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Logistics + Announcements

• Project Proposals due tonight 
• Teams of 3 only! 

• HW2 Released today  
• Don’t forget to share access with course staff 
• Counts as not sharing your homework, might cause loss of late days! 

• HW1 is graded  
• Questions can be directed to TA 

• Quiz 2 on Monday 
• Collect graded quiz sheets from TA in class / TA office hours
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Lecture Outline

• Recap: Sparse Word Vectors 
• Term-document metrics, term-term cooccurrence metrics 
• tf-idf, PMI 

• word2vec 
• Also, briefly GloVe 

• Learning word2vec embeddings 
• Properties and evaluation of static word embeddings

3
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Recap:  
Sparse Word Vectors

4
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• The meaning of a word can be given by its distribution in language usage: 
• One way to define "usage": words are defined by their environments  

• Neighboring words or grammatical environments 
• Intuitions: Zellig Harris (1954):  

• “oculist and eye-doctor … occur in almost the same environments”  
• “If A and B have almost identical environments we say that they are synonyms.” 

5

A bottle of tesgüino is on the table  
Everybody likes tesgüino  
Tesgüino makes you drunk  
We make tesgüino out of corn.

Two words are similar if they have similar word contexts

Word Meaning via Language Use
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6

Words with similar meanings. Not synonyms, 
but sharing some element of meaning

Similarity

Synonymy

Relatedness

Antonymy

Words with senses whose meaning is 
identical, or nearly identical

• couch/sofa   
• vomit/throw up   
• filbert/hazelnut   
• car/automobile

Words with senses whose meaning is 
opposite (along a single aspect) or reversive

• Large / small 
• Tall / short 
• Increasing / Decreasing  
• Rising / falling

Words with related meanings, occur in 
similar contexts

• Coffee / cup
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Word Embeddings

• Represent a word as a point in a multidimensional 
semantic space 
• Space itself constructed from distribution of 

word neighbors 
• Called an "embedding" because it's embedded 

into a space  
• Fine-grained model of meaning for similarity

7

Every modern NLP algorithm uses embeddings as the representation of word 
meaning

Image Credit: Pinecone

Vector Semantics

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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 Cosine Similarity for Word Similarity

8

cos( ⃗v, ⃗w ) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i=1 viwi

∑N
i=1 v2

i ∑N
i=1 w2

i

• Since raw frequency values are non-negative, the 
cosine for term-term / term-document matrix vectors 
ranges from 0-1 
• Greater the cosine, more similar the words 

• May be non-negative for other word embeddings 
not based on frequency

Cosine similarity of two vectors
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Term document matrix and document vectors

9

• Vectors are similar for 
the two comedies 

• Comedies are different 
from the other two 
(tragedies) 
• More fools, less 

battle

Each document is represented by a vector of words
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Word-word co-occurrence matrix

10

Words, not 
documents

C
on

te
xt

 
W

in
do

w

Two words are similar in meaning if their context vectors are similar
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11

Not every word’s raw frequency 
matters!

Choice of features matters!
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Two different kinds of weighting

tf-idf: Term Frequency - Inverse Document 
Frequency 

• Downweighting words like “the” or “if” 
• Term-document matrices 

• Decides if two documents are similar

12

PMI: Pointwise Mutual Information 
• Considers the probability of words like 

“good” and “great” co-occurring 
• Word co-occurrence matrices 

• Decides if two words are similar
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tf-idf

13

 = # occurrences of word  in document count(t, d) t d

tft,d = {1 + log(count(t, d)), if count(t, d) > 0
0, otherwise

idft = log10 ( N
dft )

 = # documents in the collectionN

  = # documents  occurs indft t

Inverse Document Frequency: idf  t

Final tf-idf weighted value for a word: tft,d × idft,d
Useful for document 

embeddings

Term Frequency: tft,d
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Pointwise Mutual Information (PMI)

PMI between two words:   
• Do words  and  co-occur more than if they were independent? 

• PMI ranges from −∞ to + ∞  
• Negative values are problematic: words are co-occurring less than we expect by 

chance 
• Only reliable under an enormous corpora  
• So we just replace negative PMI values by 0  

Positive PMI

w1 w2

14 Church & Hanks 1989

PMI(w1, w2) = log
P(w1, w2)

P(w1)P(w2)

PPMI(w1, w2) = max (0, log
P(w1, w2)

P(w1)P(w2) )
Useful for word embeddings
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The problem…

•  tf-idf (or PMI) vectors are  

• long (length = 20,000 to 50,000)  

• sparse (most elements are zero) 

• Alternative: learn vectors which are  
• short (length 50-1000)  
• dense (most elements are non-zero)

|V |

15
Image Credit: Pinecone

Word Embeddings

Critical element of a neural LM

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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Sparse vs. Dense Vectors

16

 Why dense vectors or embeddings?  
• Memory efficiency is not so much of a problem for 

sparse vectors… efficient data structures 
• But, short dense vectors  

• may be easier to use as features in machine 
learning (fewer weights to tune)  

• may generalize better than explicit counts  
• may do better at capturing synonymy, 

similarity, etc. 
• work better in downstream applications

Word Embeddings

Image Credit: Pinecone

Today: word2vec!

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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Lecture Outline

• Recap: Sparse Word Vectors 
• Term-document metrics, term-term cooccurrence metrics 
• tf-idf, PMI 

• word2vec 
• Also, briefly GloVe 

• Learning word2vec embeddings 
• Properties and evaluation of static word embeddings

17
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word2vec

18
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word2vec

• Short, dense vector or embedding 
• Static embeddings 

• One embedding per word type 
• Does not change with context change 

• Two algorithms for computing: 
• Skip-Gram with Negative Sampling or SGNS 
• CBOW or continuous bag of words 
• But we will study a slightly different version… 

• Efficient training 
• Easily available to download and plug in

19

Mikolov et al., ICLR 2013. Efficient estimation of word representations in vector space.

Mikolov et al., NeurIPS 2013. Distributed representations of words and phrases and their compositionality. 

What happens to the 
problem of polysemy?
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word2vec : Intuition

Instead of counting how often each word  occurs near another, e.g. “cherry” 

• Train a classifier on a binary prediction task:  

•  Is  likely to show up near “cherry”? 

• We don’t actually care about this task!!!  
• But we'll take the learned classifier weights as the word embeddings

w

w

20

What is ?  What is ?x y

Word embedding itself is the learned parameter!
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Binary Text Classification

• Goal: Given an input, predict label or class from a discrete set 
• e.g. Predict the sentiment (positive or negative) for a sentence 

• Input:  represented by feature vector of size , given by  

• Output:  for binary classification 

• Suffices to learn conditional probabilities 

• Parameterized by  

• Could estimate by cooccurrence counts, but a single feature 
• Better option: dot product (assigning a weight to every feature) 

• Returns a real value:  

• How to get a probability?  
• Consider the Sigmoid function:  

• Argmax for prediction:

x d x ∈ ℝd

y ∈ {0,1}

θ ∈ ℝd

z ∈ ℝ

21

P(y = 1 |x; θ) = σ(θ ⋅ x)

̂y = arg max
y′ ∈{0,1}

P(y′ |x; θ)

P(y |x; θ)

z = θ ⋅ x

σ(z) =
1

1 + exp(−z)

P(y = 0 |x; θ) = 1 − σ(θ ⋅ x) = σ(−θ ⋅ x)

Logistic Regression
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word2vec: Self-supervision

• A word  that occurs near “cherry” in the corpus acts as the gold “correct answer” for 
supervised learning  

• No need for human labels! 

c

22
Bengio et al. (2003); Collobert et al. (2011)

One missing piece: where to get the  pairs from?(x, y)

What about incorrect labels?
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word2vec: Goal

23

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a 
candidate (word, context) pair: 

(apricot, jam)  
(apricot, aardvark)  

… 

P( + |w, c)
P( − |w, c) = 1 − P( + |w, c)

P( + |w, c1) P( + |w, c4)

And assigns each pair a probability:

…aardvark…

P( − |w, ck)

 Assume a +/- 2 word window, given training sentence: 
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word2vec: Pseudocode

1. Treat the target word  and a neighboring context word  as positive examples. 
2. Randomly sample other words in the lexicon to get negative examples  
3. Use logistic regression to train a classifier to distinguish those two cases  
4. Use the learned weights as the embeddings

w c

24

Predict if candidate word  is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…
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word2vec: Probability Estimates

• Central intuition: Base this probability on embedding similarity! 
• Remember: two vectors are similar if they have a high dot product  

• Cosine similarity is just a normalized dot product  
• So:  

• Still not a probability! 
• We’ll need to normalize to get a probability 

25

sim(w, c) ∝ w ⋅ c

P( + |w, c)
P( − |w, c) = 1 − P( + |w, c)

Vectors, not scalars!

Can we just use cosine?
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Turning dot products into probabilities

26

sim(w, c) ≈ w ⋅ c

P( + |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)

P( − |w, c) = 1 − P( + |w, c)

= σ(−c ⋅ w) =
1

1 + exp(c ⋅ w)

Sigmoid

Logistic 
Regression!

Similarity: 

Turn into a probability using the sigmoid function:
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Accounting for a context window

 But we have lots of context words 

• Depends on window size,  

•  We'll assume independence and just multiply them 
Same with negative context words!

L

27

P( + |w, c1:L) =
L

∏
i=1

σ(ci ⋅ w)

log P( + |w, c1:L) =
L

∑
i=1

log σ(ci ⋅ w)

P( + |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)
…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

log P( − |w, cneg) = ∑
c′ ∈cneg

log σ(−c′ ⋅ w)

}cneg

Single Context Word
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 word2vec classifier: Summary
• A probabilistic classifier, given  

• a test target word   

• its context window of  words   

• Estimates probability that  occurs in this window 
based on similarity of  (embeddings) to  
(embeddings) 

• To compute this, we just need embeddings for all 
the words 
• Separate representations for targets and 

contexts 
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

28

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and 
noise words

1

|V | + 1

2 |V |

|V |θ =

}d
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Learning word2vec 
embeddings

29
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Word2vec: Training Data

30

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Positive examples

apricot tablespoon

apricot of

apricot jam

apricot a

cw

Negative examples

apricot aardvark

apricot zebra

apricot where

apricot adversarial

cnegw

…aardvark…

…zebra…
}cneg

For each positive example we'll grab a set of negative examples, sampling by weighted 
unigram frequency
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Word2vec: Learning Problem

Given  
• the set of positive and negative training instances, and  

• a set of randomly initialized embedding vectors of size ,  
the goal of learning is to adjust those word vectors such that we:  

• Maximize the similarity of the target word, context word pairs  drawn from the 
positive data  

• Minimize the similarity of the  pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

31

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg
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Loss function

32

LCE = − log[P( + |w, cpos)P( − |w, cneg)]

= − [log P( + |w, cpos) +
K

∑
j=1

log P( − |w, cnegj
)]

= − [log P( + |w, cpos) +
K

∑
j=1

log(1 − P( + |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word, 
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and 
minimize the similarity of the target with the  negative sampled non-neighbor words

L
K > L
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Learning the classifier

• How to learn?  
• Stochastic gradient descent!  
• Iterative process 
• Start with randomly initialized weights 

• Update the parameters (coming up) 
• Stop when the parameters do not change much… 

• We’ll adjust the word weights to  
• make the positive pairs more likely  
• and the negative pairs less likely,  
• over the entire training set.

33
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Intuition of one step of gradient descent

34
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Reminder: Gradient Descent

At each step of gradient descent, we update the parameter  

• Direction: We move in the reverse direction from the gradient of the loss function 

• Magnitude: we move the value of this gradient , weighted by a 

learning rate  

• Higher learning rate means move  faster

w

∂
∂w

L( f(x; w), y*)

η
w

35

wt+1 = wt − η
∂

∂w
L( f(x; w), y*)
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SGD: Derivates

36

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by 
subtracting respective -weighted 

gradients 
η
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word2vec: Learned Embeddings

•  SGNS learns two sets of embeddings:  

• Target embeddings matrix   

• Context embedding matrix   

• It's common to just add them together, 
representing word  as the vector 

W
C

i wi + ci

37

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and 
noise words

1

|V | + 1

2 |V |

|V |θ =
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CBOW and Skipgram

• CBOW: continuous bag of words - 
given context, predict which word 
might be in the target position 

• Skip-gram: given word, predict which 
words make the best context 

• CBOW is faster than Skip-gram 

• Skip-gram generally works better

38

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

Why?

Why?
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word2vec: Summary

• Start with  random -dimensional vectors as initial embeddings  

• Train a classifier based on embedding similarity  
• Take a corpus and take pairs of words that co-occur as positive examples  
• Take pairs of words that don't co-occur as negative examples  
• Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the 

classifier performance  
• Throw away the classifier code and keep the embeddings.

2 |V | d

39

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

P( + |w, c1) P( + |w, c4)
…aardvark…P( − |w, ck)



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

GloVe

40
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GloVe: Global Vectors

• Another very widely used static embedding model  
• model is based on capturing global corpus statistics 

• based on ratios of probabilities from the word-word co-occurrence matrix,  
• intuitions of count-based models like PPMI  

• Builds on matrix factorization 
• Idea: store most of the important information in a fixed, small number of dimensions: 

a dense vector 
• Goal: Create a low-dimensional matrix for the embedding while minimizing 

reconstruction loss (error in going from low to high dimension) 
• Fast training, scalable to huge corpora

41
Pennington et al., 2014
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Lecture Outline

• Recap: Sparse Word Vectors 
• Term-document metrics, term-term cooccurrence metrics 
• tf-idf, PMI 

• word2vec 
• Learning word2vec embeddings 
• Also, briefly GloVe 

• Properties and evaluation of static word embeddings

42
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Properties and Evaluation 
of Word Embeddings

43



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Visualizing Embeddings
Project high-dimensional embeddings down into 2 dimensions 

• Most common projection method: t-SNE 
• Also: Principal Component Analysis (PCA)

44



CSCI 499 Spring 2024: Language Models in NLP                                                                                                                                                                                                            

Effects of Context Window Size

• Small windows (C= +/- 2) : nearest words are syntactically similar words in same 
taxonomy (semantics and syntax) 
• Hogwarts nearest neighbors are other fictional schools  

• Sunnydale, Evernight, Blandings  

• Large windows (C= +/- 5) : nearest words are related words in same topic 
• Hogwarts’ nearest neighbors are in the Harry Potter world:  

• Dumbledore, half-blood, Malfoy

45

Both sparse and dense vectors

Why?
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• The classic parallelogram model of analogical reasoning  
• Word analogy problem: 

• “Apple is to tree as grape is to …” 

Add  to  … 
   Should result in  

For a problem , the parallelogram method is:

(wapple − wtree) wgrape
wvine

a : a* :: b : b*

Analogy Relations

46

Rumelhart and Abrahamson, 1973

Both sparse and dense vectors

b̂* = arg max
w

sim(w, b − a + a*)
Maximize similarity = minimize distance
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Analogy Relations: GloVe

• Relational properties of the GloVe vector 
space, shown by projecting vectors onto 
two dimensions   

•   is similar to  

• Caveats: Only works for frequent words, 
small distances and certain relations 
(relating countries to capitals, or parts of 
speech), but not others 
• Understanding analogy is an open 

area of research

wking − wman + wwoman wqueen

47
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Embeddings reflect cultural bias!

• Ask “Paris : France :: Tokyo : x”   
• x = Japan  

• Ask “father : doctor :: mother : x”  
• x = nurse  

• Ask “man : computer programmer :: woman : x”  
• x = homemaker 

48
Bolukbasi et al., NeurIPS 2016. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings."

Offensive Content Warning

Allocational Harms

Algorithms that use embeddings as part of e.g., hiring searches for programmers, 
might lead to bias in hiring
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Embeddings as a tool to study cultural bias!

• Compute a gender or ethnic bias for each adjective: 
e.g., how much closer the adjective is to "woman" 
synonyms than "man" synonyms, or names of particular 
ethnicities  

• Embeddings for competence adjective (smart, 
wise, brilliant, resourceful, thoughtful, logical) are 
biased toward men, a bias slowly decreasing 
1960-1990  

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre) were biased toward Asians in 
the 1930s, bias decreasing over the 20th century  

• These match the results of old surveys done in the 
1930s

49

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings 
quantify 100 years of gender and ethnic stereotypes. Proceedings of the 

National Academy of Sciences 115(16), E3635–E3644.

Representational Harms
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50

• Visualizing 
semantic change 
over time 

• New words: 
dank, cheugy, 
rizz, shook, 
situationship

 ~30 million books, 1850-1990, Google Books data

Embeddings uncover semantic histories
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Concluding Thoughts

Word embeddings, inspired by neural language 
models 

• Word2vec (skip-gram, CBOW) 
• Based on logistic regression 

Next Class: 
• More on neural nets 
• Feedforward neural nets 
• Backpropagation

51


