Instructor: Swabha Swayamdipta
USC CSCI 499 LMs in NLP

Feb 12, 2024 Spring




CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

Logistics / Announcements

® HW2 due on Monday, 2/26

® Start early!

® Feedback for Project Proposal will be provided in a week
® Joday: Quiz 2




CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

| ecture Outline

® Recap: Logistic Regression and word2vec
® Quiz 2
® Feed-forward Neural Networks

® [Feed-forward Language Models
® Training Feed-forward Neural Networks
® Computation Graphs and Backprop



Recap:
Logistic Regression +
word2vec




CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

Ingredients of Supervised Machine Learning

. Data as pairs (x®, vy stie{l...N}

o x usually represented by a feature vector x() = [xl(i),xz(i), ...,xa(li)]
® c.g. word embeddings S —
. Model

® A classification function that computes y, the estimated class, via p(y | x)
® c.g. sigmoid function: 6(z) = 1/(1 + exp(—2))
lll. Loss
® An objective function for learning

® c.g. cross-entropy loss, L¢g Case 2: Word2Vec
V. Optimization

® An algorithm for optimizing the objective function

® c.g. stochastic gradient descent
V. Inference / Evaluation Learning

Phase
5 ——



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

wordZvec : Intuition

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

Instead of counting how often each word w occurs near another, e.g. “cherry”

® Train a classifier on a binary prediction task:

® |sw likely to show up near “cherry”?
® \\e don't actually care about this task!!!
® But we'll take the learned classifier weights as the word embeddings

Word embedding itself is the learned parameter!
S ————————————



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

word2vec: Data

1s traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

® Positive examples: A word ¢ that occurs near “cherry” in the corpus acts as the gold “correct
answer” for supervised learning

® Negative examples: randomly sampled words outside of the context window for target word
® No need for human labels!

SeH:_SU perVISlon Bengio et al. (2003); Collobert et al. (2011)
/




CSCI 499 Spring 2024: Language Models in NLP USC\fite]_‘bi

word2vec: Goal

Assume a +/- 2 word window, given training sentence:

aardvark
P(— |w Cr)
P(+ |w, Cl)m P(+ |w,cy)

...lemon, a [tablespoon of apricot jam, a] pinch...

c, O Cy Cy
1%
Goal: train a classitier that is given a And assigns each pair a probability:
candidate (word, context) pair:
(apricot, jam) P(+ |w,c)

(apricot, aardvark) P(—|w,c)=1-P(+ |w,c)



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

word2vec: Pseudocode

Predict if candidate word c is a neighbor

...lemon, a [tablespoon of @pricot jam, a] pinch...

Ci, © C3 Cy
1%

—.aardvark...

1. Treat the target word w and a neighboring context word c as

2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings



CSCI 499 Spring 2024: Language Models in NLP USC\/];_terbi

L = Z ded b = W: X+ b
d
Input
Features
Weights and
6 8 Xo — 1 Biases
Activation
Ply=1[x;0) =0o(W-x+ b)l a Sum Function

X1

— < O\l

1 +exp(— (W:Xx+ b)) @ e ~ @) > Output =y
%%) @

Py=0|x;0)=1—-0(w-x+ b) m

Ad

10



CSCI 499 Spring 2024: Language Models in NLP USC\/];_te]_‘bi

Minimizing negative log likelihood

Goal: maximize probability of the correct label p(y | x)

log p(y|x) = log(3’(1 = §)' ™)
= ylogy + (I —y)log(l —y)

Maximize:
For something to minimize (we minimize the loss / cost), just flip the sign

Minimize: R R R
Lop(y,y) = —logp(y|x) = —[ylogy + (1 — y)log(l — )]

= — [ylogo(w - x + b) + (1 = y)log o] — (W - x + b)]]

Cross-Entropy Loss

11



CSCI 499 Spring 2024: Language Models in NLP USC\/];_te]_‘bi

word2vec: Learning Problem

...lemon, a [tablespoon of @pricot jam, a] pinch...

c, G Cy Cy
W

Given
® the set of positive and negative training instances, and

® a set of randomly initialized embedding vectors of size 2| V|,
the goal of learning is to adjust those word vectors such that we:
® Maximize the similarity of the target word, context word pairs (w, ¢;.;) drawn from the
positive data

® Minimize the similarity of the (w, ¢,,,) pairs drawn from the negative data

’ neg

12



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

word2vec: Loss function

Maximize the similarity of the target with the actual context words in a window of size L, and

minimize the similarity of the target with the K > L negative sampled non-neighbor words

For every word,

Leg = —log[P(+ [w,c, )P(—[w,c,, )]
context pair...
/ = — llogP(+|W p0s)+210gp(—\wacneg)]
j=1
= — llogP( -+ ‘W pos) + ZIOg(l — P(+ ‘Wacneg)]
j=1

__ llog (W), + Zlog o(—W - cneg)]

j=1
13



CSCI 499 Spring 2024: Language Models in NLP

USC Viterbi

word2vec classitier: Summary

® A probabilistic classitier, given
® a test target word w aardvark
® its context window of L words ¢;.; apricot
® Estimates probability that w occurs in this window
based on similarity of w (embeddings) to ¢;.;
(embeddings) Sebra
0 =
® To compute this, we just need embeddings for all ardvark
the words apricot
® Separate representations for targets and
contexts
® Same as the parameters we need to estimate! ebre

14

W

target words

| V]
|[V]+ 1

context and
21V noise words



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

wordZ2vec Variants: CBOW and Skipgram

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT
w(t-2) w(t-2)
® CBOW: continuous bag of words - wit-1) o / wit-1)
given context, predict which wora — — — —
/ > w(t) w(t) >
(

might be in the target position ' ' ' \
w(t+1) w(t+1)
® Skip-gram: given word, predict which o o
w(t+2 witr
words make the best context L

CBOW Skip-gram

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

o ——

15



CSCI 499 Spring 2024: Language Models in NLP USC\[iterbi

Reminder: Gradient Descent

0
Wi = W, — ﬂ%L(f(x; w), y*)

At each step of gradient descent, we update the parameter w
® Direction: We move in the reverse direction from the gradient of the loss function

e Magnitude: we move the value of this gradient a—L(f(x; w), y¥), weighted by a
W

learning rate 7

® Higher learning rate means move w faster

The gradient vector expresses the directional components ot the sharpest slope along each
of the d dimensions for w € R

16



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

Gradients for Logistic Regression

The cross-entropy loss for logistic regression

Lep(y,y) = — [ylogo(w - x+b) + (1 — y)log(o(=w - X + b))]

Derivatives have a closed form solution:

aLCE(j\}a y)

= [o(W - X+ b) — y]x;

17



CSCI 499 Spring 2024: Language Models in NLP

18

USC Viterbi

Intuition of one step of gradient descent

6

( aardvark [eee)

W -

\

C -

K=2

\

00 0)
( aardvark [eee)

zebra

jam (@ee|C ..

Tolstoy

zebra |[(eee

move apricot and jam closer,

\
l

/

N “...apricot jam...”

/", ', move apricot and matrix apart

decreasing C

.'
.".’

negi

*'W

. - move apricot and Jolstoy apart

decreasing C

negz2

*'W



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

Gradients for word2vec

K
Lop=— llog o(W - €, + Z log o(—w - cneg.)]
j=1

3 different parameters
S ———————

oL
£ = [o(Cpps - W) — 1]W
6cp0S
Update the parameters by

oL, subtracting respective n-weighted
oc [0(Creq, - WIW gradients

neg; \

oL K

~5 = (00605 W) = Ly D 016,00 - W)lE,

19 ]=1



CSCI 499 Spring 2024: Language Models in NLP

word2vec: Summary

D
P(+|w,c1)‘/,;\ P(+ |w,c,)

...lemon, a [tablespoon of @pricot jam, a] pinch...

20

® Start wit

® |3

® |3

raln a c

e a corpus and ta

e pairs of words t

C, G Cy Cy4
W

assifier based on embedding similarity

e pairs of words that co-occur as pos

nat don't co-occur as negative examp

n 2| V| random d-dimensional vectors as initial embeddings

itive examples

eS

USC Viterbi

® Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the

classifier performance

® Throw away the classifier code and keep the embeddings.



CSCI 499 Spring 2024: Language Models in NLP USC\/];_terbi

Fvaluation tor word2vec: Analogy Relations

Both sparse and dense vectors

® The classic parallelogram model of analogical reasoning
tree

® \Nord analogy problem: Q/'Q
® "Apple is to tree as grape isto ...” apple

/

o
Ado (Wapple o Wtree) to ngpe / vine

Should result inw, ., grape

Rumelhart and Abrahamson, 1973

For a problem a : a* :: b : b*, the parallelogram method is:

b* = arg max sim(w,b —a + a*)

2 W Maximize similarity = minimize distance

 ————————————————————————————



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

Multinomial Logistic Regression

Softmax Function

K difterent possible ground truths softmax(z,) = zxp(zi) 1 <i<K

2., eXp(z) -
Vector? = L2 2 f’.ZK] of K and softmax(z) = ZXP(Zl) : ZXP(Zz) - ZXP(ZK)
respective probabilities: > expz) Y. exp(z) > exp(z)

K
The denominator Z exp(z;) is used to normalize all the values into probabilities

=1

Softmax is a generalization of the sigmoid function
22 e ——————————————



CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

Softmax in multinomial logistic regression

Parameters are now a matrix W & RdXK and b = Rl
Could also have a separate b

, )/ for each class!
eEXp(W,. - X+ b

K f
zj=1 eXp‘\VVj - X + b)

P(y =c|x;0) =

® |[nput is still the dot product between weight vector w,. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d

Multinomial LR Loss:

K

Lrp=—-logP(y=c|x;0)=—(W_.-xX+ D) log[Zexp(Wj-X+b)
j=1

23






Feed-Forward
Neural Networks



CSCI 499 Spring 2024: Language Models in NLP USC\fiterbi

Neural Network Unit

Logistic Regression is a very simple neural network

InPUt Cell body
Features ,
Weiah 9 Non-linear
eights an transformation Nucleus"\/

Axon hillock Synaptic terminals
Ta— =

Biases ~—"1
Welghted ‘ / D B
Endoplasmic
6(2) ’

Golgi apparatus

-
\@\ reticulum "
—_— — A 7
/@X@_@ OUtPUt y e \ \ o
/
\g Dendritic branches

@ Activation
Function

Resembles a neuron in the brain!

26



CSCI 499 Spring 2024: Language Models in NLP USC\f]'_terbi
Non-Linear Activation Functions

Most common!

10

1.0 | | |
L ___ ,—XZ
= y = max(z,0)
0.5 _ 5/ <
- eZ _|_ e <
= >
§ 0.0! | 0 |
_ | [
>
| —0.5| j | =5
6 8
T —5 0 5 10 —1055 _E

relu (Rectified Linear Unit)

The key ingredient of a neural network is the non-linear activation function

max(z,0)

Y

27



CSCI 499 Spring 2024: Language Models in NLP USC\/]._terbi

| inear vs. Non-linear Functions

Linearly inseparable
28



CSCI 499 Spring 2024: Language Models in NLP USC\/]._terbi

Power ot non-linearity

el — o2
tanh(z) =
e+ e
After a tanh( - ) transformation:
10 - e e X X
05 -
0.0 -
05 -
1.0 - l

29



CSCI 499 Spring 2024: Language Models in NLP USC\[i_terbi

Feedforward Neural Nets

Multilayer Perceptron

Technically, can
learn any function!

| ——

Let's break it down by revisiting our logistic regression model
30



CSCI 499 Spring 2024: Language Models in NLP USC\[i_terbi

Binary Logistic Regression

.Weighted sum of all

incoming, followed by
W Wy, W,/ W, b a non-linear activation
| Xy e Xy X =

1

Output layer: y = o(wW - X + b)

Input layer: vector x

1-layer Network

Don’t count the input layer in counting layers!

31



CSCI 499 Spring 2024: Language Models in NLP USC\/i_terbi

Multinomial Logistic Regression

Wz

"' ‘ bhe—u~0

Output layer: y = softmax(w - X + b)

vector

matrix — W /

Input layer: vector x X1

1-layer Network Fully connected single layer network

32



CSCI 499 Spring 2024: Language Models in NLP USC\/]._terbi

Two-layer Feedtorward Network

OUtPUt ‘ayer: Y = o(uh) . Scalar Output / Binary Outcome

Hidden layer: h = g(Wx + b)

Usually ReLU or tanh

Hidden Unit, A,

Input layer: vector x

33



CSCI 499 Spring 2024: Language Models in NLP USC\[i_terbi

Two-layer Feedtorward Network with Softmax Output

Output layer: y = softmax(U - h)

Hidden layer: h = g(Wx + b)

/

Usually ReLU or tanh

Input layer: vector x

34



CSCI 499 Spring 2024: Language Models in NLP USC\[i_terbi

Iwo-layer FFNN: Notation

Output layer: y = softmax(U - h)

dO
Hidden layer: h = g(Wx) = g( Z Wjixi>

/

Usually ReLU or tanh

Input layer: vector x

We usually drop the b and add one dimension to the W matrix

35



CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

| ecture Outline

® Recap: Logistic Regression and word2vec
® Quiz 2
® Feed-forward Neural Networks

® [Feed-forward Language Models
® Training Feed-forward Neural Networks
® Computation Graphs and Backprop

36



FFNN Language
Models



CSCI 499 Spring 2024: Language Models in NLP USC\/];_terbi

Feedforward Neural Language Models

® | anguage Modeling: Calculating the probability of the next
word in a sequence given some history.

® Compared to n-gram language models, neural network LMs

achieve much higher performance

® |n general, count-based methods can never do as well as
optimization-based ones
® State-of-the-art neural LMs are based on more powertful neural
network technology like Transformers
® But simple feedforward LMs can do almost as well!

Can neural LMs
overcome the

overtitting problem
in n-gram LMs?

38



CSCI 499 Spring 2024: Language Models in NLP USC\/];_terbi

Simple Feedforward Neural LMs

Task: predict next word w, given prior words w,_, w,_», W,_1, ...
Problem: Now we are dealing with sequences ot arbitrary length....

lution: Slidi | f fixed | h
Solution: Sliding windows (of fixed length) Basis of word embedding models!

Pw,\w,_) = PW,|W,_1.,_pa1)

First introduced by Yoshua Bengio and colleagues in 2003
S ————

maa e

39



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

Data: Feedforward Language Model

® Self-supervisea
® Computation is divided into time steps #, where different sliding windows are considered
® x,=(W_q,...,w,_y.1) for the context
® represent words in this prior context by their embeddings, rather than just by their
word identity as in n-gram LMs

® allows neural LMs to generalize better to unseen data / similar data
® All embeddings in the context are concatenated

® y = w, for the next word

® Represented as a one hot vector of vocabulary size where only the ground truth

One-hot vector

gets a value of 1 and every other elementisa O

40



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

Feedtorward Neural LM

p(aardvark|...) p(fish|...) p(for]...)
A &

Output layer E\I\ o

softmax

® Sliding window of size 4

(including the target word)
® Every feature in the
embedding vector connected U

to every single hidden unit Hidden layer
® Projection / embedding layer
is a kind of input layer W

N

® This is where we plug in  Projection layer ey 098 3dxl
embeddings 1
our word2vec . ] L
. E embedding for  embedding for embedding for
embeddi Nngs word 35 word 9925 word 45180
® May or may not update ' '
: : ?

Wt-3 Wt-2 Nt ik
ﬁ

41



CSCI 499 Spring 2024: Language Models in NLP USC\/]._terbi

Simplified Representation

fish wishes

: !

p(aardvark|...) p(fish|...)  p(for]...) p(zebral...) . ~
A A a

T 200

Output layer e00000000000000
softmax o "
U U
Hidden layer ee0o00000@0@0 0
W
Projection layer

embeddings

o000 0000 0000

E embedding for  embedding for embedding for
word 35 word 9925 word 45180

.| and |thanks for “ the ! thanks for a| the ?I

w3 W2 Wil A

42 -



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

Feedforward LMs: Windows

fish .
wishes

: !

[ —
|

d Z00

® The goodness of the language model
. g, 000000000000 00
depends on the size of the sliding
window! U

® Fixed window can be too small 0000000000

® Enlarging window enlarges W

® Fach word uses different rows of W. We

dOn T Share We|ghts dClOSS the W|ndOW. 0000 0000 0000
® \\Vindow can never be large enough!

43
Wi _3 Wi o Wi 1



Training FFNNs



CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

Intuition: Training a 2-layer Network

Training instance y @ @
Loss function
Model Output ¥ = softmax(U - h) . . Ly y)

Forward Pass |

Training instance X

45



CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

Intuition: Training a 2-layer network

For every training tuple (x, y)
® Run computation to find our estimate y

® Run backward computation to update weights:
® For every output node

® Compute loss L between true y and the estimated y
® For every weight w from hidden layer to the output layer
® Update the weight

® [or every hidden node
® Assess how much blame it deserves for the current answer

® For every weight w from input layer to the hidden layer
® Update the weight

46



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

| R and FFNN: Similarities and Differences

Cross Entropy Loss again!

Lep(y,y) = —logp(y|x) = = [ylogy + (1 — y)log(1l —y)]
= —[ylogo(w-x+b)+ (1 — y)log(e(—w - X + b))]

aLCE(j\}a y)
ow;

Only one parameter! Computation Graphs

As (multiple) hidden layers are introduced, there will be many more parameters to consider,
not to mention activation functions!

Gradient Update = [o(W - X+ b) — ylx;

47



Computation Graphs
and Backprop



CSCI 499 Spring 2024: Language Models in NLP USC\/];_te]_‘bi

Why Computation Graphs?

® For training, we need the derivative of the Loss

function
L(y,y)

loss with respect to each weight in every
layer of the network
® But the loss is computed only at the
very end of the network!
® Solution: error backpropagation or
backward differentiation

® Backprop is a special case of backward
differentiation

® \Which relies on computation

graphs Graph representing the process of computing a mathematical expression

49 Rumelhart, Hinton, Williams, 1986




CSCI 499 Spring 2024: Language Models in NLP USC\[]._terbi

Example: Computation Grapnh

d=2%b 61 »
o= gt d e=a+d
b —., / \
L=c*e d=2%b
L=c*e
6 .

50



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

Example: Forward Pass

d=2%b
e=a+d Need the forward
L=c*e pass to compute the

loss!

But how to compute parameter updates?

S



CSCI 499 Spring 2024: Language Models in NLP USC\[]._te]_‘bi

EFxample: Backward Pass Intuition

® The importance of the computation graph comes from the backward pass
® Used to compute the derivatives needed for the weight updates

a_L _ 9 a_L _ 9 a_L _ 9 Input Layer
d=2%p e Gradients
e=a+d Hidden Layer a_L _ 9

_ ¥ Gradients e

Chain Rule of Differentiation!
S ——
52




CSCI 499 Spring 2024: Language Models in NLP USC\[iterbi

The Chain Rule

Computing the derivative of a composite function:

1) = u(v(x)) g_ o
0Xx oV 0x
8_f B ou ov ow

J(x) = u(v(w(x))) heatha i
0x dv ow 0x

53



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

Example: Applying the chain rule

oL
P oL
— =7
d=2%b OL  OL de oe
e=a+d 0a_aeaa a_L:a_L%
) od  Ode dd
L=c™ e 0L 0L ode od
ob  Oe dd b

Cannot do all at once, need to tollow an order...
54 R ———



CSCI 499 Spring 2024: Language Models in NLP USCW_terbi

Example: Backward Pass

But we need the gradients
of the loss with respect to

parameters...
oL oL
—=¢ — =
ac oe
oL. OL oOe ~ oL
_— —_ —_—=_C
oa de 0a b _a_d_» d 2*b/0d 66_1 ()_L oe
oL  dL Oe o L=c*e
I - —
od  Ode dd - —
C oc ol
ol. JL ode dd — =€
— ac

b e dd ob

55



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

oL

— = C = —
oe

oL

— = =5
ac
dL_dee_
da  Oe 0a
6L_8Lae_
od de od
@L_dLOe@d_

b ode dadob

56



CSCI 499 Spring 2024: Language Models in NLP

USC Viterbi

Backward Difterentiation on a 2-layer MLP

Softmax Activation

wi2!
RelLU
Activation T

00(2)
0z

= 0(2)o(—2z) = o(2)(1 — 6(2))

57

$ = o(z'%)

2 = wl2l . pli]

h[l] — Re LU(Z[l]) Element-wise

A1 — Willy

dReLU(z) [0 for z<0
1 for z>0



CSCI 499 Spring 2024: Language Models in NLP USC\/iterbi

2 layer MLP with 2 input features

Lo

dReLU(z) [0 for z<0
dz |1 for z>0

T o(z)(1-0(z))

58



CSCI 499 Spring 2024: Language Models in NLP USC\/];_te]_‘bi

: dL U = wllx+pl!
Starting off the backward pass: Py d) = ReLU(Z)
(I'll write a for al?! and z for z!?] ) 22 = WPall+pP

ad = o(z¥)
$ = al?!

Ly,y) =—(ylog®®) + (1 —y)log(1 —¥))
L(a,y) = —(yloga + (1 — y)log(1 —a))

oL _ oL da
0z Oda 0z

oL dlog(a) dlog(1 —a)
== (7)1 2o

=—((y%)+(1_}’) 1ia(—1))=_(%+?1,:c11)

da oL y y-—1
—=qa(l —a — = — | —
0z ( : 0z (a+1—a

)a(l—a)=a—y

59



CSCI 499 Spring 2024: Language Models in NLP USC\/];_terbi

Summary: Backprop / Backward Ditterentiation

=1
oa

® For training, we need the derivative of the loss with .2 T G atdy
_ej \ —=_C

. . od - 0 ()_L oe

respect to weights in early layers of the network b5 @@=2%5 " Lo s

® But loss is computed only at the very end of the
network!
® Solution: backward differentiation

Given a computation graph and the derivatives of all the functions in it we can automatically

compute the derivative of the loss with respect to these early weights.
e —

Libraries such as PyTorch do this for you in a single line: model.backward()
60



