Music Score Generation

Kritin Dhoka

Abstract

In this paper, we discuss applying NLP meth-
ods to the field of music, specifically score gen-
eration. We use the music21 library to train
our models on a large corpus of classical music
scores. We use three different models — an n-
gram model for the baseline, a recurrent neural
network (RNN), and a transformer model. We
find that the RNN out performed the n-gram
model and the transformer out performed the
RNN. We evaluate these models on human eval-
uation as well as perplexity and BLEU scor-
ing. We also discussed the importance of using
more than just notes when attempting to gen-
erate scores and discuss the nuance of creating
music acceptable to the human year.

1 Introduction

Music is an integral aspect of human culture, hav-
ing existed in some shape or form for thousands
of years. Over the course of musical history, it
has evolved naturally but also with specific human
intention through innovations like standardized mu-
sical notation. Just like language, music is a se-
quence of tokens from a given vocabulary, and
can be analyzed using NLP techniques. Current
NLP efforts surrounding music generally focus on
Text-To-Music, the act of generating musical sound
given a textual-prompt, or generating lyrics. There
is comparatively less work on the topic of having
NLP models tasked with completing existing or
generating new musical scores. Central to our re-
search are the questions: is music able to modeled
using NLP methods? Given a dataset of several mu-
sician’s transcribed works, can we use NLP models
to generate melodies that are acceptable to the hu-
man ear in the style of that composer?

2 Existing Work

Some existing work include MusicGen and Muse-
former.

Rohan Gupta

Zain Merchant

MusicGen is text-to-music rather than score gen-
eration, it uses a single language model over several
streams of tokens representing music. Both auto-
matic and human studies were used to evaluate the
model and ablation studies were used to examine
the importance of each component. (Copet et al.,
2023)

Museformer is on symbolic music generation
via a coarse and fine-grained transformer. The fine-
grained attention has a token of a specific music
bar attend to all tokens most relevant to the music
structures, whereas the coarse-grained only has
the token attend to summarizations. This allows
the model to capture both musical structure and
context, but also be able to model longer music
sequences. (Yu et al., 2022)

3 Hypothesis

We believe that by applying NLP methods for se-
quential data, we can generate musical melodies
that are acceptable to the human ear and that mimic
the style of specific songs or artists.

4 Methodology

4.1 Phasing of Project

Over the course of this project, we received peer
and instructor feedback in regards to our prelimi-
nary and intermediate results. Based on these, we
increased the size of our dataset and modified the
transformation we applied to it and we changed
the evaluation metric we used afterwards as well.
As such, the methodology and evaluation of this
project can be split into two phases, Phase 1 and
Phase 2, which is how we will be referring to the
different general approaches we took. Phase 1 is
the approach we took prior to receiving feedback
in class, and Phase 2 is our attempt to incorporate
that feedback and the results of that.

In Phase 1, our main approach was to train a
model for each composer by only training that

model on that composer’s data and the data only
tokenized the note feature, not any other part of
each musical composition like timing or tempo.
We used 4 composers for this, which we will spec-
ify in the upcoming sections. The feedback we
received for this approach, based on our results
for it, was that we used too little data, since each
mode was only given one composer’s data, and that
it was overfitting to that composer based off that
data. In Phase 2, we attempted to solve both issues
by creating one model that used all the composer
data in the hopes that it could generalize and effec-
tively learn the differences between the different
composers and generate scores that could still be in
the style of a specific composer based on the input
sequence given to it. We more than doubled the
number of composers from phase 1 to 9 in total and
then combined their data together and fed that into
the model. We still used a Transformer, RNN, and
N-gram as our models to train and test.

4.2 Data set

The dataset we used is the Core corpus of music21,
a Python toolkit for computer-aided musicology
made at MIT. All of the works in this corpus are
from composers who lived centuries ago, so licens-
ing fees are not an issue — all the works are ac-
cessible free of cost. These works are in the form
of .mxl or .krn, both of which are file types that
allow music to be read into a Music XML Reader.
These files contain information about what notes or
chords are being played and when they are being
played. It’s essentially a digital file format for sheet
music.

In phase 1, We chose to focus on 4 historically
significant composers and their works: Mozart,
Monteverdi, Bach, and Beethoven. Each of those
composers has a large enough data set to train on,
as explained in section 4.3.

In phase 2, we expanded the existing composer
choices and added Haydn, Josquin, Schubert, We-
ber and Palestrina, in addition to the previous com-
posers. The complete makeup of this new dataset
will also be explained in section 4.3

4.3 Data Transformation

In music21, each score contains a series of music21
objects corresponding to sheet music, such as Note,
Chord, Measure, Part, etc. Our goal for phase 1
was to simply just get the sequence of core sounds,
i.e. the notes, and simplify away the more complex
music objects. We transformed our data from the

sequence of music21 objects to just a sequence of
strings, each one being from the "vocabulary" of
music. This musical "vocabulary" is just the 12
notes that appear in all of music: A, A#, B, C, C#,
D, D#, E, F, F#, and G. We performed the following
transformations on the raw scores provided for each
composer by music21:

* Transposed the score from its current key to
C major

¢ Set the octave to 4 for each note
e Transformed each chord to its root note

The output of the transformation is now just a
sequence of notes that represent how each score
would have been played in the key of C major and
octave 4. Each of these notes can now be consid-
ered our token. This transformation was made so
that the general pattern of what the composer plays
is emphasized rather than the musician’s choice of
key. This sequence of notes can be transposed to
any other key, and the notes will shift by the same
intervals, and given the prevalence of C major be-
ing so foundational in music theory, we chose to
standardize it to this key. After standardizing the
data, we combined all the notes from each song
into one single array of notes. This can be thought
of as all the notes ever written by the composer
ordered in the sequence in which they are played
in their scores. We then used this to produce our
n-gram counts.

Retrieving and transforming the data takes about
2 min and 30 seconds in our Jupyter notebook in a
Python 3.11 kernel.

For phase 2, we wanted to incorporate the dura-
tion of the note. Instead of our vocabulary being
just the 12 notes, we took the timing for each note
and appended it to the corresponding note name.
Instead of simplifying each musical object in the
sequence to a note string, we simplified it to a ‘note-
duration’ string, such as ‘G-quarter’. We got 102
unique tokens in our training set from doing this,
while still doing the same type of music normaliza-
tion we did in Phase 1.

The retrieval and transformation of this data set
took around 5 minutes with the addition of the new
composers on Google Colab CPU.

4.4 Train, Validation, and Test Data

For Phase 1, after we get the standardized and com-
bined sequence of notes for each composer, we

take the first 80% of notes for that composer as the
training set, the next 10% as the validation set for
hyperparameter testing, and the remaining 10% as
the test set for the perplexity calculations.

For Phase 1, here are the number of notes in the
train/validation/test sets for each composer:

e Mozart
(16 compositions): 18,598/2,325/2,325

¢ Monteverdi
(49 compositions): 35,087/4,386/4,386

¢ Beethoven
(26 compositions): 123,003/15,375/15,376

* Bach
(413 compositions): 89,608/11,201/11,201

In Phase 2, we increased the number of com-
posers. Instead of combining all the compositions
for each composer into one sequence of notes and
doing the 80/10/10 split on that, we mapped each
composition to its sequence of note-duration tokens
and then took the first 80% of each composition
as the training, the next 10% of that composition
as the validation, and the final 10% of that com-
position as the test. This was better because it ac-
counted for every composition rather than leaving
out some compositions like phase 1 had. This ap-
proach produced the following train/validation/test
breakdown per composer:

¢ Mozart
(16 compositions): 18,593/2,324/2,331

¢ Monteverdi
(49 compositions): 35,065/4,384/4,410

* Beethoven
(26 compositions): 122,995/15,375/15,384

e Bach
(413 compositions): 89,448/11,187/11,375

e Hadyn
(9 compositions): 11,272/1,410/1,413

* Josquin
(1 compositions): 2,708/340/342

* Schubert
(1 compositions): 1,037/130/130

* Weber
(1 compositions): 2,649/331/332

e Palestrina
(500 compositions): 189,825/23,737/23,979

One note is that Music21 contained 1319 com-
positions by Palestrina, but attempting to use all of
them as part of our dataset caused memory usage
limit errors during dataset processing. Specifically,
the remote server on Google Collab would crash re-
gardless of runtime type. As such, we had to reduce
the number of compositions taken from Palestrina
to a random subset of 500 compositions.

When the composers were aggregated together,
the dataset had the following train/validation/test
split:

* Overall
(1016 compositions): 473,592/59,218/59,696

The above data ended up being SMB in size.

4.5 Approach

We first used a standard n-gram model, with n go-
ing from 1 to 5. Our vocabulary in phase 1 is just
all the 12 notes in music from A to G. In phase
2, that vocabulary changed to 102 unique ‘note-
duration’ tokens. In our n-grams, our sequences
were the previous n-1 notes with the nth note being
the current note. After we calculated the probabili-
ties of each sequence given its context, we created
two probability functions, one with and one with-
out interpolation. Within the probability functions,
to prevent log(0) from happening, we assume €
is a small value of 107°. If we don’t do this, we
get infinite perplexity since some sequences in the
validation set aren’t seen in the training set.

Given we have a probability function with inter-
polation and a perplexity computation function, our
hyperparameters end up being the 5 lambdas and
€. We showcase the results of our hyperparameter
testing in Figures 1 and 2 for Phase 1.

For our RNN, we mainly used the PyTorch li-
brary. The RNN itself consisted of 1 hidden layer
and 1 output layer and was trained using cross-
entropy loss. One important modification we had
to make when moving from the n-gram to the RNN
was how to encode the notes such that they could
be fed into the RNN. We settled on using a unique
Note to ID mapping, which was reflecting in our
code as two dictionaries, one using the notes as
keys to the their respective, unique integers and the
other using integers as keys to a unique note. When
training the model, we split the train data into pairs

of a sequence of 40 consective notes and a single
subsequent token.

For the Transformer, we used a similiar encoding
structure to the RNN note to ID mapping. We used
the out of the box PyTorch Transformer model with
the Adam optimizer and cross entropy loss. For the
encoder we used the nn.TransformerEncoder and
for the decoder we used nn.Linear. We had 8 trans-
former heads, 6 encoder layers, 6 decoder layers,
and feedforward networks of dimension 2048.

Between phase 1 and phase 2, our architecture
for each model didn’t change, only the data we
passed in and the final layer output for the RNN
and Transformer changed because the vocabulary
changed.

4.6 Generating Scores

For each composer, we generated scores in 4/4 time
signature that each have 16 measures, or 64 quarter
notes.

For phase 1, to generate scores, we first ran-
domly sample the first note by just picking one
of the 12 notes in music. Then, we use that first
note as the prefix for a musician’s model to com-
plete 16 measures for, which is 63 more notes. The
generated notes are quarter notes appended to the
sequence one by one to generate a musical score
in the time signature of 4/4, which when opened
through MuseScore 4, can be played with a variety
of instruments and vocal ranges.

Through standardizing the generated score to be
in 4/4, we can generate an outline for the user of
what specific notes one could play, but leaves it up
to the user on how to play them, which requires a
lot more music features, like sustain and different
kinds of notes, beyond just the note itself. In other
words, this model generates “what to play", not
“how to play", with regards to single notes.

In Phase 2, we tried to do melody completion
tasks as our generations. We chose a specific com-
position, chose the first 20 note-duration tokens
of that composition as the prefix/context, and then
generated another 44 notes to end up with another
64 note/16 measure composition.

4.7 Evaluation

Our method of evaluation is based on two methods:
objective NLP-metrics like perplexity and subjec-
tive feedback from people on the generated scores.

In phase 1, we look at the perplexity on the test
split to see how we can change our hyperparameters

to have the generated score match more closely
with the target composer.

In phase 2, due to concerns of overfitting and per-
plexity showing little variation between the RNN
and the transformer as per feedback recived from
peers and instructor, we shifted to evaluating via the
metric BLEU. BLEU is an n-gram based matching
metric, which compares sets of sequences, one of
which is model-generated and the other is treated
as the reference. For our purposes, we gave the
models the opening 10 notes in each work in the
test set, and had them generate a completion to
the work. The generated ending and the original
ending were then used to calculate BLEU scores.

Another test for music generation models is a
human listening test. For the purposes of this ex-
periment, this is a subjective evaluation wherein 6
people are asked to score each generated sample on
a scale from 1 to 10 based on personal preference,
1 being worst music sample and 10 meaning best
music sample. In phase 1, it was hard to tell how
good the music generated was between the genera-
tions since they all had the same timing. For phase
2, it was quite easy to tell that the generations were
not as musically pleasant due to odd duration of
notes, especially for the Transformer generations.
That’s why we chose not to collect any human eval-
uations for Phase 2 generations because it was quite
obvious the generations were not of good quality.

5 Results
5.1 N-Gram

We have 3 tables to showcase our results across
different hyperparameters for the Phase 1 n-gram
model.

Figure 1 shows the values for interpolated and
non-interpolated perplexity when we keep a fixed
value for e, which we set to 10~°, and different
values for each of the lambdas. We have 5 lambda
values, corresponding to each of our 5 n-grams.
From when n = 1 to 5, our first set of lambdas is
[0.2, 0.2, 0.2, 0.2, 0.2], so each of the n-grams
gets equal weight. In the same order, our second
set of lambdas is [0.4, 0.3, 0.15, 0.1, 0.05], which
emphasizes the n-grams where n is smaller. Our
third set of lambdas is [0.05, 0.1, 0.15, 0.3, 0.4],
which emphasizes the n-grams where n is larger.
We compute the perplexities across all of these
while fixing our epsilon for Figure 1.

Figure 2 shows the values for interpolated and
non-interpolated perplexity when we keep a fixed

value for our test set using the lambdas that led to
the lowest perplexity for each composer. We fixed
¢ here to be 1072,

We found that when we vary the hyperparameter
of € between 1075, 1076, 107, fixing the lambda
set to all be equal, we get very minimal differences
for the values of the perplexities using interpolation
while the perplexities not using interpolation will
vary as a function of that hyperparameter. This
leads us to believe that the more significant result
lies in the perplexities with interpolation as this
hyperparameter is essentially just what we add to
a probability to ensure it’s not 0. It is one method
of smoothing, and we will explore other smoothing
techniques for the final report.

Figure 3 shows the average score given to each
generated score from each musician based on ask-
ing 6 people their rating of the score from 1-10
after listening to it.

We saw high values for the perplexities when
using the non-interpolated probability function,
which just depends on our € values. All it shows
is that the non-interpolated probability dealt with
sequences in the validation set that were not in the
training set. Across the board, Bach was the com-
poser with the smallest perplexity, which was true
even for the non-interpolated perplexities. How-
ever, the perplexity wasn’t that much higher for the
other 3 composers in comparison.

For the different lambdas during interpolation,
Mozart and Monteverdi achieved the lowest per-
plexity with the equal lambdas, while Beethoven
and Bach achieved the lowest perplexity with the
lambdas emphasizing larger values for n.

Validation Set Perplexity

for Different Lambdas Mozart | Monteverdi | Beethoven | Bach
Equal,

Noninterpolated 136.745 | 278.575 88.712 11.905
Equal,

Interpolated 6911 | 9308 9.161 6.149
Small Ns Emphasized, | 3¢ 7,5 | 578 575 88.712 11.905
Non-Interpolated

Small Ns Emphasized, | , ,, | g 43, 10.09 7.283
Interpolated

Big Ns Emphasized, 136.745 | 278.575 88.712 11.905
Non-Interpolated

Big Ns Emphasized, 7.16 1027 9.12 5.587
Interpolated

Figure 1: Validation Set Perplexity for Different Lambdas

Test Set Perplexity Mozart | Monteverdi | Beethoven | Bach
for Each Composer

Interpolated 7.577 7.325 7.735 5.822
Non-interpolated 252.708 | 59.232 40.038 14.454

Figure 2: Test Set Perplexity for Each Composer

Composer | Score1 | Score 2 | Score 3
Mozart 4.16 35 4.5
Monteverdi | 3.57 4.5 4.33
Beethoven | 3.83 3.33 4.16
Bach 4.5 4 4.67

Figure 3: Average Rating Per Score

5.2 RNN

In regards to RNN hyper parameter tuning, we
looked at 3 main hyper parameters: the number
of epochs the model trains for, the learning rate
and the batch size. We varied the values of these
parameters and examined the effects on the val-
idation perplexity to assess the best set of hyper
parameters to use. The following tables outline
the results produced based on each variation of the
hyper parameters at the given values:

of Epochs | Validation Perplexity
5 1.000855
10 1.000722
20 1.000766
30 1.000648

Figure 4: Validation Perplexity by Number of Epochs

Based on this table, the trend of how the num-
ber epochs the models trains for in relation to the
validation perplexity is clearly inverse, As the num-
ber of epochs increases, the validation perplexity
decreases, with 30 epochs having the lowest valida-
tion perplexity. However, we chose not to continue
increasing the number of epochs further for three
main reasons. First the validation perplexity did
not fluctuate more than .000005 with epochs higher
than 30, which would indicate that an optima can be
reliably found within 30 epochs. Second, concerns
of overfitting if we were to arbitrarily increase the
number of epochs without limit. Third and Finally,
the limits imposed on us by our limited access to
computational resources in terms of hardware and
time. This made it much more practical to train for
30 epochs.

Batch Size | Validation Perplexity
8 1.000828
16 1.000653
32 1.000649
64 1.000618

Figure 5: Validation Perplexity by Batch Size

The results of batch size tuning were much like
those of epoch tuning. A clear, inverse relationship
between validation perplexity and batch size, with
the highest value, 64, producing the lowest vali-
dation perplexity. Unlike epochs though, the only

reason not to go further in testing batch size was
purely resource based. Any attempt to utilize the
next power of 2, 128, would lead to memory issues
in the GPU allocation utilized to train the RNN. As
such, the value for batch size was chosen to be 64.

Learning Rate | Validation Perplexity
0.001 1.000658
0.005 1.000664
0.01 1.000521
0.05 1.00053

Figure 6: Validation Perplexity by Learning Rate

The results for varying learning rate were
slightly different. The learning rate that produced
the lowest validation perplexity was 0.01, and both
increasing and decreasing from that value would
produce higher validation perplexities. This is
likely because any smaller, and the model wouldn’t
step fast enough into an optima, but any larger, and
the model would cycle around an optima during
gradient descent.

Based on these resutlts, the RNN produced the
following perplexities on the phase 1 test dataset’s
4 composers.

Composer | RNN Test Perplexity
Mozart 1.0010
Monteverdi | 1.0006
Beethoven 1.0007
Bach 1.0012

Figure 7: RNN Test Perplexity

All of the resultant perplexities were incredi-
bly close to 1, which would could be an indicator
for over fitting. That said, within those results,
Bach has the highest, followed by Mozart, then
Beethoven, then Monteverdi as the lowest. Mon-
teverdi was also the lowest in the N-gram model,
but all other composers have there order changed,
likely due to the RNN'’s ability to learn the com-
posers beyond simply n-gram representation.

Finally, human evaluation was carried out for
the the RNN with the same methodology as earlier,
with 3 generated musical scores for each composer.
This produced the following average ratings for
each composer as generated by the RNN.

Composer | RNN Mean Human Eval
Mozart 5.25

Monteverdi | 4.917

Beethoven | 4.5

Bach 5.417

Figure 8: RNN Human Evaluations

5.3 Transformer

For the Transformer model, we used most of the de-
fault parameters that came with the Pytorch model.
Additionally, we used a batch size of 64 and a learn-
ing rate of 0.01. In general, we found that the more
epochs, the lower the loss. We ended up doing
5 epochs. The following are the transformer test
perplexities for each composer.

Composer | Test Perplexity
Mozart 1.0007
Monteverdi | 1.0004
Beethoven 1.0005
Bach 1.0008

Figure 9: Model Test Perplexity

5.4 Phase 1 Comparison

We have 2 tables for a side-by-side model compari-
son. Figure 4 shows perplexity and Figure 5 shows
human evaluation scores.

Composer | N-Gram | RNN | Transformer
Mozart 7.577 1.0010 | 1.0007
Monteverdi | 7.325 1.0006 | 1.0004
Beethoven | 7.735 1.0007 | 1.0005
Bach 5.822 1.0012 | 1.0008

Figure 10: Model Test Perplexity

Composer | N-Gram | RNN | Transformer
Mozart 4.053 525 | 5417
Monteverdi | 4.133 4917 | 5.75
Beethoven | 3.773 4.5 5

Bach 4.39 5417 | 5917

Figure 11: Average Human Feedback Score

In general, the RNN outperformed the n-gram
model, and the transformer outperformed the RNN
both in regards to test perplexity and human eval-
uations. Specifically, the N-gram produces val-
ues greater than 5, but the RNN and transformer
produce values close to 1. We can see the trans-
former’s worst results, on Bach, are still better than
the RNN’s results on Mozart. However, both the
RNN and transformer have the same ordering of
best to worst in regards to perplexity. Monteverdi,
followed by Beethoven, then Mozart and finally
Bach. Additionally, in regards to human evalua-
tions, Bach performed the best across the board,
and Beethoven perform the worst. This may speak
to some of the underlying choices these musicians
make, and how universally pleasing their songs are,
which our model was trained off of.

5.5 Phase2

Composer | N-Gram | RNN | Transformer
Mozart 0.181 0 0.044
Monteverdi 0.218 0 0.044
Beethoven 0.161 0.018 0.085
Bach 0.360 0 0.021
Haydn 0.176 0.012 0.031
Josquin 0.302 0 0
Schubert 0.140 0 0
Weber 0.125 0.029 0.040
Palestrina 0.261 0.003 0.020

Figure 12: Average Human Feedback Score

In regards to Figure 6, it should be noted that
cells with with a reported BLEU score of 0 were ac-
tually non-zero. Instead, the scores produced were
incredibly close to 0 and were of less magnitude
than 10109, Specifically, these values ranged from
4.16 x 1072% t0 5.59 x 107194, As such, these
values provided little information for analysis and
comparison and we made the decision to replace
these with 0.

So while N-grams have the highest BLEU score,
there are more theoretical reasons it wouldn’t be the
best model to work on for music. First off, while
the scores are better than the RNN and Transformer,
they still aren’t that high. Secondly, N-grams are
still too simple and depend heavily on the choice of
N, lambdas, and epsilon. Additionally, for our data,
certain composers have more notes than others, so
their sequences of notes will be more represented
than other composers in the counts and probability
maps. It is much more reasonable to continue to
work on a Transformer since it would be more
versatile, despite the current results showing low
BLEU scores.

One reason for why the Transformer made poor
choices for duration in its generations compared to
the N-gram is due to the fact that if the Transformer
happened to select an oddly timed next token, the
token after that would have to attend to the poorly
chosen token along with the previous tokens. So in
other words, it could take just one poorly generated
token to prevent the model from generating the
better tokens afterwards.

6 Future Work

We effectively tried two main approaches in the
work we did. First, we tried to model each com-
poser by training one model for each set of data be-
longing to a composer. Our issue, as we later found

with that approach, was that the library of music21
data that we used was fairly small, while just train-
ing one model, whether it was the Transformer,
RNN, or N-gram, on just the target composer’s
previous works, overfit the model to just that com-
poser. Another issues is that we just looked at the
note being generated rather than the other aspects
of the music, like timing. Our second approach
used data with tokens for the note and timing and
tried to create one model that was trained on multi-
ple composers with the goal of having a model that
could perhaps learn how each composer is different.
We chose the works of several more classical com-
posers, but the size of the training data set we ended
up constructing was still just under 4 MB. Addi-
tionally, we used the same set of hyperparameters
for testing both approaches across all the 3 models.
Issues in both our approaches lead us to believe
our issue is primarily a lack of enough data and
potentially a more robust hyperparameter tuning
on the different models.

Future work can effectively look at transforming
the data we currently have so it can contain more
features to train a model on. For example, Muse-
Former was trained on much more data than we had
and used more features too than simply timing and
note, though it did take a similar approach to nor-
malizing the data like we did. Our RNN ended up
having a little more than 280K parameters, and our
Transformer ended up having a little over 22.1M
parameters. Museformer ended up having 16.1M
parameters and MusicTransformer ended up hav-
ing 16.6M parameters. While our Transformer has
more parameters, we also probably did not feed it
enough meaningful data. That would most likely
mean we would have to increase the training time
cost if we do use a dataset that’s larger but con-
tains more features. In either case, our future work
would aim to solve our current issues of having too
small of a dataset and too simple of a model by
transforming our data to have more features and
doing more training on larger and more complex
Transformer models in particular. Additionally, our
Transformer model may have to attend to more
musically complex objects, such as Museformer
attending to the bars of music rather than just the
previous notes. In other words, we may have to
modify a Transformer’s architecture to be more spe-
cialized to the nuances of music rather than using
a general purpose Transformer for the task.

One more change we will likely make is how

we choose to represent these new features. We de-
cided that expanding the vocabulary through the
‘note-duration’ tokens would have been a signifi-
cant enough way to represent the duration feature
in addition to the note. However, as mentioned ear-
lier, the results of the Transformer generations were
not musically pleasant with the timing of notes not
sounding musical at all. We think that this is due
to the probability mass being too sparsely spread
out amongst the choices for the next most likely
note. We would therefore think that having parallel
inputs, where one input stream is just the notes, an-
other input stream is just the duration, another input
stream is another feature, etc. and having multiple
heads output a note, duration, and other features
for a single time step may do a better job of gener-
ating the next note since each feature has its own,
smaller vocabulary and the probability mass may
not be spread so sparsely over a larger vocabulary.

As mentioned in the last section, if the next gen-
erated token was one that was odd or not seen dur-
ing training, then using that as part of the context
for subsequent token generations means that the
model wouldn’t know how to deal with "incorrect"
sequences. This is similar to the issues encountered
during teacher-forcing where the model doesn’t un-
derstand how to deal with an unseen or "incorrect"
sequence as the context, so future work would also
aim to solve this issue.

7 Bibliography

References

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre
Défossez. 2023. Simple and controllable music gen-
eration. arXiv preprint arXiv:2306.05284.

Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan,
Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan Liu.
2022. Museformer: Transformer with fine-and
coarse-grained attention for music generation. Ad-

vances in Neural Information Processing Systems,
35:1376-1388.

