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Logistics  / Announcements

• HW2 due on Monday, 2/26 
• Start early! 

• Feedback for Project Proposal will be provided in a week 
• Today: Quiz 2

2



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Lecture Outline

• Recap: Logistic Regression and word2vec 
• Quiz 2 
• Feed-forward Neural Networks 
• Feed-forward Language Models 
• Training Feed-forward Neural Networks  
• Computation Graphs and Backprop

3
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Recap:  
Logistic Regression + 

word2vec

4
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Ingredients of Supervised Machine Learning

I. Data as pairs  

•  usually represented by a feature vector  

• e.g. word embeddings 
II. Model 

• A classification function that computes , the estimated class, via  

• e.g. sigmoid function:  
III. Loss 

• An objective function for learning 

• e.g. cross-entropy loss,  
IV. Optimization 

• An algorithm for optimizing the objective function 
• e.g. stochastic gradient descent 

V. Inference / Evaluation

(x(i), y(i)) s.t i ∈ {1…N}
x(i) x(i) = [x(i)

1 , x(i)
2 , …, x(i)

d ]

̂y p(y |x)
σ(z) = 1/(1 + exp(−z))

LCE

5

Learning 
Phase

Case 1: Sentiment Analysis

Case 2: Word2Vec
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word2vec : Intuition

Instead of counting how often each word  occurs near another, e.g. “cherry” 

• Train a classifier on a binary prediction task:  

•  Is  likely to show up near “cherry”? 

• We don’t actually care about this task!!!  
• But we'll take the learned classifier weights as the word embeddings

w

w

6

Word embedding itself is the learned parameter!
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word2vec: Data

• Positive examples: A word  that occurs near “cherry” in the corpus acts as the gold “correct 
answer” for supervised learning  

• Negative examples: randomly sampled words outside of the context window for target word 
• No need for human labels! 

c

7
Bengio et al. (2003); Collobert et al. (2011)Self-supervision
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word2vec: Goal

8

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a 
candidate (word, context) pair: 

(apricot, jam)  
(apricot, aardvark)  
… 

P( + |w, c)
P( − |w, c) = 1 − P( + |w, c)

P( + |w, c1) P( + |w, c4)

And assigns each pair a probability:

…aardvark…

P( − |w, ck)

 Assume a +/- 2 word window, given training sentence: 
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word2vec: Pseudocode

1. Treat the target word  and a neighboring context word  as positive examples. 
2. Randomly sample other words in the lexicon to get negative examples  
3. Use logistic regression to train a classifier to distinguish those two cases  
4. Use the learned weights as the embeddings

w c

9

Predict if candidate word  is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…
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10

z = (∑
d

wdxd + b) = w ⋅ x + b

P(y = 1 |x; θ) = σ(w ⋅ x + b)
=

1
1 + exp( − (w ⋅ x + b))

P(y = 0 |x; θ) = 1 − σ(w ⋅ x + b)

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input  
Features

Weights and  
Biases

Sum
Activation 
Function

Output  = y

…

z σ(z)

Case 1: Sentiment Analysis



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Minimizing negative log likelihood

11

Cross-Entropy Loss

= − [y log σ(w ⋅ x + b) + (1 − y)log σ[ − (w ⋅ x + b)]]
LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]Minimize:

Goal: maximize probability of the correct label  p(y |x)

log p(y |x) = log( ̂yy(1 − ̂y)1−y)
= y log ̂y + (1 − y)log(1 − ̂y)

Maximize:  
For something to minimize (we minimize the loss / cost), just flip the sign

Case 1: Sentiment Analysis



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

word2vec: Learning Problem

Given  
• the set of positive and negative training instances, and  

• a set of randomly initialized embedding vectors of size ,  
the goal of learning is to adjust those word vectors such that we:  

• Maximize the similarity of the target word, context word pairs  drawn from the 
positive data  

• Minimize the similarity of the  pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

12

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg
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word2vec: Loss function

13

LCE = − log[P( + |w, cpos)P( − |w, cneg)]

= − [log P( + |w, cpos) +
K

∑
j=1

log P( − |w, cnegj
)]

= − [log P( + |w, cpos) +
K

∑
j=1

log(1 − P( + |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word, 
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and 
minimize the similarity of the target with the  negative sampled non-neighbor words

L
K > L
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 word2vec classifier: Summary
• A probabilistic classifier, given  

• a test target word   

• its context window of  words   

• Estimates probability that  occurs in this window 
based on similarity of  (embeddings) to  
(embeddings) 

• To compute this, we just need embeddings for all 
the words 
• Separate representations for targets and 

contexts 
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

14

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and 
noise words

1

|V | + 1

2 |V |

|V |θ =

}d
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word2vec Variants: CBOW and Skipgram

• CBOW: continuous bag of words - 
given context, predict which word 
might be in the target position 

• Skip-gram: given word, predict which 
words make the best context

15

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Reminder: Gradient Descent

At each step of gradient descent, we update the parameter  

• Direction: We move in the reverse direction from the gradient of the loss function 

• Magnitude: we move the value of this gradient , weighted by a 

learning rate  

• Higher learning rate means move  faster 

The gradient vector expresses the directional components of the sharpest slope along each 
of the  dimensions for 

w

∂
∂w

L( f(x; w), y*)

η
w

d w ∈ ℝd

16

wt+1 = wt − η
∂

∂w
L( f(x; w), y*)
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Gradients for Logistic Regression

Derivatives have a closed form solution:

17

LCE( ̂y, y) = − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

The cross-entropy loss for logistic regression

∂LCE( ̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xj

Case 1: Sentiment Analysis
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Intuition of one step of gradient descent

18
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Gradients for word2vec

19

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by 
subtracting respective -weighted 

gradients 
η
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word2vec: Summary

• Start with  random -dimensional vectors as initial embeddings  

• Train a classifier based on embedding similarity  
• Take a corpus and take pairs of words that co-occur as positive examples  
• Take pairs of words that don't co-occur as negative examples  
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the 

classifier performance  
• Throw away the classifier code and keep the embeddings.

2 |V | d

20

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

P( + |w, c1) P( + |w, c4)
…aardvark…P( − |w, ck)
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• The classic parallelogram model of analogical reasoning  
• Word analogy problem: 

• “Apple is to tree as grape is to …” 

Add  to  … 
   Should result in  

For a problem , the parallelogram method is:

(wapple − wtree) wgrape
wvine

a : a* :: b : b*

Evaluation for word2vec: Analogy Relations

21

Rumelhart and Abrahamson, 1973

Both sparse and dense vectors

b̂* = arg max
w

sim(w, b − a + a*)
Maximize similarity = minimize distance
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Multinomial Logistic Regression

22

softmax(z) = [ exp(z1)

∑K
i=1 exp(zi)

,
exp(z2)

∑K
i=1 exp(zi)

, …,
exp(zK)

∑K
i=1 exp(zi) ]

The denominator  is used to normalize all the values into probabilities
K

∑
i=1

exp(zi)

softmax(zi) =
exp(zi)

∑K
j=1 exp(zj)

1 ≤ i ≤ K

Softmax Function

Softmax is a generalization of the sigmoid function

 different possible ground truthsK

Vector  of  and 
respective probabilities:

z = [z1, z2, …, zK] K
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Softmax in multinomial logistic regression

• Input is still the dot product between weight vector  and input vector , offset by   

• But separate weight vectors for each of the  classes, each of dimension 
wc x b

K d

23

P(y = c |x; θ) =
exp(wc ⋅ x + b)

∑K
j=1 exp(wj ⋅ x + b)

Parameters are now a matrix  and W ∈ ℝd×K b ∈ ℝ1

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
Multinomial LR Loss:

Could also have a separate  
for each class!

b
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Quiz 2!

24
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Feed-Forward  
Neural Networks

25
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Neural Network Unit

26

Resembles a neuron in the brain!

Logistic Regression is a very simple neural network

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input  
Features

Weights and  
Biases

Weighted  
Sum

Activation 
Function

Output  = y

…

z σ(z)

Non-linear 
transformation
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Non-Linear Activation Functions

27

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!
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Linear vs. Non-linear Functions

28

Linearly inseparable
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Power of non-linearity

29

After a  transformation:tanh( ⋅ )

tanh(z) =
ez − e−z

ez + e−z
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Feedforward Neural Nets

30

Multilayer Perceptron

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b

Let’s break it down by revisiting our logistic regression model

Technically, can 
learn any function!
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Weighted sum of all 
incoming, followed by 
a non-linear activation

Binary Logistic Regression

31

Don’t count the input layer in counting layers!

1-layer Network

x1 x2 xd x0 = 1

y

…

bw w1 w2 wd

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Multinomial Logistic Regression

32

Fully connected single layer network

x1 x2 xd x0 = 1

y2

…

bW

Input layer: vector x

Output layer: y = softmax(w ⋅ x + b) y1 yK…

matrix vector

1-layer Network
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Two-layer Feedforward Network

33

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W b

u

W2,3

Scalar Output / Binary Outcome

Usually ReLU or tanh

Input layer: vector x

Hidden layer: h = g(Wx + b)

Output layer: y = σ(uh)

Hidden Unit, hi
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Two-layer Feedforward Network with Softmax Output

34

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b
Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Usually ReLU or tanh

What is ?y

Hidden layer: h = g(Wx + b)
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Two-layer FFNN: Notation

35

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the  and add one dimension to the  matrixb W
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Lecture Outline

• Recap: Logistic Regression and word2vec 
• Quiz 2 
• Feed-forward Neural Networks 
• Feed-forward Language Models 
• Training Feed-forward Neural Networks  
• Computation Graphs and Backprop

36
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FFNN Language 
Models

37
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Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next 
word in a sequence given some history. 

• Compared to n-gram language models, neural network LMs 
achieve much higher performance 
• In general, count-based methods can never do as well as 

optimization-based ones 
• State-of-the-art neural LMs are based on more powerful neural 

network technology like Transformers  
• But simple feedforward LMs can do almost as well!

38

Why?

Can neural LMs 
overcome the 

overfitting problem 
in n-gram LMs?
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Simple Feedforward Neural LMs

Task: predict next word  given prior words  

Problem: Now we are dealing with sequences of arbitrary length…. 

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

39

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!
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Data: Feedforward Language Model

• Self-supervised 

• Computation is divided into time steps , where different sliding windows are considered 

•  for the context 

• represent words in this prior context by their embeddings, rather than just by their 
word identity as in n-gram LMs  

• allows neural LMs to generalize better to unseen data / similar data 
• All embeddings in the context are concatenated 

•  for the next word 

• Represented as a one hot vector of vocabulary size where only the ground truth 
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

40

One-hot vector



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Feedforward Neural LM

41

• Sliding window of size 4 
(including the target word) 

• Every feature in the 
embedding vector connected 
to every single hidden unit 

• Projection / embedding layer 
is a kind of input layer 
• This is where we plug in 

our word2vec 
embeddings 

• May or may not update 
embedding weights
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Simplified Representation

42

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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Feedforward LMs: Windows

• The goodness of the language model 
depends on the size of the sliding 
window! 

• Fixed window can be too small 

• Enlarging window enlarges  

• Each word uses different rows of . We 
don’t share weights across the window. 

• Window can never be large enough! 

W
W

43

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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Training FFNNs

44
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Intuition: Training a 2-layer Network

45

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function 

L(ŷ, y)

Forward Pass Backward Pass

Training instance y
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 Intuition: Training a 2-layer network

For every training tuple  

• Run forward computation to find our estimate  

• Run backward computation to update weights:  
• For every output node  

• Compute loss  between true  and the estimated   

• For every weight  from hidden layer to the output layer  

• Update the weight  
• For every hidden node  

• Assess how much blame it deserves for the current answer  

• For every weight  from input layer to the hidden layer  

• Update the weight

(x, y)
̂y

L y ̂y
w

w

46
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LR and FFNN: Similarities and Differences

47

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE( ̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter!

As (multiple) hidden layers are introduced, there will be many more parameters to consider, 
not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!
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Computation Graphs 
and Backprop

48
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Why Computation Graphs?

49

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss 

function 
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the 
loss with respect to each weight in every 
layer of the network  
• But the loss is computed only at the 

very end of the network!  
• Solution: error backpropagation or 

backward differentiation 
• Backprop is a special case of backward 

differentiation  
• Which relies on computation 

graphs
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Example: Computation Graph

50

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e
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Example: Forward Pass

51

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward 
pass to compute the 

loss!



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass  
• Used to compute the derivatives needed for the weight updates

52

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer 
Gradients

}Hidden Layer 
Gradients
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The Chain Rule

53

f(x) = u(v(x))

f(x) = u(v(w(x)))

∂f
∂x

=

∂f
∂x

=

Computing the derivative of a composite function:

∂u
∂v

∂v
∂x

∂u
∂v

∂v
∂w

∂w
∂x
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Example: Applying the chain rule

54

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…
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Example: Backward Pass

55

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients 
of the loss with respect to 

parameters…
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Example

56

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Backward Differentiation on a 2-layer MLP
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W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU 
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise 

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))
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2 layer MLP with 2 input features
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Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with 
respect to weights in early layers of the network  
• But loss is computed only at the very end of the 

network!  
• Solution: backward differentiation 

60

Given a computation graph and the derivatives of all the functions in it we can automatically 
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e


