
Lecture 8:
Feed-Forward Neural Nets

Slides mostly adapted from Dan Jurafsky, some from Mohit Iyyer

Instructor: Swabha Swayamdipta
USC CSCI 499 LMs in NLP

Feb 12, 2024 Spring

CSCI 499 Spring 2024: Language Models in NLP

Logistics / Announcements

• HW2 due on Monday, 2/26
• Start early!

• Feedback for Project Proposal will be provided in a week
• Today: Quiz 2

2

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Logistic Regression and word2vec
• Quiz 2
• Feed-forward Neural Networks
• Feed-forward Language Models
• Training Feed-forward Neural Networks
• Computation Graphs and Backprop

3

CSCI 499 Spring 2024: Language Models in NLP

Recap:
Logistic Regression +

word2vec

4

CSCI 499 Spring 2024: Language Models in NLP

Ingredients of Supervised Machine Learning

I. Data as pairs

• usually represented by a feature vector

• e.g. word embeddings
II. Model

• A classification function that computes , the estimated class, via

• e.g. sigmoid function:
III. Loss

• An objective function for learning

• e.g. cross-entropy loss,
IV. Optimization

• An algorithm for optimizing the objective function
• e.g. stochastic gradient descent

V. Inference / Evaluation

(x(i), y(i)) s.t i ∈ {1…N}
x(i) x(i) = [x(i)

1 , x(i)
2 , …, x(i)

d]

̂y p(y |x)
σ(z) = 1/(1 + exp(−z))

LCE

5

Learning
Phase

Case 1: Sentiment Analysis

Case 2: Word2Vec

CSCI 499 Spring 2024: Language Models in NLP

word2vec : Intuition

Instead of counting how often each word occurs near another, e.g. “cherry”

• Train a classifier on a binary prediction task:

• Is likely to show up near “cherry”?

• We don’t actually care about this task!!!
• But we'll take the learned classifier weights as the word embeddings

w

w

6

Word embedding itself is the learned parameter!

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Data

• Positive examples: A word that occurs near “cherry” in the corpus acts as the gold “correct
answer” for supervised learning

• Negative examples: randomly sampled words outside of the context window for target word
• No need for human labels!

c

7
Bengio et al. (2003); Collobert et al. (2011)Self-supervision

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Goal

8

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a
candidate (word, context) pair:

(apricot, jam)
(apricot, aardvark)
…

P(+ |w, c)
P(− |w, c) = 1 − P(+ |w, c)

P(+ |w, c1) P(+ |w, c4)

And assigns each pair a probability:

…aardvark…

P(− |w, ck)

 Assume a +/- 2 word window, given training sentence:

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Pseudocode

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

w c

9

Predict if candidate word is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

CSCI 499 Spring 2024: Language Models in NLP

10

z = (∑
d

wdxd + b) = w ⋅ x + b

P(y = 1 |x; θ) = σ(w ⋅ x + b)
=

1
1 + exp(− (w ⋅ x + b))

P(y = 0 |x; θ) = 1 − σ(w ⋅ x + b)

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input
Features

Weights and
Biases

Sum
Activation
Function

Output = y

…

z σ(z)

Case 1: Sentiment Analysis

CSCI 499 Spring 2024: Language Models in NLP

Minimizing negative log likelihood

11

Cross-Entropy Loss

= − [y log σ(w ⋅ x + b) + (1 − y)log σ[− (w ⋅ x + b)]]
LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]Minimize:

Goal: maximize probability of the correct label p(y |x)

log p(y |x) = log(̂yy(1 − ̂y)1−y)
= y log ̂y + (1 − y)log(1 − ̂y)

Maximize:
For something to minimize (we minimize the loss / cost), just flip the sign

Case 1: Sentiment Analysis

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Learning Problem

Given
• the set of positive and negative training instances, and

• a set of randomly initialized embedding vectors of size ,
the goal of learning is to adjust those word vectors such that we:

• Maximize the similarity of the target word, context word pairs drawn from the
positive data

• Minimize the similarity of the pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

12

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Loss function

13

LCE = − log[P(+ |w, cpos)P(− |w, cneg)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log P(− |w, cnegj
)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log(1 − P(+ |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word,
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and
minimize the similarity of the target with the negative sampled non-neighbor words

L
K > L

CSCI 499 Spring 2024: Language Models in NLP

 word2vec classifier: Summary
• A probabilistic classifier, given

• a test target word

• its context window of words

• Estimates probability that occurs in this window
based on similarity of (embeddings) to
(embeddings)

• To compute this, we just need embeddings for all
the words
• Separate representations for targets and

contexts
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

14

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and
noise words

1

|V | + 1

2 |V |

|V |θ =

}d

CSCI 499 Spring 2024: Language Models in NLP

word2vec Variants: CBOW and Skipgram

• CBOW: continuous bag of words -
given context, predict which word
might be in the target position

• Skip-gram: given word, predict which
words make the best context

15

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

CSCI 499 Spring 2024: Language Models in NLP

Reminder: Gradient Descent

At each step of gradient descent, we update the parameter

• Direction: We move in the reverse direction from the gradient of the loss function

• Magnitude: we move the value of this gradient , weighted by a

learning rate

• Higher learning rate means move faster

The gradient vector expresses the directional components of the sharpest slope along each
of the dimensions for

w

∂
∂w

L(f(x; w), y*)

η
w

d w ∈ ℝd

16

wt+1 = wt − η
∂

∂w
L(f(x; w), y*)

CSCI 499 Spring 2024: Language Models in NLP

Gradients for Logistic Regression

Derivatives have a closed form solution:

17

LCE(̂y, y) = − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

The cross-entropy loss for logistic regression

∂LCE(̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xj

Case 1: Sentiment Analysis

CSCI 499 Spring 2024: Language Models in NLP

Intuition of one step of gradient descent

18

CSCI 499 Spring 2024: Language Models in NLP

Gradients for word2vec

19

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by
subtracting respective -weighted

gradients
η

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Summary

• Start with random -dimensional vectors as initial embeddings

• Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the

classifier performance
• Throw away the classifier code and keep the embeddings.

2 |V | d

20

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

P(+ |w, c1) P(+ |w, c4)
…aardvark…P(− |w, ck)

CSCI 499 Spring 2024: Language Models in NLP

• The classic parallelogram model of analogical reasoning
• Word analogy problem:

• “Apple is to tree as grape is to …”

Add to …
 Should result in

For a problem , the parallelogram method is:

(wapple − wtree) wgrape
wvine

a : a* :: b : b*

Evaluation for word2vec: Analogy Relations

21

Rumelhart and Abrahamson, 1973

Both sparse and dense vectors

b̂* = arg max
w

sim(w, b − a + a*)
Maximize similarity = minimize distance

CSCI 499 Spring 2024: Language Models in NLP

Multinomial Logistic Regression

22

softmax(z) = [exp(z1)

∑K
i=1 exp(zi)

,
exp(z2)

∑K
i=1 exp(zi)

, …,
exp(zK)

∑K
i=1 exp(zi)]

The denominator is used to normalize all the values into probabilities
K

∑
i=1

exp(zi)

softmax(zi) =
exp(zi)

∑K
j=1 exp(zj)

1 ≤ i ≤ K

Softmax Function

Softmax is a generalization of the sigmoid function

 different possible ground truthsK

Vector of and
respective probabilities:

z = [z1, z2, …, zK] K

CSCI 499 Spring 2024: Language Models in NLP

Softmax in multinomial logistic regression

• Input is still the dot product between weight vector and input vector , offset by

• But separate weight vectors for each of the classes, each of dimension
wc x b

K d

23

P(y = c |x; θ) =
exp(wc ⋅ x + b)

∑K
j=1 exp(wj ⋅ x + b)

Parameters are now a matrix and W ∈ ℝd×K b ∈ ℝ1

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
Multinomial LR Loss:

Could also have a separate
for each class!

b

CSCI 499 Spring 2024: Language Models in NLP

Quiz 2!

24

CSCI 499 Spring 2024: Language Models in NLP

Feed-Forward
Neural Networks

25

CSCI 499 Spring 2024: Language Models in NLP

Neural Network Unit

26

Resembles a neuron in the brain!

Logistic Regression is a very simple neural network

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input
Features

Weights and
Biases

Weighted
Sum

Activation
Function

Output = y

…

z σ(z)

Non-linear
transformation

CSCI 499 Spring 2024: Language Models in NLP

Non-Linear Activation Functions

27

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!

CSCI 499 Spring 2024: Language Models in NLP

Linear vs. Non-linear Functions

28

Linearly inseparable

CSCI 499 Spring 2024: Language Models in NLP

Power of non-linearity

29

After a transformation:tanh(⋅)

tanh(z) =
ez − e−z

ez + e−z

CSCI 499 Spring 2024: Language Models in NLP

Feedforward Neural Nets

30

Multilayer Perceptron

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b

Let’s break it down by revisiting our logistic regression model

Technically, can
learn any function!

CSCI 499 Spring 2024: Language Models in NLP

Weighted sum of all
incoming, followed by
a non-linear activation

Binary Logistic Regression

31

Don’t count the input layer in counting layers!

1-layer Network

x1 x2 xd x0 = 1

y

…

bw w1 w2 wd

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)

CSCI 499 Spring 2024: Language Models in NLP

Multinomial Logistic Regression

32

Fully connected single layer network

x1 x2 xd x0 = 1

y2

…

bW

Input layer: vector x

Output layer: y = softmax(w ⋅ x + b) y1 yK…

matrix vector

1-layer Network

CSCI 499 Spring 2024: Language Models in NLP

Two-layer Feedforward Network

33

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W b

u

W2,3

Scalar Output / Binary Outcome

Usually ReLU or tanh

Input layer: vector x

Hidden layer: h = g(Wx + b)

Output layer: y = σ(uh)

Hidden Unit, hi

CSCI 499 Spring 2024: Language Models in NLP

Two-layer Feedforward Network with Softmax Output

34

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b
Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Usually ReLU or tanh

What is ?y

Hidden layer: h = g(Wx + b)

CSCI 499 Spring 2024: Language Models in NLP

Two-layer FFNN: Notation

35

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the and add one dimension to the matrixb W

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Logistic Regression and word2vec
• Quiz 2
• Feed-forward Neural Networks
• Feed-forward Language Models
• Training Feed-forward Neural Networks
• Computation Graphs and Backprop

36

CSCI 499 Spring 2024: Language Models in NLP

FFNN Language
Models

37

CSCI 499 Spring 2024: Language Models in NLP

Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next
word in a sequence given some history.

• Compared to n-gram language models, neural network LMs
achieve much higher performance
• In general, count-based methods can never do as well as

optimization-based ones
• State-of-the-art neural LMs are based on more powerful neural

network technology like Transformers
• But simple feedforward LMs can do almost as well!

38

Why?

Can neural LMs
overcome the

overfitting problem
in n-gram LMs?

CSCI 499 Spring 2024: Language Models in NLP

Simple Feedforward Neural LMs

Task: predict next word given prior words

Problem: Now we are dealing with sequences of arbitrary length….

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

39

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!

CSCI 499 Spring 2024: Language Models in NLP

Data: Feedforward Language Model

• Self-supervised

• Computation is divided into time steps , where different sliding windows are considered

• for the context

• represent words in this prior context by their embeddings, rather than just by their
word identity as in n-gram LMs

• allows neural LMs to generalize better to unseen data / similar data
• All embeddings in the context are concatenated

• for the next word

• Represented as a one hot vector of vocabulary size where only the ground truth
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

40

One-hot vector

CSCI 499 Spring 2024: Language Models in NLP

Feedforward Neural LM

41

• Sliding window of size 4
(including the target word)

• Every feature in the
embedding vector connected
to every single hidden unit

• Projection / embedding layer
is a kind of input layer
• This is where we plug in

our word2vec
embeddings

• May or may not update
embedding weights

CSCI 499 Spring 2024: Language Models in NLP

Simplified Representation

42

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

CSCI 499 Spring 2024: Language Models in NLP

Feedforward LMs: Windows

• The goodness of the language model
depends on the size of the sliding
window!

• Fixed window can be too small

• Enlarging window enlarges

• Each word uses different rows of . We
don’t share weights across the window.

• Window can never be large enough!

W
W

43

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

CSCI 499 Spring 2024: Language Models in NLP

Training FFNNs

44

CSCI 499 Spring 2024: Language Models in NLP

Intuition: Training a 2-layer Network

45

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function

L(ŷ, y)

Forward Pass Backward Pass

Training instance y

CSCI 499 Spring 2024: Language Models in NLP

 Intuition: Training a 2-layer network

For every training tuple

• Run forward computation to find our estimate

• Run backward computation to update weights:
• For every output node

• Compute loss between true and the estimated

• For every weight from hidden layer to the output layer

• Update the weight
• For every hidden node

• Assess how much blame it deserves for the current answer

• For every weight from input layer to the hidden layer

• Update the weight

(x, y)
̂y

L y ̂y
w

w

46

CSCI 499 Spring 2024: Language Models in NLP

LR and FFNN: Similarities and Differences

47

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE(̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter!

As (multiple) hidden layers are introduced, there will be many more parameters to consider,
not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!

CSCI 499 Spring 2024: Language Models in NLP

Computation Graphs
and Backprop

48

CSCI 499 Spring 2024: Language Models in NLP

Why Computation Graphs?

49

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss

function
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the
loss with respect to each weight in every
layer of the network
• But the loss is computed only at the

very end of the network!
• Solution: error backpropagation or

backward differentiation
• Backprop is a special case of backward

differentiation
• Which relies on computation

graphs

CSCI 499 Spring 2024: Language Models in NLP

Example: Computation Graph

50

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e

CSCI 499 Spring 2024: Language Models in NLP

Example: Forward Pass

51

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward
pass to compute the

loss!

CSCI 499 Spring 2024: Language Models in NLP

Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass
• Used to compute the derivatives needed for the weight updates

52

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer
Gradients

}Hidden Layer
Gradients

CSCI 499 Spring 2024: Language Models in NLP

The Chain Rule

53

f(x) = u(v(x))

f(x) = u(v(w(x)))

∂f
∂x

=

∂f
∂x

=

Computing the derivative of a composite function:

∂u
∂v

∂v
∂x

∂u
∂v

∂v
∂w

∂w
∂x

CSCI 499 Spring 2024: Language Models in NLP

Example: Applying the chain rule

54

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…

CSCI 499 Spring 2024: Language Models in NLP

Example: Backward Pass

55

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients
of the loss with respect to

parameters…

CSCI 499 Spring 2024: Language Models in NLP

Example

56

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

CSCI 499 Spring 2024: Language Models in NLP

Backward Differentiation on a 2-layer MLP

57

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))

CSCI 499 Spring 2024: Language Models in NLP

2 layer MLP with 2 input features

58

CSCI 499 Spring 2024: Language Models in NLP

59

CSCI 499 Spring 2024: Language Models in NLP

Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with
respect to weights in early layers of the network
• But loss is computed only at the very end of the

network!
• Solution: backward differentiation

60

Given a computation graph and the derivatives of all the functions in it we can automatically
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

