
Lecture 7:
Word Embeddings II

Slides mostly adapted from Dan Jurafsky, some from Mohit Iyyer

Instructor: Swabha Swayamdipta
USC CSCI 499 LMs in NLP

Feb 7, 2024 Spring

CSCI 499 Spring 2024: Language Models in NLP

Logistics + Announcements

• Project Proposals due tonight
• Teams of 3 only!

• HW2 Released today
• Don’t forget to share access with course staff
• Counts as not sharing your homework, might cause loss of late days!

• HW1 is graded
• Questions can be directed to TA

• Quiz 2 on Monday
• Collect graded quiz sheets from TA in class / TA office hours

2

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Sparse Word Vectors
• Term-document metrics, term-term cooccurrence metrics
• tf-idf, PMI

• word2vec
• Also, briefly GloVe

• Learning word2vec embeddings
• Properties and evaluation of static word embeddings

3

CSCI 499 Spring 2024: Language Models in NLP

Recap:
Sparse Word Vectors

4

CSCI 499 Spring 2024: Language Models in NLP

• The meaning of a word can be given by its distribution in language usage:
• One way to define "usage": words are defined by their environments

• Neighboring words or grammatical environments
• Intuitions: Zellig Harris (1954):

• “oculist and eye-doctor … occur in almost the same environments”
• “If A and B have almost identical environments we say that they are synonyms.”

5

A bottle of tesgüino is on the table
Everybody likes tesgüino
Tesgüino makes you drunk
We make tesgüino out of corn.

Two words are similar if they have similar word contexts

Word Meaning via Language Use

CSCI 499 Spring 2024: Language Models in NLP

6

Words with similar meanings. Not synonyms,
but sharing some element of meaning

Similarity

Synonymy

Relatedness

Antonymy

Words with senses whose meaning is
identical, or nearly identical

• couch/sofa
• vomit/throw up
• filbert/hazelnut
• car/automobile

Words with senses whose meaning is
opposite (along a single aspect) or reversive

• Large / small
• Tall / short
• Increasing / Decreasing
• Rising / falling

Words with related meanings, occur in
similar contexts

• Coffee / cup

CSCI 499 Spring 2024: Language Models in NLP

Word Embeddings

• Represent a word as a point in a multidimensional
semantic space
• Space itself constructed from distribution of

word neighbors
• Called an "embedding" because it's embedded

into a space
• Fine-grained model of meaning for similarity

7

Every modern NLP algorithm uses embeddings as the representation of word
meaning

Image Credit: Pinecone

Vector Semantics

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

CSCI 499 Spring 2024: Language Models in NLP

 Cosine Similarity for Word Similarity

8

cos(⃗v, ⃗w) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i=1 viwi

∑N
i=1 v2

i ∑N
i=1 w2

i

• Since raw frequency values are non-negative, the
cosine for term-term / term-document matrix vectors
ranges from 0-1
• Greater the cosine, more similar the words

• May be non-negative for other word embeddings
not based on frequency

Cosine similarity of two vectors

CSCI 499 Spring 2024: Language Models in NLP

Term document matrix and document vectors

9

• Vectors are similar for
the two comedies

• Comedies are different
from the other two
(tragedies)
• More fools, less

battle

Each document is represented by a vector of words

CSCI 499 Spring 2024: Language Models in NLP

Word-word co-occurrence matrix

10

Words, not
documents

C
on

te
xt

W

in
do

w

Two words are similar in meaning if their context vectors are similar

CSCI 499 Spring 2024: Language Models in NLP

11

Not every word’s raw frequency
matters!

Choice of features matters!

CSCI 499 Spring 2024: Language Models in NLP

Two different kinds of weighting

tf-idf: Term Frequency - Inverse Document
Frequency

• Downweighting words like “the” or “if”
• Term-document matrices

• Decides if two documents are similar

12

PMI: Pointwise Mutual Information
• Considers the probability of words like

“good” and “great” co-occurring
• Word co-occurrence matrices

• Decides if two words are similar

CSCI 499 Spring 2024: Language Models in NLP

tf-idf

13

 = # occurrences of word in document count(t, d) t d

tft,d = {1 + log(count(t, d)), if count(t, d) > 0
0, otherwise

idft = log10 (N
dft)

 = # documents in the collectionN

 = # documents occurs indft t

Inverse Document Frequency: idf t

Final tf-idf weighted value for a word: tft,d × idft,d
Useful for document

embeddings

Term Frequency: tft,d

CSCI 499 Spring 2024: Language Models in NLP

Pointwise Mutual Information (PMI)

PMI between two words:
• Do words and co-occur more than if they were independent?

• PMI ranges from −∞ to + ∞
• Negative values are problematic: words are co-occurring less than we expect by

chance
• Only reliable under an enormous corpora
• So we just replace negative PMI values by 0

Positive PMI

w1 w2

14 Church & Hanks 1989

PMI(w1, w2) = log
P(w1, w2)

P(w1)P(w2)

PPMI(w1, w2) = max (0, log
P(w1, w2)

P(w1)P(w2))
Useful for word embeddings

CSCI 499 Spring 2024: Language Models in NLP

The problem…

• tf-idf (or PMI) vectors are

• long (length = 20,000 to 50,000)

• sparse (most elements are zero)

• Alternative: learn vectors which are
• short (length 50-1000)
• dense (most elements are non-zero)

|V |

15
Image Credit: Pinecone

Word Embeddings

Critical element of a neural LM

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

CSCI 499 Spring 2024: Language Models in NLP

Sparse vs. Dense Vectors

16

 Why dense vectors or embeddings?
• Memory efficiency is not so much of a problem for

sparse vectors… efficient data structures
• But, short dense vectors

• may be easier to use as features in machine
learning (fewer weights to tune)

• may generalize better than explicit counts
• may do better at capturing synonymy,

similarity, etc.
• work better in downstream applications

Word Embeddings

Image Credit: Pinecone

Today: word2vec!

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Sparse Word Vectors
• Term-document metrics, term-term cooccurrence metrics
• tf-idf, PMI

• word2vec
• Also, briefly GloVe

• Learning word2vec embeddings
• Properties and evaluation of static word embeddings

17

CSCI 499 Spring 2024: Language Models in NLP

word2vec

18

CSCI 499 Spring 2024: Language Models in NLP

word2vec

• Short, dense vector or embedding
• Static embeddings

• One embedding per word type
• Does not change with context change

• Two algorithms for computing:
• Skip-Gram with Negative Sampling or SGNS
• CBOW or continuous bag of words
• But we will study a slightly different version…

• Efficient training
• Easily available to download and plug in

19

Mikolov et al., ICLR 2013. Efficient estimation of word representations in vector space.

Mikolov et al., NeurIPS 2013. Distributed representations of words and phrases and their compositionality.

What happens to the
problem of polysemy?

CSCI 499 Spring 2024: Language Models in NLP

word2vec : Intuition

Instead of counting how often each word occurs near another, e.g. “cherry”

• Train a classifier on a binary prediction task:

• Is likely to show up near “cherry”?

• We don’t actually care about this task!!!
• But we'll take the learned classifier weights as the word embeddings

w

w

20

What is ? What is ?x y

Word embedding itself is the learned parameter!

CSCI 499 Spring 2024: Language Models in NLP

Binary Text Classification

• Goal: Given an input, predict label or class from a discrete set
• e.g. Predict the sentiment (positive or negative) for a sentence

• Input: represented by feature vector of size , given by

• Output: for binary classification

• Suffices to learn conditional probabilities

• Parameterized by

• Could estimate by cooccurrence counts, but a single feature
• Better option: dot product (assigning a weight to every feature)

• Returns a real value:

• How to get a probability?
• Consider the Sigmoid function:

• Argmax for prediction:

x d x ∈ ℝd

y ∈ {0,1}

θ ∈ ℝd

z ∈ ℝ

21

P(y = 1 |x; θ) = σ(θ ⋅ x)

̂y = arg max
y′ ∈{0,1}

P(y′ |x; θ)

P(y |x; θ)

z = θ ⋅ x

σ(z) =
1

1 + exp(−z)

P(y = 0 |x; θ) = 1 − σ(θ ⋅ x) = σ(−θ ⋅ x)

Logistic Regression

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Self-supervision

• A word that occurs near “cherry” in the corpus acts as the gold “correct answer” for
supervised learning

• No need for human labels!

c

22
Bengio et al. (2003); Collobert et al. (2011)

One missing piece: where to get the pairs from?(x, y)

What about incorrect labels?

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Goal

23

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a
candidate (word, context) pair:

(apricot, jam)
(apricot, aardvark)

…

P(+ |w, c)
P(− |w, c) = 1 − P(+ |w, c)

P(+ |w, c1) P(+ |w, c4)

And assigns each pair a probability:

…aardvark…

P(− |w, ck)

 Assume a +/- 2 word window, given training sentence:

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Pseudocode

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

w c

24

Predict if candidate word is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Probability Estimates

• Central intuition: Base this probability on embedding similarity!
• Remember: two vectors are similar if they have a high dot product

• Cosine similarity is just a normalized dot product
• So:

• Still not a probability!
• We’ll need to normalize to get a probability

25

sim(w, c) ∝ w ⋅ c

P(+ |w, c)
P(− |w, c) = 1 − P(+ |w, c)

Vectors, not scalars!

Can we just use cosine?

CSCI 499 Spring 2024: Language Models in NLP

Turning dot products into probabilities

26

sim(w, c) ≈ w ⋅ c

P(+ |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)

P(− |w, c) = 1 − P(+ |w, c)

= σ(−c ⋅ w) =
1

1 + exp(c ⋅ w)

Sigmoid

Logistic
Regression!

Similarity:

Turn into a probability using the sigmoid function:

CSCI 499 Spring 2024: Language Models in NLP

Accounting for a context window

 But we have lots of context words

• Depends on window size,

• We'll assume independence and just multiply them
Same with negative context words!

L

27

P(+ |w, c1:L) =
L

∏
i=1

σ(ci ⋅ w)

log P(+ |w, c1:L) =
L

∑
i=1

log σ(ci ⋅ w)

P(+ |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)
…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

log P(− |w, cneg) = ∑
c′ ∈cneg

log σ(−c′ ⋅ w)

}cneg

Single Context Word

CSCI 499 Spring 2024: Language Models in NLP

 word2vec classifier: Summary
• A probabilistic classifier, given

• a test target word

• its context window of words

• Estimates probability that occurs in this window
based on similarity of (embeddings) to
(embeddings)

• To compute this, we just need embeddings for all
the words
• Separate representations for targets and

contexts
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

28

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and
noise words

1

|V | + 1

2 |V |

|V |θ =

}d

CSCI 499 Spring 2024: Language Models in NLP

Learning word2vec
embeddings

29

CSCI 499 Spring 2024: Language Models in NLP

Word2vec: Training Data

30

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Positive examples

apricot tablespoon

apricot of

apricot jam

apricot a

cw

Negative examples

apricot aardvark

apricot zebra

apricot where

apricot adversarial

cnegw

…aardvark…

…zebra…
}cneg

For each positive example we'll grab a set of negative examples, sampling by weighted
unigram frequency

CSCI 499 Spring 2024: Language Models in NLP

Word2vec: Learning Problem

Given
• the set of positive and negative training instances, and

• a set of randomly initialized embedding vectors of size ,
the goal of learning is to adjust those word vectors such that we:

• Maximize the similarity of the target word, context word pairs drawn from the
positive data

• Minimize the similarity of the pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

31

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg

CSCI 499 Spring 2024: Language Models in NLP

Loss function

32

LCE = − log[P(+ |w, cpos)P(− |w, cneg)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log P(− |w, cnegj
)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log(1 − P(+ |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word,
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and
minimize the similarity of the target with the negative sampled non-neighbor words

L
K > L

CSCI 499 Spring 2024: Language Models in NLP

Learning the classifier

• How to learn?
• Stochastic gradient descent!
• Iterative process
• Start with randomly initialized weights

• Update the parameters (coming up)
• Stop when the parameters do not change much…

• We’ll adjust the word weights to
• make the positive pairs more likely
• and the negative pairs less likely,
• over the entire training set.

33

CSCI 499 Spring 2024: Language Models in NLP

Intuition of one step of gradient descent

34

CSCI 499 Spring 2024: Language Models in NLP

Reminder: Gradient Descent

At each step of gradient descent, we update the parameter

• Direction: We move in the reverse direction from the gradient of the loss function

• Magnitude: we move the value of this gradient , weighted by a

learning rate

• Higher learning rate means move faster

w

∂
∂w

L(f(x; w), y*)

η
w

35

wt+1 = wt − η
∂

∂w
L(f(x; w), y*)

CSCI 499 Spring 2024: Language Models in NLP

SGD: Derivates

36

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by
subtracting respective -weighted

gradients
η

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Learned Embeddings

• SGNS learns two sets of embeddings:

• Target embeddings matrix

• Context embedding matrix

• It's common to just add them together,
representing word as the vector

W
C

i wi + ci

37

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and
noise words

1

|V | + 1

2 |V |

|V |θ =

CSCI 499 Spring 2024: Language Models in NLP

CBOW and Skipgram

• CBOW: continuous bag of words -
given context, predict which word
might be in the target position

• Skip-gram: given word, predict which
words make the best context

• CBOW is faster than Skip-gram

• Skip-gram generally works better

38

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

Why?

Why?

CSCI 499 Spring 2024: Language Models in NLP

word2vec: Summary

• Start with random -dimensional vectors as initial embeddings

• Train a classifier based on embedding similarity
• Take a corpus and take pairs of words that co-occur as positive examples
• Take pairs of words that don't co-occur as negative examples
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the

classifier performance
• Throw away the classifier code and keep the embeddings.

2 |V | d

39

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

P(+ |w, c1) P(+ |w, c4)
…aardvark…P(− |w, ck)

CSCI 499 Spring 2024: Language Models in NLP

GloVe

40

CSCI 499 Spring 2024: Language Models in NLP

GloVe: Global Vectors

• Another very widely used static embedding model
• model is based on capturing global corpus statistics

• based on ratios of probabilities from the word-word co-occurrence matrix,
• intuitions of count-based models like PPMI

• Builds on matrix factorization
• Idea: store most of the important information in a fixed, small number of dimensions:

a dense vector
• Goal: Create a low-dimensional matrix for the embedding while minimizing

reconstruction loss (error in going from low to high dimension)
• Fast training, scalable to huge corpora

41
Pennington et al., 2014

CSCI 499 Spring 2024: Language Models in NLP

Lecture Outline

• Recap: Sparse Word Vectors
• Term-document metrics, term-term cooccurrence metrics
• tf-idf, PMI

• word2vec
• Learning word2vec embeddings
• Also, briefly GloVe

• Properties and evaluation of static word embeddings

42

CSCI 499 Spring 2024: Language Models in NLP

Properties and Evaluation
of Word Embeddings

43

CSCI 499 Spring 2024: Language Models in NLP

Visualizing Embeddings
Project high-dimensional embeddings down into 2 dimensions

• Most common projection method: t-SNE
• Also: Principal Component Analysis (PCA)

44

CSCI 499 Spring 2024: Language Models in NLP

Effects of Context Window Size

• Small windows (C= +/- 2) : nearest words are syntactically similar words in same
taxonomy (semantics and syntax)
• Hogwarts nearest neighbors are other fictional schools

• Sunnydale, Evernight, Blandings

• Large windows (C= +/- 5) : nearest words are related words in same topic
• Hogwarts’ nearest neighbors are in the Harry Potter world:

• Dumbledore, half-blood, Malfoy

45

Both sparse and dense vectors

Why?

CSCI 499 Spring 2024: Language Models in NLP

• The classic parallelogram model of analogical reasoning
• Word analogy problem:

• “Apple is to tree as grape is to …”

Add to …
 Should result in

For a problem , the parallelogram method is:

(wapple − wtree) wgrape
wvine

a : a* :: b : b*

Analogy Relations

46

Rumelhart and Abrahamson, 1973

Both sparse and dense vectors

b̂* = arg max
w

sim(w, b − a + a*)
Maximize similarity = minimize distance

CSCI 499 Spring 2024: Language Models in NLP

Analogy Relations: GloVe

• Relational properties of the GloVe vector
space, shown by projecting vectors onto
two dimensions

• is similar to

• Caveats: Only works for frequent words,
small distances and certain relations
(relating countries to capitals, or parts of
speech), but not others
• Understanding analogy is an open

area of research

wking − wman + wwoman wqueen

47

CSCI 499 Spring 2024: Language Models in NLP

Embeddings reflect cultural bias!

• Ask “Paris : France :: Tokyo : x”
• x = Japan

• Ask “father : doctor :: mother : x”
• x = nurse

• Ask “man : computer programmer :: woman : x”
• x = homemaker

48
Bolukbasi et al., NeurIPS 2016. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings."

Offensive Content Warning

Allocational Harms

Algorithms that use embeddings as part of e.g., hiring searches for programmers,
might lead to bias in hiring

CSCI 499 Spring 2024: Language Models in NLP

Embeddings as a tool to study cultural bias!

• Compute a gender or ethnic bias for each adjective:
e.g., how much closer the adjective is to "woman"
synonyms than "man" synonyms, or names of particular
ethnicities

• Embeddings for competence adjective (smart,
wise, brilliant, resourceful, thoughtful, logical) are
biased toward men, a bias slowly decreasing
1960-1990

• Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in
the 1930s, bias decreasing over the 20th century

• These match the results of old surveys done in the
1930s

49

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings
quantify 100 years of gender and ethnic stereotypes. Proceedings of the

National Academy of Sciences 115(16), E3635–E3644.

Representational Harms

CSCI 499 Spring 2024: Language Models in NLP

50

• Visualizing
semantic change
over time

• New words:
dank, cheugy,
rizz, shook,
situationship

 ~30 million books, 1850-1990, Google Books data

Embeddings uncover semantic histories

CSCI 499 Spring 2024: Language Models in NLP

Concluding Thoughts

Word embeddings, inspired by neural language
models

• Word2vec (skip-gram, CBOW)
• Based on logistic regression

Next Class:
• More on neural nets
• Feedforward neural nets
• Backpropagation

51

