Lecture 3: n-gram Language Models II

Instructor: Swabha Swayamdipta USC CSCl 499 LMs in NLP Jan 22, 2024 Spring

Lecture Outline

- Announcements and Recap
- Probabilistic language models
- n-gram language models
- Estimating n-gram probabilities
- Evaluation and Perplexity
- Generating from a language model
- Zeros!
- Smoothing
- Add-1 / Laplace Smoothing
- Interpolation
- Back-off and Discounting

Announcements

$+$

Recap

Announcements

- HW1 Released last week and is due on $1 / 31$
- Next Class - Wed (1/24) — Project Pitches! Please do not miss class!
- 3 minute project pitch (5% of your grade)
- What is the problem? Why should we care about it?
- How is this connected to language models?
- What would the inputs and outputs look like? Examples!
- Come up with a good name for your project so it's memorable for voting
- Slides encouraged
- Everyone votes on teams. We will release all votes and it's up to you to form teams of 3
- Piazza post soon: By 3pm on Wed, share title and tldr for your project pitch to be included in voting
- It's natural for the ideas to morph between the project pitch and the project proposal
- Next Week: Extra Office Hours by TA : Tue (1/30) 10-11am
- Correction: not this Thu

Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

$$
P(\mathbf{w})=P\left(w_{1}, w_{2}, w_{3}, \ldots w_{n}\right)
$$

Related task: probability of an upcoming word: $\quad P\left(w_{n} \mid w_{1}, w_{2}, w_{3}, w_{4}, \ldots w_{n-1}\right)$
A model that assigns probabilities to sequences of words is called a language model

$$
P\left(w_{1}, w_{2}, \ldots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{i-1} \ldots w_{1}\right)
$$

How to estimate the probability of the next word?

$P($ that |its water is so transparent $)=\frac{\operatorname{Count}(\text { its water is so transparent that })}{\operatorname{Count}(\text { its water is so transparent })}$

> Maximum Likelihood Estimate

Too many possibilities to count! Too few sentences that look like this...

Need to make some simplifying assumptions...

Markov Assumption

$$
P\left(w_{1}, w_{2}, \ldots w_{n}\right)=\prod P\left(w_{i} \mid w_{i-k+1} \ldots w_{i-1}\right)
$$

In other words, we approximate each component in the product such that it is only conditioned on the previous k elements

k-gram Markov

Assumption

$$
P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-k+1} \ldots w_{i-1}\right)
$$

n-gram models

Unigram Model

Bigram Model

$$
\begin{gathered}
P\left(w_{1}, w 2, \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i}\right) \\
P\left(w_{1}, w 2, \ldots w_{n}\right) \approx \prod_{i} P\left(w_{i} \mid w_{i-1}\right)
\end{gathered}
$$

$$
P\left(w_{1}, w 2, \ldots w_{n}\right) \approx \prod P\left(w_{i} \mid w_{i-k+1} \ldots w_{i-1}\right)
$$

n-gram Models: Limitations

In general this is an insufficient model of language

- "The computer which I had just put into the machine room on the fifth floor crashed."

At times the dependencies are not even clear!

- "The complex houses married and single soldiers and their families."
- "The horse raced past the barn fell."
- "The old man the boat."

But we can often get away with n-gram models

Language has long-distance dependencies

Estimating bigram probabilities

Maximum Likelihood Estimate

$$
\begin{array}{ll}
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)} & \begin{array}{l}
\text { We do everything in } \\
\text { log space to handle } \\
\text { overflow issues }
\end{array}
\end{array}
$$

Special edge case tokens: <s> and </s> for beginning of sentence and end of sentence, respectively

Likelihood

Suppose we have a biased coin that's heads with probability p

- Let θ be the probability of heads - parameter of the model Suppose we flip the coin four times and see (H, H, H, T)
- Observed data, $D=(\mathrm{HHHT})$

We don't know what θ is - this is the estimation / learning problem

- Maximum Likelihood Estimate: Choose parameter θ that maximizes likelihood of observed data $D, P(D \mid \theta)$
- $\hat{\theta}_{M L E}=\arg \max _{\theta} P(D \mid \theta)$
- Data likelihood, $P(D \mid \theta)=\theta \theta \theta(1-\theta)$ can be maximized by taking the derivative and set it equal to zero and find $\hat{\theta}_{M L E}=0.75$.
- [Advanced] Maximum Aposteriori Probability (MAP) estimate
- $\hat{\theta}_{M A P}=\arg \max _{\theta} P(\theta \mid D)=\arg \max _{\theta} P(D \mid \theta) P(\theta)$

Maximum Likelihood Estimates

The maximum likelihood estimate

- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Suppose the word "bagel" occurs 400 times in a corpus of a million words. What is the probability that a random word from some other text will be "bagel"?

- MLE estimate is $400 / 1,000,000=.0004$

This may be a bad estimate for some other corpus

- But it is the estimate that makes it most likely that "bagel" will occur 400 times in a million word corpus

For the 9222 sentences in the Berkeley Restaurant Corpus:
Unigram
Counts

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Next Word

		i	want	to	eat	chinese	food	lunch	spend
	i	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
Bigram	to	2	0	4	686	2	0	6	211
Counts	eat	0	0	2	0	16	2	42	0
	chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
History	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0

Most n-grams are never seen!

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

How good is a language model?

A better model of a text

- is one which assigns a higher probability to the word that actually occurs
- returns the highest probability when evaluated on an unseen test set
- Mantra: I wíll never traín my model on a test set

$$
\begin{aligned}
\operatorname{PPL}(\mathbf{w}) & =P\left(w_{1} w_{2} \ldots w_{N} \sqrt{-\frac{1}{N}} \quad\right. \text { Normalization Factor } \\
& =\exp \left(-\frac{1}{N} \log P\left(w_{1} w_{2} \ldots w_{N}\right)\right.
\end{aligned}
$$

Negative log likelihood

Bigram Perplexity

$$
P P L(\mathbf{w})=\exp \left(-\frac{1}{N} \sum_{i=1}^{N} \log P\left(w_{i} \mid w_{i-1}\right)\right)
$$

Lower the perplexity, better the language model

WSJ Perplexities

N-gram Order	Unigram	Bigram	Trigram
Perplexity 962	170	109	

n-grams do a better and better job of modeling the training corpus as we increase the value of n

How best to evaluate an LM?

- Extrinsic evaluation
- On an external task (e.g. summarization) that uses an LM
- More reliable
- Can be time-consuming; hard to design
- Which is the best task? How many tasks to try?
- Therefore, we often use intrinsic evaluation:
- Bad approximation (less reliable)
- Unless the test data looks just like the training data
- Generally only useful in pilot experiments (faster to compute)

Language Model Development

Compute Maximum Likelihood Estimates for Probabilities

Compute
Perplexity

Generating from a bigram model

Sampling: choosing random points according to their likelihood

1. Choose a random bigram (<s>,w) according to its probability
2. Now choose a random bigram (w, x) according to its probability
3. And so on until we choose </s>
4. Then string the words together

I want to eat Chinese food

Helps visualize how good the model is!

Language Model Development

Compute Maximum Likelihood Estimates for Probabilities

Shakespearean n-grams

-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
-Hill he late speaks; or! a more to leg less first you enter
-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
-What means, sir. I confess she? then all sorts, he is trim, captain.
-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
-This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;

Shakespeare as a corpus

Token

Type Vocabulary
A token is a technical term in NLP for what is commonly referred to as a word
$N=884,647$ tokens, $V=29,066$ vocabulary items (types)
Shakespeare produced 300,000 bigram types out of $V^{2}=844$ million possible bigrams!

So 99.96% of the possible bigrams were never seen (have zero entries in the table)

4-grams (quadrigrams) are worse: What's coming out looks like Shakespeare because it is Shakespeare!

Most n-grams are never seen!

The WSJ is no Shakespeare!

1Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U.S.E. has already old M. X. corporation of living on information such as more frequently fishing to keep her They also point to ninety nine point six billion dollars from two hundred gram four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Can only produce n-grams from training data!

Shakespearean corpus cannot produce WSJ vocabulary and vice versa

1	Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives
gram	Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U.S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her
gram	They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

The successes we are seeing here are due to a phenomena commonly known as overfitting

Overfitting bad!

Robustness

n-grams only work well for word prediction if the test corpus looks like the training corpus

- In real life, it often doesn't
- We need to train robust models that generalize!
- Technical terms for "doing well on the test data" or "doing well on any test data"
- One kind of generalization pitfall: Zeros!

Generalization

- Things that don't ever occur in the training set
- But occur in the test set

Zeros

Training set:
Test set

allegations	report	claims	request
4	1	2	2

$$
\begin{array}{ll}
\ldots \text { offer } & c(\text { offer })=0 \\
\ldots \text { loan } & c \text { (loan })=0
\end{array}
$$

Bigram Probabilities:

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Undefined probabilities!

N-gram models: Zero Counts

- Problem: Word "offer" didn't appear in the train set...

At test time, we may encounter tokens never seen (unigram with 0 frequency)

- Very severe problem resulting in undefined probabilities
- Problem: Many words like "Swayamdipta" won't appear in most training sets!
- Other problems: new terms, different dialects, evolving language
- These are known as OOV for "out of vocabulary", or unknown tokens
- Design: Open Vocabulary vs. Closed Vocabulary

Solution for missing tokens: the $<U N K>$ token

These are known as OOV for "out of vocabulary", or unknown tokens
One way to handle OOV tokens is by adding a pseudo-word called <UNK>
We can replace all words that occur fewer than n times in the training set, where n is some small number by <UNK> and re-estimate the counts and probabilities

When not done carefully, may artificially lower perplexity

Does this solve all our problems?

Training set:
Test set
... denied the allegations
... denied the reports
... denied the claims
... denied the request

We might still encounter tokens never seen in context (i.e. n-gram with 0 frequency)

$$
P(\text { offer } \mid \text { denied the })=0
$$

will assign 0 probability to the test set!
... denied the offer
... denied the loan

Zero probability bigrams

Bigrams with zero probability

- mean that we will assign 0 probability to the test set!

And hence we cannot compute perplexity

- No one can divide by 0 !

$$
P P L(\mathbf{w})=\sqrt[N]{\frac{1}{P\left(w_{1} w_{2} \ldots w_{N}\right)}}
$$

Lecture Outline

- Announcements and Recap
- Probabilistic language models
- n-gram language models
- Estimating n-gram probabilities
- Evaluation and Perplexity
- Generating from a language model
- Zeros!
- Smoothing
- Add-1 / Laplace Smoothing
- Interpolation
- Back-off and Discounting

Intuition for Smoothing

```
I like to eat cake but I
want to eat pizza right
now. Mary told her
brother to eat pizza too.
P(next word = pizza | previous word = eat)=2/3
```

```
\longrightarrow P ( \text { next word =cake \| previous word = eat)=1/3}
```

\longrightarrow P (next word =cake \| previous word = eat)=1/3
All other next words = 0 probability

```
All other next words = 0 probability
```

- Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too
- $|V|=$?
$\left|V_{\text {bigrams }}\right|=$?
- All other vocabulary tokens getting 0 probability just doesn't seem right. We want to assign some probability to other words
- We want to smooth the distribution from our counts

What does a count distribution look like?

Zipf's Law

The distribution over words resembles that of a power law:

- there will be a few words that are very frequent, and a long tail of words that are rare
- freq $_{w}(r) \approx r^{-s}$

NLP algorithms must be especially robust to observations that do not occur or rarely
 occur in the training data

[^0]
Smoothing ~ Massaging Probability Masses

When we have sparse statistics: $\operatorname{Count}(w \mid$ denied the)
3 allegations
2 reports
1 claims
1 request

7 total
Steal probability mass to generalize better: $\operatorname{Count}(w \mid$ denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Add-One Estimation

MLE estimate

$$
P_{M L E}\left(w_{i}\right)=\frac{c\left(w_{i}\right)}{\sum_{w} c(w)}
$$

1. Pretend we saw each word one more time than we did
2. Just add one to all the counts!

75 year old method!
3. All the counts that used to be zero will now have a count of $1 \ldots$

Add-1 estimate

$$
P_{A d d-1}\left(w_{i}\right)=\frac{c\left(w_{i}\right)+1}{\sum_{w}(c(w)+1)}=\frac{c\left(w_{i}\right)+1}{V+\sum_{w} c(w)}
$$

Add-1 Estimation Bigrams

MLE estimate

$$
P_{M L E}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1} w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Pretend we saw each bigram one more time than we did

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1} w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

What does this do to the unigram counts?

$$
=\frac{c^{*}\left(w_{i-1} w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Recall: BRP Corpus

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Unigrams

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigrams

w_{i-1}		i	want	to	eat	chinese	food	lunch	spend
	1	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
	to	2	0	4	686	2	0	6	211
	eat	0	0	2	0	16	2	42	0
	chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0

Laplace-smoothed bigram counts

Just add one to all the counts!

	i	want	to	eat	chinese	food	lunch	spend
i	w_{i-1}	6	828	1	10	1	1	1
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigram probabilities

$$
P_{A d d-1}\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1} w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted Counts

$$
c *\left(w_{i-1} w_{i}\right)=\frac{\left[c\left(w_{i-1} w_{i}\right)+1\right] c\left(w_{i-1}\right)}{c\left(w_{i-1}\right)+V}
$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

		i	want	to	eat	chinese	food		lunch	spend	
	i	5	827	0	9	0	0		0	2	
	want	2	0	608	1	6	6		5	1	
	to	2	0	4	686	2	0		6	211	Big change
Original, Raw	eat	0	0	2	0	16	2		42	0	Big change
	chinese	1	0	0	0	0	82		1	0	to the
	food	15	0	15	0	1	4		0	0	t
	lunch	2	0	0	0	0	1		0	0	counts!
	spend	1	0	1	0	0	0		0	0	
		i	want	to	eat	chine		food	d lunch	h spend	
	i	3.8	527	0.64	6.4	0.64		0.64	0.64	1.9	
	want	1.2	0.39	238	0.78	2.7		2.7	2.3	0.78	Perhaps 1 is too
	to	1.9	0.63	3.1	430	1.9		0.63	4.4	133	much, add a
Reconstructed	eat	0.34	0.34	1	0.34	5.8		1	15	0.34	
Reconstructed	chinese	0.2	0.098	0.098	0.098	- 0.098		8.2	0.2	0.098	fraction?
	food	6.9	0.43	6.9	0.43	0.86		2.2	0.43	0.43	
	lunch	0.57	0.19	0.19	0.19	0.19		0.38	0.19	0.19	Add-k smoothing
	spend	0.32	0.16	0.32	0.16	0.16		0.16	\| 0.16	0.16	

Language Model Development

Compute Maximum Likelihood
Estimates for Probabilities

Use during development to tune hyperparameters

Pick value of hyper parameter that maximizes likelihood of dev / held-out corpus

Add-1 Estimation: Last thoughts

So add-1 isn't used for n-grams, being something of a blunt instrument

- One-size-fits-all

Add-1 is used to smooth other NLP models though...

- For text classification
- In domains where the number of zeros isn't so huge

Interpolation

Perhaps use some pre-existing evidence

- Condition on less context for contexts you haven't learned much about

Interpolation

- mix unigram, bigram, trigram probabilities for a trigram LM
- mix n-gram, (n-1)-gram, ... unigram probabilities for an n-gram LM Interpolation works better than Add-1 / Laplace

Linear Interpolation

Simple Interpolation

$$
\begin{aligned}
\hat{P}\left(w_{i} \mid w_{i-2} w_{i-1}\right)= & \lambda_{1} P\left(w_{i}\right) \\
& +\lambda_{2} P\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{3} P\left(w_{i} \mid w_{i-2} w_{i-1}\right)
\end{aligned}
$$

Context-Conditional Interpolation
Hyperparameters!

$$
\begin{array}{ll}
\hat{P}\left(w_{i} \mid w_{i-2} w_{i-1}\right)= & +\lambda_{3}\left(w_{i-2}^{i-1}\right) P\left(w_{i} \mid w_{i-2} w_{i-1}\right) \\
& +\lambda_{2}\left(w_{i-2}^{i-1}\right) P\left(w_{i} \mid w_{i-1}\right) \\
& +\lambda_{1}\left(w_{i-2}^{i-1}\right) P\left(w_{i}\right)
\end{array}
$$

Different for every unique context

How to set the λs ?

Choose λs to maximize the probability of held-out data:

- Fix the n-gram probabilities (on the training data)
- Then search for λ s that give largest probability to held-out set:

$$
\log P\left(w_{1} \ldots w_{n} \mid M\left(\lambda_{1} \ldots \lambda_{k}\right)\right)=\sum_{i} \log P_{M\left(\lambda_{1} \ldots \lambda_{k}\right)}\left(w_{i} \mid w_{i-1}\right)
$$

Backoff and Discounting

Backoff

- use trigram if you have good evidence,
- otherwise bigram, otherwise unigram

Still need a correct probability distribution!

- discount the higher-order n-grams by d to save some probability mass for the lower order n-grams
- need a function α to distribute this probability mass to the lower order n-grams

Stupid Backoff

No discounting, just use relative frequencies Don't care about a valid language model

Not a probability distribution (usually denoted as P)

$$
\begin{gathered}
S\left(w_{i} \mid w_{i-k+1}^{i-1}\right)=\left\{\begin{array}{l}
\frac{\operatorname{count}\left(w_{i-k+k}^{i}\right)}{\operatorname{count}\left(w_{i-k+1}^{i-1}\right)} \\
\text { if count }\left(w_{i-k+1}^{i}\right)>0 \\
0.4 S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) \quad \text { otherwise }
\end{array}\right. \\
S\left(w_{i}\right)=\frac{\operatorname{count}\left(w_{i}\right)}{N} \text { Hyperparameter! }
\end{gathered}
$$

Katz Backoff

Rely on a discounted probability P^{*}

- if we've seen this n-gram before (i.e., if we have non-zero counts)
- otherwise, we recursively back off to the Katz probability for the shorter-history (n-1)gram

$$
P_{B O}\left(w_{i} \mid w_{i-k+1: i-1}\right)= \begin{cases}P^{*}\left(w_{i} \mid w_{i-k+1: i-1}\right), & \text { if } c\left(w_{i-k+1: i}\right)>0 \\ \alpha(i-k+1: i-1) P_{B O}\left(w_{i} \mid w_{i-k+2: i-1}\right), & \text { otherwise }\end{cases}
$$

Recursive Formulation!

Next Topics

- Words are more than discrete symbols
- Better feature representations than n-grams
- Parameters!!!
- But first, Logistic Regression and Classification in Machine Learning

[^0]: Frequency rank

