gets smaller
W .
8 : ’|8! ~ 48} o 48} o >8 and smaller as it
ho © 1O h \ @ hs (@ hy (O backpropagates
further...
oL, I oL _ o P O
oh ohy ~ Oh, ohy  ohy  Ohy

Gradient signal from far

_ o v ) v oy v ) away is lost because it's

ohy ohy  ohy,  Ohs much smaller than

oh, ©0h, 0hy 0h, OL, gradient signal from
= o X XS X X close-by
ah() ahl ahz ah3 8h4



The Vanishing Gradient Problem: Effects

® |n practice, no long-term / long-range effects, contrary to the

. When she tried to
RNN promise . .
oF ‘ deling task print her tickets, she
ramMple langiage mO ? '.ng s found that the printer
® To learn from this training example, the RNN-LM needs to was out of toner She
model the dependency between “tickets” on the 7th step went to the stationery
and the target word “tickets” at the ena store to buy more
® But if the gradient is small, the model can’t learn this toner. It was very
dependency overpriced. After
® So, the model is unable to predict using similar long- installing the toner

into the printer, she

distance dependencies at test time |
finally printed her

® |n practice a simple RNN will only condition ~7 tokens back
[vague rule-of-thumb]

41



The Vanishing Gradient Problem: Fixes

® The main problem is that it is too difficult for the RNN to learn to preserve information
over many timesteps
® |n a vanilla RNN, the hidden state is constantly being rewritten

h, = reLUW,h,_, + Wllx)

New design: equip an RNN with separate

memory which is added to Solution? Think data structures...

S —

42
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L ong Short-Term Memory RNNs (LSTMs)

® At time step ¢, introduces a new cell state ¢, € R?

® In addition to a hidden state h, € R
® The cell stores long-term information (memory)
® The LSTM can read, erase, and write information from the celll
® The cell becomes conceptually rather like RAM in a computer

® The selection of which information is erased/written/read is controlled by three
corresponding gates:
® Input gate i, € RY, Output gate 0, € R? and Forget gate f, € R?
® Each element of the gates can be open (1), closed (0), or somewhere in between
® The gates are dynamic: their value is computed based on the current context
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| STMs

Given a sequence of inputs x, , we will compute a sequence of hidden states &, and cell states c,

At timestep [ : ' Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \ —
t) t—1

Input gate: controls what parts of the f( ) = (W pt—D Ufw( ) bf)
new cell content are written to cell

A i) =|o (Wih(t_l) + Uz + b,;)
Output gate: controls what parts of
cell are output to hidden state o) =|g (Woh(t_l) + U,z + bo)
New cell content: this is the new >

content to be written to the cell

Cell state: erase (“forget”) some

. ~1
content from last cell state, and write C(t) = tanh (Wch(t ) -+ Ucm(t) + bc)

(“input”) some new cell content 1) — j_-(t) o ct=1) 4 () 5 &)

All these are vectors of same length n

Hidden state: read (“output”)some |, K1) — 5(!) 5 tanh e®) I
content from the cell

—

\ Gates are applied using element-wise
(or Hadamard) product: (O

44




L STMs: A Visual Representation

® Q, &

0 [o] [&m] [0

[ ] O —r >

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

e et —— mameaea



https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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L STMs: A Visual Representation

Write some new cell content @ The + sign i< the secret!
Forget some
cell content c
C.1 =P =X o Ct
tanh
£ J_L»%ﬁ, Ot (X Output some cell content
Compute the t G to the hidden state
forget gate O[O ||tanh] | O
h1 —> h,
Compute the @ Compute the Compute the
input gate new cell content output gate

1 O = > <<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
e S EE—
46
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47

L STMs: Summary

® The LSTM architecture makes it much easier for an RNN to @

preserve information over many timesteps
® c.g., if the forget gate is set to 1 for a cell dimension
and the input gate set to O, then the information of that
cell is preserved indefinitely
® |n 2013-2015, LSTMs started achieving state-of-the-art
results
® Successful tasks include handwriting recognition,
speech recognition, machine translation, parsing, and
image captioning, as well as language models
® | STMs became the dominant approach for most NLP
tasks

® \We'll look into machine translation next!



® Recurrent Neural Networks processes sequences one

® RNNs do not have =

® But training RNNs is hara ‘

48

USC Viterbi
Summarizing RNNs

element at a time

® the limited context problem of n-gram models we

® the fixed context limitation of feedforward LMs

® since the hidden state can in principle represent ’
information about all of the preceding words all the wi!
way back to the beginning ot the sequence

Q000
Q000
Q000
Q000

000
000

® \/anishing gradient problem
® | STMs address it by incorporating a memory

Next Class: Transtormer Language Models!



