

Lecture 3: n-gram Language Models II

Instructor: Swabha Swayamdipta USC CSCI 499 LMs in NLP Jan 22, 2024 Spring

Slides mostly adapted from Dan Jurafsky, some from Mohit lyyer

Lecture Outline

Announcements and Recap

- Probabilistic language models
- n-gram language models
 - Estimating n-gram probabilities
- Evaluation and Perplexity
- Generating from a language model

• Zeros!

- Smoothing
 - Add-1 / Laplace Smoothing
 - Interpolation
 - Back-off and Discounting

Announcements + Recap

Announcements

- HW1 Released last week and is due on 1/31
- Next Class Wed (1/24) Project Pitches! Please do not miss class!
 - 3 minute project pitch (5% of your grade)
 - What is the problem? Why should we care about it?
 - How is this connected to language models?
 - What would the inputs and outputs look like? Examples!
 - Come up with a good name for your project so it's memorable for voting
 - Slides encouraged
 - Everyone votes on teams. We will release all votes and it's up to you to form teams of 3

 - It's natural for the ideas to morph between the project pitch and the project proposal
- Next Week: Extra Office Hours by TA : Tue (1/30) 10-11am
 - Correction: not this Thu

USCViterbi

• Piazza post soon: By 3pm on Wed, share title and tldr for your project pitch to be included in voting

Probabilistic Language Modeling

 $P(\mathbf{w}) = P(w_1, w_2, w_3, \dots, w_n)$

Related task: probability of an upcoming word: $P(w_n | w_1, w_2, w_3, w_4, \dots, w_{n-1})$

$$P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i | w_{i-1} \dots w_1)$$

Chain Rule

ISC Viterhi

- Goal: compute the probability of a sentence or sequence of words:

 - A model that assigns probabilities to sequences of words is called a language model

How to estimate the probability of the next word?

P(that | its water is so transparent)

Maximum Likelihood Estimate

Too many possibilities to count! Too few sentences that look like this...

Need to make some simplifying assumptions...

Count(its water is so transparent that) *Count*(its water is so transparent)

Markov Assumption

In other words, we approximate each component in the product such that it is only conditioned on the previous k elements

k-gram Markov Assumption

$$P(w_i | w_1, w_2)$$

 $P(w_1, w_2, \dots, w_n) = P(w_i | w_{i-k+1} \dots w_{i-1})$

 $Y_{2}, \dots, W_{i-1}) \approx P(W_{i} | W_{i-k+1} \dots W_{i-1})$

n-gram models

Unigram Model

Bigram Model

k-gram Model

 $P(w_1, w^2, \dots, w_n) \approx P(w_i | w_{i-k+1} \dots w_{i-1})$

 $P(w_1, w^2, \dots, w_n) \approx P(w_i)$

 $P(w_1, w^2, ..., w_n) \approx P(w_i | w_{i-1})$

n-gram Models: Limitations

In general this is an insufficient model of language • "The computer which I had just put into the machine room on the fifth floor crashed."

At times the dependencies are not even clear! "The complex houses married and single soldiers and their families." Garden Path Sentences

- "The horse raced past the barn fell."
- "The old man the boat."

But we can often get away with n-gram models

SCViterhi

Language has long-distance dependencies

Estimating bigram probabilities

Maximum Likelihood Estimate

 $P_{MLE}(w_i | w_{i-1}) = \frac{c(w_{i-1}w_i)}{c(w_{i-1})}$

Special edge case tokens: <s> and </s> for beginning of sentence and end of sentence, respectively

USC Viterbi

 $P_{MLE}(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$ We do everything in log space to handle overflow issues

Likelihood

Suppose we have a biased coin that's heads with probability p • Let θ be the probability of heads - **parameter** of the model Suppose we flip the coin four times and see (H, H, H, T)

• **Observed data**, D = (HHHT)

We don't know what θ is — this is the **estimation / learning problem**

- $D, P(D \mid \theta)$
 - $\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$
 - zero and find $\hat{\theta}_{MLE} = 0.75$.
- [Advanced] Maximum Aposteriori Probability (MAP) estimate • $\hat{\theta}_{MAP} = \arg \max_{\Omega} P(\theta | D) = \arg \max_{\Omega} P(D | \theta) P(\theta)$

Maximum Likelihood Estimate: Choose parameter θ that maximizes likelihood of observed data

• Data likelihood, $P(D \mid \theta) = \theta \theta \theta (1 - \theta)$ can be maximized by taking the derivative and set it equal to

Maximum Likelihood Estimates

The maximum likelihood estimate

- of some parameter of a model M from a training set T
- maximizes the likelihood of the training set T given the model M

Suppose the word "bagel" occurs 400 times in a corpus of a million words. What is the probability that a random word from some other text will be "bagel"?

• MLE estimate is 400/1,000,000 = .0004

This may be a bad estimate for some other corpus

corpus

SCViterhi

• But it is the estimate that makes it most likely that "bagel" will occur 400 times in a million word

For the 9222 sentences in the Berkeley Restaurant Corpus:

Unigram	i	want	to	eat	ch	inese
	2533	927	2417	746	5 15	8
Counts						
				N	ext W	ord
		i	want	to	eat	chi
	i	5	827	0	9	0
Bigram	want	2	0	608	1	6
Bigian	to	2	0	4	686	2
Counts	eat	0	0	2	0	16

History

chii 6 2 16 chinese 0 0 0 0 0 15 15 0 food 2 0 0 0 lunch 0 0 0 spend 0

 W_i

Bigram Probabilities

$$W_{i-1}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

USCViterbi

food	lunch	spend
1093	341	278

nese	food	lunch	spend
	0	0	2
	6	5	1
	0	6	211
	2	42	0
	82	1	0
	4	0	0
	1	0	0
	0	0	0

Most n-grams are never seen!

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, 1)}{c(w_{i-1})}$$

A better model of a text

- is one which assigns a higher probability to the word that actually occurs
- returns the highest probability when evaluated on an unseen test set
 - Mantra: I will never train my model on a test set

Perplexity

How good is a language model?

$$P(w_1w_2...w_N)^{-\frac{1}{N}} \text{ Normalization Factor}$$

$$\exp(-\frac{1}{N}\log P(w_1w_2...w_N)) \text{ Negative log likelihood}$$

Bigram Perplexity

WSJ Perplexities

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

USCViterbi

 $PPL(\mathbf{w}) = \exp(-\frac{1}{N}\sum_{i=1}^{N}\log P(w_i | w_{i-1}))$

Lower the perplexity, better the language model

n-grams do a better and better job of modeling the training corpus as we increase the value of n

How best to evaluate an LM?

Extrinsic evaluation

- On an external task (e.g. summarization) that uses an LM
- More reliable
- Can be time-consuming; hard to design
 - Which is the best task? How many tasks to try?
- Therefore, we often use intrinsic evaluation:
 - Bad approximation (less reliable)
 - Unless the test data looks just like the training data
 - Generally only useful in pilot experiments (faster to compute)

Language Model Development

USCViterbi

Sampling: choosing random points according to their likelihood

1. Choose a random bigram (<s>, w) according to its probability

- 2. Now choose a random bigram (w, x) according to its probability
- 3. And so on until we choose </s>
- 4. Then string the words together

Language Model Development

USCViterbi

Shakespearean n-grams

1 gram	 To him swallowed confess hear b rote life have Hill he late speaks; or! a more to l
2 gram	–Why dost stand forth thy canopy, f king. Follow. –What means, sir. I confess she? th
3 gram	 –Fly, and will rid me these news of 'tis done. –This shall forbid it should be bran
4 gram	 King Henry. What! I will go seek great banquet serv'd in; It cannot be but so.

- ooth. Which. Of save on trail for are ay device and
- leg less first you enter
- forsooth; he is this palpable hit the King Henry. Live
- nen all sorts, he is trim, captain.
- f price. Therefore the sadness of parting, as they say,
- ded, if renown made it empty.
- the traitor Gloucester. Exeunt some of the watch. A

N = 884,647 tokens, V = 29,066 vocabulary items (types)

So 99.96% of the possible bigrams were never seen (have zero entries in the table)

Shakespeare!

USCViterbi

Shakespeare produced 300,000 bigram types out of $V^2 = 844$ million possible bigrams!

- 4-grams (quadrigrams) are worse: What's coming out looks like Shakespeare because it is

Most n-grams are never seen!

The WSJ is no Shakespeare!

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives gram Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U.S.E. has already old M.X. corporation of living gram on information such as more frequently fishing to keep her They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Viterhi

So why not just sample from very high order n-gram models? Do we even need GPT?

Can only produce n-grams from training data!

gram

2

gram

gram

Shakespearean corpus cannot produce WSJ vocabulary and vice versa

Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U.S.E. has already old M.X. corporation of living on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions

The successes we are seeing here are due to a phenomena commonly known as overfitting

Overfitting bad!

n-grams only work well for word prediction if the test corpus looks like the training corpus

- In real life, it often doesn't
- We need to train **robust** models that **generalize**!

 One kind of generalization pitfall: Zeros! • Things that don't ever occur in the training set • But occur in the test set

• Technical terms for "doing well on the test data" or "doing well on any test data"

Training set:

allegations	report	claims	request
4	1	2	2

Bigram Probabilities:

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Zeros

Test set

... offer ... loan

c (offer) = 0 c (loan) = 0

Undefined probabilities!

N-gram models: Zero Counts

• Problem: Word "offer" didn't appear in the train set... At test time, we may encounter tokens never seen (unigram with 0 frequency)

- Very severe problem resulting in undefined probabilities
- Problem: Many words like "Swayamdipta" won't appear in most training sets!
- Other problems: new terms, different dialects, evolving language
- These are known as **OOV** for "out of vocabulary", or **unknown tokens** • Design: Open Vocabulary vs. Closed Vocabulary

Viterhi

Open vs. Closed Vocabularies

Solution for missing tokens: the <UNK> token

These are known as **OOV** for "out of vocabulary", or **unknown tokens**

One way to handle OOV tokens is by adding a pseudo-word called <UNK>

We can replace all words that occur fewer than *n* times in the training set, where *n* is some small number by <UNK> and re-estimate the counts and probabilities

When not done carefully, may artificially lower perplexity

USCViterbi

Does this solve all our problems?

Training set:

... denied the allegations ... denied the reports ... denied the claims ... denied the request

P (offer | denied the) = 0

will assign 0 probability to the test set!

USC Viterbi

Test set

... denied the offer ... denied the loan

We might still encounter tokens never seen in context (i.e. n-gram with 0 frequency)

Zero probability bigrams

Bigrams with zero probability

• mean that we will assign 0 probability to the test set!

And hence we cannot compute perplexity • No one can divide by 0!

S(Viterbi

 $PPL(\mathbf{w}) = \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$

Lecture Outline

• Announcements and Recap

- Probabilistic language models
- n-gram language models
 - Estimating n-gram probabilities
- Evaluation and Perplexity
- Generating from a language model

• Zeros!

- Smoothing
 - Add-1 / Laplace Smoothing
 - Interpolation
 - Back-off and Discounting

Smoothing

USC Viterbi

Intuition for Smoothing

I like to **eat** cake but I want to **eat** pizza right now. Mary told her brother to **eat** pizza too.

- $\bullet |V| = ?$ $|V_{\text{bigrams}}| = ?$
- assign some probability to other words
- We want to **smooth the distribution from our counts**

What does a count distribution look like?

Viterhi

- P(next word = pizza | previous word = eat) = 2/3
- P(next word = *cake* | previous word = *eat*) = 1/3
- All other next words = 0 probability

• Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

• All other vocabulary tokens getting 0 probability just doesn't seem right. We want to

Zipf's Law

The distribution over words resembles that of a power law:

 there will be a few words that are very frequent, and a long tail of words that are rare

•
$$freq_w(r) \approx r^{-s}$$

NLP algorithms must be especially robust to observations that do not occur or rarely occur in the training data

Frequency rank

Zipf, G. K. (1949). Human behavior and the principle of least effort.

Smoothing ~ Massaging Probability Masses

When we have sparse statistics: *Count(w* | denied the)

- 3 allegations
- 2 reports
- 1 claims
- 1 request
- 7 total

Steal probability mass to generalize better: *Count(w* | denied the)

- 2.5 allegations
- 1.5 reports
- 0.5 claims
- 0.5 request
- 2 other
- 7 total

Add-One Estimation

 $P_{MLE}(w_i) = -$

- Pretend we saw each word one more time than we did
- Just add one to all the counts! 2.
- 3. All the counts that used to be zero will now have a count of 1...

What happens to our P if we don't increase the denominator?

USCViterhi

$$\frac{c(w_i)}{\sum_{w} c(w)}$$

Laplace smoothing

75 year old method!

$$= \frac{c(w_i) + 1}{\sum_{w} (c(w) + 1)} = \frac{c(w_i) + 1}{V + \sum_{w} c(w)}$$

Add-1 Estimation Bigrams

$P_{MLE}(w_i | w_{i-1}) = \frac{c(w_{i-1}w_i)}{c(w_{i-1})}$

Pretend we saw each bigram one more time than we did

Add-1 estimate

 $P_{Add-1}(w_i)$

Keep the same denominator as before and reconstruct bigram counts

USC Viterbi

$$w_{i-1}) = \frac{c(w_{i-1}w_i) + 1}{c(w_{i-1}) + V}$$
$$= \frac{c^*(w_{i-1}w_i)}{c(w_{i-1})}$$

What does this do to the unigram counts?

Recall: BRP Corpus

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

USC Viterbi

i	want	to	eat	chinese	food	lunch
2533	927	2417	746	158	1093	341

 W_i

	i	want	to	eat	chinese	food	lunch
i	5	827	0	9	0	0	0
want	2	0	608	1	6	6	5
to	2	0	4	686	2	0	6
eat	0	0	2	0	16	2	42
chinese	1	0	0	0	0	82	1
food	15	0	15	0	1	4	0
lunch	2	0	0	0	0	1	0
spend	1	0	1	0	0	0	0

Laplace-smoothed bigram counts

		i	want	to	eat	chinese	food	lunch	spend
	i	6	828	1	10	1	1	1	3
	want	3	1	609	2	7	7	6	2
	to	3	1	5	687	3	1	7	212
• 1	eat	1	1	3	1	17	3	43	1
2 —]	chinese	2	1	1	1	1	83	2	1
	food	16	1	16	1	2	5	1	1
	lunch	3	1	1	1	1	2	1	1
	spend	2	1	2	1	1	1	1	1

$$W_{i-1}$$

Just add one to all the counts!

 W_i

Laplace-smoothed bigram probabilities

$P_{Add-1}\left(w_{i}\right|w_{i}$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

USCViterbi

$$_{i-1}) = \frac{c(w_{i-1}w_i) + 1}{c(w_{i-1}) + V}$$

Reconstituted Counts

 $c^*(w_{i-1}w_i) = \frac{[c(w_{i-1}w_i) + 1]c(w_{i-1})}{c(w_{i-1}) + V}$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

USCViterbi

	i	want	to	eat	chinese		f	ood	lunch		spend		
i	5	827	0	9	0		C	0		0		2	
want	2	0	608	1	6		6	6		5		1	
to	2	0	4	686	2		C	0		6		211	
eat	0	0	2	0	16		2	2		42		0	
chinese	1	0	0	0	0		8	32		1		0	
food	15	0	15	0	1		4	t (0)	
lunch	2	0	0	0	0		1		0		0		
spend	1	0	1	0	0		0) (0)	
	i	want	to	eat	,	chine	ese	e foo		lun	ch	spe	nd
i	3.8	527	0.64	6.4	-	0.64	0.		64	0.64		1.9	
want	1.2	0.39	238	0.7	8	2.7	2.		7	2.3		0.78	
to	1.9	0.63	3.1	43	0	1.9	0.0		63	4.4		133	
eat	0.34	0.34	1	0.3	4	5.8		1		15		0.34	
chinese	0.2	0.098	0.098	0.0	98	0.098	0.098		8.2			0.098	
food	6.9	0.43	6.9	0.4	3	0.86		2.2		0.43		0.43	
lunch	0.57	0.19	0.19	0.1	9	0.19		0.38		0.19		0.19	
spend	0.32	0.16	0.32	0.1	6	0.16		0.	16	0.1	6	0.10	6

Original, Raw

Reconstructed

Compare with raw bigram counts

Big change to the counts!

Perhaps 1 is too much, add a fraction?

Add-k smoothing

Language Model Development

USC Viterbi

Add-1 Estimation: Last thoughts

So add-1 isn't used for n-grams, being something of a blunt instrument • One-size-fits-all

Add-1 is used to smooth other NLP models though...

- For text classification
- In domains where the number of zeros isn't so huge

Interpolation

Perhaps use some pre-existing evidence

Interpolation

• mix unigram, bigram, trigram probabilities for a trigram LM • mix n-gram, (n-1)-gram, ... unigram probabilities for an n-gram LM

• Condition on less context for contexts you haven't learned much about

Interpolation works better than Add-1 / Laplace

Linear Interpolation

Simple Interpolation

Context-Conditional Interpolation

 $\hat{P}(w_i | w_{i-2}w_{i-1}) = \lambda_3(w_{i-2}^{i-1})P(w_i | w_{i-2}w_{i-1}) + \lambda_2(w_{i-2}^{i-1})P(w_i | w_{i-1})$ Different for every unique context

Reconstituted Counts

USCViterbi

 $\hat{P}(w_i | w_{i-2}w_{i-1}) = \lambda_1 P(w_i)$ $+\lambda_2 P(w_i | w_{i-1})$ $+\lambda_3 P(w_i | w_{i-2} w_{i-1})$

Hyperparameters!

Choose λ s to maximize the probability of held-out data:

- Fix the n-gram probabilities (on the training data)
- Then search for λ s that give largest probability to held-out set:

$$logP(w_1 \dots w_n | M(\lambda_1 \dots \lambda_k)) = \sum_i logP_{M(\lambda_1 \dots \lambda_k)}(w_i | w_{i-1})$$

USC Viterbi

How to set the λs ?

Backoff and Discounting

Backoff

• use trigram if you have good evidence,

• otherwise bigram, otherwise unigram

Still need a correct probability distribution!

- order n-grams

USCViterbi

• discount the higher-order n-grams by d to save some probability mass for the lower

• need a function α to distribute this probability mass to the lower order n-grams

Stupid Backoff

No discounting, just use relative frequencies Don't care about a valid language model

$$S(w_i | w_{i-k+1}^{i-1}) = \begin{cases} \frac{\text{count}}{\text{count}} \\ 0.4 \end{cases}$$
$$S(w_i) = \frac{\text{count}(w_i)}{W}$$

N

Not a probability distribution (usually denoted as *P*)

Brants et al. 2007

Rely on a discounted probability P^*

- if we've seen this n-gram before (i.e., if we have non-zero counts)
- gram

$$P_{BO}(w_i | w_{i-k+1:i-1}) = \begin{cases} P^*(w_i | w_{i-k+1:i-1}), & \text{if } c(w_{i-k+1:i}) \\ \alpha(i-k+1:i-1)P_{BO}(w_i | w_{i-k+2:i-1}), & \text{otherwise} \end{cases}$$

Katz Backoff

• otherwise, we recursively back off to the Katz probability for the shorter-history (n-1)-

Recursive Formulation!

Next Topics

- Words are more than discrete symbols
- Better feature representations than n-grams
- Parameters!!!
- But first, Logistic Regression and Classification in Machine Learning

USCViterbi

