
Music Score Generation

Kritin Dhoka Rohan Gupta Zain Merchant

Abstract

In this paper, we discuss applying NLP meth-001
ods to the field of music, specifically score gen-002
eration. We use the music21 library to train003
our models on a large corpus of classical music004
scores. We use three different models – an n-005
gram model for the baseline, a recurrent neural006
network (RNN), and a transformer model. We007
find that the RNN out performed the n-gram008
model and the transformer out performed the009
RNN. We evaluate these models on human eval-010
uation as well as perplexity and BLEU scor-011
ing. We also discussed the importance of using012
more than just notes when attempting to gen-013
erate scores and discuss the nuance of creating014
music acceptable to the human year.015

1 Introduction016

Music is an integral aspect of human culture, hav-017

ing existed in some shape or form for thousands018

of years. Over the course of musical history, it019

has evolved naturally but also with specific human020

intention through innovations like standardized mu-021

sical notation. Just like language, music is a se-022

quence of tokens from a given vocabulary, and023

can be analyzed using NLP techniques. Current024

NLP efforts surrounding music generally focus on025

Text-To-Music, the act of generating musical sound026

given a textual-prompt, or generating lyrics. There027

is comparatively less work on the topic of having028

NLP models tasked with completing existing or029

generating new musical scores. Central to our re-030

search are the questions: is music able to modeled031

using NLP methods? Given a dataset of several mu-032

sician’s transcribed works, can we use NLP models033

to generate melodies that are acceptable to the hu-034

man ear in the style of that composer?035

2 Existing Work036

Some existing work include MusicGen and Muse-037

former.038

MusicGen is text-to-music rather than score gen- 039

eration, it uses a single language model over several 040

streams of tokens representing music. Both auto- 041

matic and human studies were used to evaluate the 042

model and ablation studies were used to examine 043

the importance of each component. (Copet et al., 044

2023) 045

Museformer is on symbolic music generation 046

via a coarse and fine-grained transformer. The fine- 047

grained attention has a token of a specific music 048

bar attend to all tokens most relevant to the music 049

structures, whereas the coarse-grained only has 050

the token attend to summarizations. This allows 051

the model to capture both musical structure and 052

context, but also be able to model longer music 053

sequences. (Yu et al., 2022) 054

3 Hypothesis 055

We believe that by applying NLP methods for se- 056

quential data, we can generate musical melodies 057

that are acceptable to the human ear and that mimic 058

the style of specific songs or artists. 059

4 Methodology 060

4.1 Phasing of Project 061

Over the course of this project, we received peer 062

and instructor feedback in regards to our prelimi- 063

nary and intermediate results. Based on these, we 064

increased the size of our dataset and modified the 065

transformation we applied to it and we changed 066

the evaluation metric we used afterwards as well. 067

As such, the methodology and evaluation of this 068

project can be split into two phases, Phase 1 and 069

Phase 2, which is how we will be referring to the 070

different general approaches we took. Phase 1 is 071

the approach we took prior to receiving feedback 072

in class, and Phase 2 is our attempt to incorporate 073

that feedback and the results of that. 074

In Phase 1, our main approach was to train a 075

model for each composer by only training that 076

1

model on that composer’s data and the data only077

tokenized the note feature, not any other part of078

each musical composition like timing or tempo.079

We used 4 composers for this, which we will spec-080

ify in the upcoming sections. The feedback we081

received for this approach, based on our results082

for it, was that we used too little data, since each083

mode was only given one composer’s data, and that084

it was overfitting to that composer based off that085

data. In Phase 2, we attempted to solve both issues086

by creating one model that used all the composer087

data in the hopes that it could generalize and effec-088

tively learn the differences between the different089

composers and generate scores that could still be in090

the style of a specific composer based on the input091

sequence given to it. We more than doubled the092

number of composers from phase 1 to 9 in total and093

then combined their data together and fed that into094

the model. We still used a Transformer, RNN, and095

N-gram as our models to train and test.096

4.2 Data set097

The dataset we used is the Core corpus of music21,098

a Python toolkit for computer-aided musicology099

made at MIT. All of the works in this corpus are100

from composers who lived centuries ago, so licens-101

ing fees are not an issue — all the works are ac-102

cessible free of cost. These works are in the form103

of .mxl or .krn, both of which are file types that104

allow music to be read into a Music XML Reader.105

These files contain information about what notes or106

chords are being played and when they are being107

played. It’s essentially a digital file format for sheet108

music.109

In phase 1, We chose to focus on 4 historically110

significant composers and their works: Mozart,111

Monteverdi, Bach, and Beethoven. Each of those112

composers has a large enough data set to train on,113

as explained in section 4.3.114

In phase 2, we expanded the existing composer115

choices and added Haydn, Josquin, Schubert, We-116

ber and Palestrina, in addition to the previous com-117

posers. The complete makeup of this new dataset118

will also be explained in section 4.3119

4.3 Data Transformation120

In music21, each score contains a series of music21121

objects corresponding to sheet music, such as Note,122

Chord, Measure, Part, etc. Our goal for phase 1123

was to simply just get the sequence of core sounds,124

i.e. the notes, and simplify away the more complex125

music objects. We transformed our data from the126

sequence of music21 objects to just a sequence of 127

strings, each one being from the "vocabulary" of 128

music. This musical "vocabulary" is just the 12 129

notes that appear in all of music: A, A#, B, C, C#, 130

D, D#, E, F, F#, and G. We performed the following 131

transformations on the raw scores provided for each 132

composer by music21: 133

• Transposed the score from its current key to 134

C major 135

• Set the octave to 4 for each note 136

• Transformed each chord to its root note 137

The output of the transformation is now just a 138

sequence of notes that represent how each score 139

would have been played in the key of C major and 140

octave 4. Each of these notes can now be consid- 141

ered our token. This transformation was made so 142

that the general pattern of what the composer plays 143

is emphasized rather than the musician’s choice of 144

key. This sequence of notes can be transposed to 145

any other key, and the notes will shift by the same 146

intervals, and given the prevalence of C major be- 147

ing so foundational in music theory, we chose to 148

standardize it to this key. After standardizing the 149

data, we combined all the notes from each song 150

into one single array of notes. This can be thought 151

of as all the notes ever written by the composer 152

ordered in the sequence in which they are played 153

in their scores. We then used this to produce our 154

n-gram counts. 155

Retrieving and transforming the data takes about 156

2 min and 30 seconds in our Jupyter notebook in a 157

Python 3.11 kernel. 158

For phase 2, we wanted to incorporate the dura- 159

tion of the note. Instead of our vocabulary being 160

just the 12 notes, we took the timing for each note 161

and appended it to the corresponding note name. 162

Instead of simplifying each musical object in the 163

sequence to a note string, we simplified it to a ‘note- 164

duration’ string, such as ‘G-quarter’. We got 102 165

unique tokens in our training set from doing this, 166

while still doing the same type of music normaliza- 167

tion we did in Phase 1. 168

The retrieval and transformation of this data set 169

took around 5 minutes with the addition of the new 170

composers on Google Colab CPU. 171

4.4 Train, Validation, and Test Data 172

For Phase 1, after we get the standardized and com- 173

bined sequence of notes for each composer, we 174

2

take the first 80% of notes for that composer as the175

training set, the next 10% as the validation set for176

hyperparameter testing, and the remaining 10% as177

the test set for the perplexity calculations.178

For Phase 1, here are the number of notes in the179

train/validation/test sets for each composer:180

• Mozart181

(16 compositions): 18,598/2,325/2,325182

• Monteverdi183

(49 compositions): 35,087/4,386/4,386184

• Beethoven185

(26 compositions): 123,003/15,375/15,376186

• Bach187

(413 compositions): 89,608/11,201/11,201188

In Phase 2, we increased the number of com-189

posers. Instead of combining all the compositions190

for each composer into one sequence of notes and191

doing the 80/10/10 split on that, we mapped each192

composition to its sequence of note-duration tokens193

and then took the first 80% of each composition194

as the training, the next 10% of that composition195

as the validation, and the final 10% of that com-196

position as the test. This was better because it ac-197

counted for every composition rather than leaving198

out some compositions like phase 1 had. This ap-199

proach produced the following train/validation/test200

breakdown per composer:201

• Mozart202

(16 compositions): 18,593/2,324/2,331203

• Monteverdi204

(49 compositions): 35,065/4,384/4,410205

• Beethoven206

(26 compositions): 122,995/15,375/15,384207

• Bach208

(413 compositions): 89,448/11,187/11,375209

• Hadyn210

(9 compositions): 11,272/1,410/1,413211

• Josquin212

(1 compositions): 2,708/340/342213

• Schubert214

(1 compositions): 1,037/130/130215

• Weber216

(1 compositions): 2,649/331/332217

• Palestrina 218

(500 compositions): 189,825/23,737/23,979 219

One note is that Music21 contained 1319 com- 220

positions by Palestrina, but attempting to use all of 221

them as part of our dataset caused memory usage 222

limit errors during dataset processing. Specifically, 223

the remote server on Google Collab would crash re- 224

gardless of runtime type. As such, we had to reduce 225

the number of compositions taken from Palestrina 226

to a random subset of 500 compositions. 227

When the composers were aggregated together, 228

the dataset had the following train/validation/test 229

split: 230

• Overall 231

(1016 compositions): 473,592/59,218/59,696 232

The above data ended up being 5MB in size. 233

4.5 Approach 234

We first used a standard n-gram model, with n go- 235

ing from 1 to 5. Our vocabulary in phase 1 is just 236

all the 12 notes in music from A to G. In phase 237

2, that vocabulary changed to 102 unique ‘note- 238

duration’ tokens. In our n-grams, our sequences 239

were the previous n-1 notes with the nth note being 240

the current note. After we calculated the probabili- 241

ties of each sequence given its context, we created 242

two probability functions, one with and one with- 243

out interpolation. Within the probability functions, 244

to prevent log(0) from happening, we assume ϵ 245

is a small value of 10−5. If we don’t do this, we 246

get infinite perplexity since some sequences in the 247

validation set aren’t seen in the training set. 248

Given we have a probability function with inter- 249

polation and a perplexity computation function, our 250

hyperparameters end up being the 5 lambdas and 251

ϵ. We showcase the results of our hyperparameter 252

testing in Figures 1 and 2 for Phase 1. 253

For our RNN, we mainly used the PyTorch li- 254

brary. The RNN itself consisted of 1 hidden layer 255

and 1 output layer and was trained using cross- 256

entropy loss. One important modification we had 257

to make when moving from the n-gram to the RNN 258

was how to encode the notes such that they could 259

be fed into the RNN. We settled on using a unique 260

Note to ID mapping, which was reflecting in our 261

code as two dictionaries, one using the notes as 262

keys to the their respective, unique integers and the 263

other using integers as keys to a unique note. When 264

training the model, we split the train data into pairs 265

3

of a sequence of 40 consective notes and a single266

subsequent token.267

For the Transformer, we used a similiar encoding268

structure to the RNN note to ID mapping. We used269

the out of the box PyTorch Transformer model with270

the Adam optimizer and cross entropy loss. For the271

encoder we used the nn.TransformerEncoder and272

for the decoder we used nn.Linear. We had 8 trans-273

former heads, 6 encoder layers, 6 decoder layers,274

and feedforward networks of dimension 2048.275

Between phase 1 and phase 2, our architecture276

for each model didn’t change, only the data we277

passed in and the final layer output for the RNN278

and Transformer changed because the vocabulary279

changed.280

4.6 Generating Scores281

For each composer, we generated scores in 4/4 time282

signature that each have 16 measures, or 64 quarter283

notes.284

For phase 1, to generate scores, we first ran-285

domly sample the first note by just picking one286

of the 12 notes in music. Then, we use that first287

note as the prefix for a musician’s model to com-288

plete 16 measures for, which is 63 more notes. The289

generated notes are quarter notes appended to the290

sequence one by one to generate a musical score291

in the time signature of 4/4, which when opened292

through MuseScore 4, can be played with a variety293

of instruments and vocal ranges.294

Through standardizing the generated score to be295

in 4/4, we can generate an outline for the user of296

what specific notes one could play, but leaves it up297

to the user on how to play them, which requires a298

lot more music features, like sustain and different299

kinds of notes, beyond just the note itself. In other300

words, this model generates “what to play", not301

“how to play", with regards to single notes.302

In Phase 2, we tried to do melody completion303

tasks as our generations. We chose a specific com-304

position, chose the first 20 note-duration tokens305

of that composition as the prefix/context, and then306

generated another 44 notes to end up with another307

64 note/16 measure composition.308

4.7 Evaluation309

Our method of evaluation is based on two methods:310

objective NLP-metrics like perplexity and subjec-311

tive feedback from people on the generated scores.312

In phase 1, we look at the perplexity on the test313

split to see how we can change our hyperparameters314

to have the generated score match more closely 315

with the target composer. 316

In phase 2, due to concerns of overfitting and per- 317

plexity showing little variation between the RNN 318

and the transformer as per feedback recived from 319

peers and instructor, we shifted to evaluating via the 320

metric BLEU. BLEU is an n-gram based matching 321

metric, which compares sets of sequences, one of 322

which is model-generated and the other is treated 323

as the reference. For our purposes, we gave the 324

models the opening 10 notes in each work in the 325

test set, and had them generate a completion to 326

the work. The generated ending and the original 327

ending were then used to calculate BLEU scores. 328

Another test for music generation models is a 329

human listening test. For the purposes of this ex- 330

periment, this is a subjective evaluation wherein 6 331

people are asked to score each generated sample on 332

a scale from 1 to 10 based on personal preference, 333

1 being worst music sample and 10 meaning best 334

music sample. In phase 1, it was hard to tell how 335

good the music generated was between the genera- 336

tions since they all had the same timing. For phase 337

2, it was quite easy to tell that the generations were 338

not as musically pleasant due to odd duration of 339

notes, especially for the Transformer generations. 340

That’s why we chose not to collect any human eval- 341

uations for Phase 2 generations because it was quite 342

obvious the generations were not of good quality. 343

5 Results 344

5.1 N-Gram 345

We have 3 tables to showcase our results across 346

different hyperparameters for the Phase 1 n-gram 347

model. 348

Figure 1 shows the values for interpolated and 349

non-interpolated perplexity when we keep a fixed 350

value for ϵ, which we set to 10−5, and different 351

values for each of the lambdas. We have 5 lambda 352

values, corresponding to each of our 5 n-grams. 353

From when n = 1 to 5, our first set of lambdas is 354

[0.2, 0.2, 0.2, 0.2, 0.2], so each of the n-grams 355

gets equal weight. In the same order, our second 356

set of lambdas is [0.4, 0.3, 0.15, 0.1, 0.05], which 357

emphasizes the n-grams where n is smaller. Our 358

third set of lambdas is [0.05, 0.1, 0.15, 0.3, 0.4], 359

which emphasizes the n-grams where n is larger. 360

We compute the perplexities across all of these 361

while fixing our epsilon for Figure 1. 362

Figure 2 shows the values for interpolated and 363

non-interpolated perplexity when we keep a fixed 364

4

value for our test set using the lambdas that led to365

the lowest perplexity for each composer. We fixed366

ϵ here to be 10−5.367

We found that when we vary the hyperparameter368

of ϵ between 10−5, 10−6, 10−7, fixing the lambda369

set to all be equal, we get very minimal differences370

for the values of the perplexities using interpolation371

while the perplexities not using interpolation will372

vary as a function of that hyperparameter. This373

leads us to believe that the more significant result374

lies in the perplexities with interpolation as this375

hyperparameter is essentially just what we add to376

a probability to ensure it’s not 0. It is one method377

of smoothing, and we will explore other smoothing378

techniques for the final report.379

Figure 3 shows the average score given to each380

generated score from each musician based on ask-381

ing 6 people their rating of the score from 1-10382

after listening to it.383

We saw high values for the perplexities when384

using the non-interpolated probability function,385

which just depends on our ϵ values. All it shows386

is that the non-interpolated probability dealt with387

sequences in the validation set that were not in the388

training set. Across the board, Bach was the com-389

poser with the smallest perplexity, which was true390

even for the non-interpolated perplexities. How-391

ever, the perplexity wasn’t that much higher for the392

other 3 composers in comparison.393

For the different lambdas during interpolation,394

Mozart and Monteverdi achieved the lowest per-395

plexity with the equal lambdas, while Beethoven396

and Bach achieved the lowest perplexity with the397

lambdas emphasizing larger values for n.398

399
Validation Set Perplexity
for Different Lambdas Mozart Monteverdi Beethoven Bach

Equal,
Non-interpolated 136.745 278.575 88.712 11.905

Equal,
Interpolated 6.911 9.308 9.161 6.149

Small Ns Emphasized,
Non-Interpolated 136.745 278.575 88.712 11.905

Small Ns Emphasized,
Interpolated 7.42 9.432 10.09 7.283

Big Ns Emphasized,
Non-Interpolated 136.745 278.575 88.712 11.905

Big Ns Emphasized,
Interpolated 7.16 10.27 9.12 5.587

400

Figure 1: Validation Set Perplexity for Different Lambdas401

402
Test Set Perplexity
for Each Composer Mozart Monteverdi Beethoven Bach

Interpolated 7.577 7.325 7.735 5.822
Non-interpolated 252.708 59.232 40.038 14.454

403

Figure 2: Test Set Perplexity for Each Composer404

Composer Score 1 Score 2 Score 3
Mozart 4.16 3.5 4.5
Monteverdi 3.57 4.5 4.33
Beethoven 3.83 3.33 4.16
Bach 4.5 4 4.67

405

Figure 3: Average Rating Per Score 406

5.2 RNN 407

In regards to RNN hyper parameter tuning, we 408

looked at 3 main hyper parameters: the number 409

of epochs the model trains for, the learning rate 410

and the batch size. We varied the values of these 411

parameters and examined the effects on the val- 412

idation perplexity to assess the best set of hyper 413

parameters to use. The following tables outline 414

the results produced based on each variation of the 415

hyper parameters at the given values: 416

of Epochs Validation Perplexity
5 1.000855

10 1.000722
20 1.000766
30 1.000648

417

Figure 4: Validation Perplexity by Number of Epochs 418

Based on this table, the trend of how the num- 419

ber epochs the models trains for in relation to the 420

validation perplexity is clearly inverse, As the num- 421

ber of epochs increases, the validation perplexity 422

decreases, with 30 epochs having the lowest valida- 423

tion perplexity. However, we chose not to continue 424

increasing the number of epochs further for three 425

main reasons. First the validation perplexity did 426

not fluctuate more than .000005 with epochs higher 427

than 30, which would indicate that an optima can be 428

reliably found within 30 epochs. Second, concerns 429

of overfitting if we were to arbitrarily increase the 430

number of epochs without limit. Third and Finally, 431

the limits imposed on us by our limited access to 432

computational resources in terms of hardware and 433

time. This made it much more practical to train for 434

30 epochs. 435

Batch Size Validation Perplexity
8 1.000828

16 1.000653
32 1.000649
64 1.000618

436

Figure 5: Validation Perplexity by Batch Size 437

The results of batch size tuning were much like 438

those of epoch tuning. A clear, inverse relationship 439

between validation perplexity and batch size, with 440

the highest value, 64, producing the lowest vali- 441

dation perplexity. Unlike epochs though, the only 442

5

reason not to go further in testing batch size was443

purely resource based. Any attempt to utilize the444

next power of 2, 128, would lead to memory issues445

in the GPU allocation utilized to train the RNN. As446

such, the value for batch size was chosen to be 64.447

Learning Rate Validation Perplexity
0.001 1.000658
0.005 1.000664
0.01 1.000521
0.05 1.00053

448

Figure 6: Validation Perplexity by Learning Rate449

The results for varying learning rate were450

slightly different. The learning rate that produced451

the lowest validation perplexity was 0.01, and both452

increasing and decreasing from that value would453

produce higher validation perplexities. This is454

likely because any smaller, and the model wouldn’t455

step fast enough into an optima, but any larger, and456

the model would cycle around an optima during457

gradient descent.458

Based on these resutlts, the RNN produced the459

following perplexities on the phase 1 test dataset’s460

4 composers.461

Composer RNN Test Perplexity
Mozart 1.0010
Monteverdi 1.0006
Beethoven 1.0007
Bach 1.0012

462

Figure 7: RNN Test Perplexity463

All of the resultant perplexities were incredi-464

bly close to 1, which would could be an indicator465

for over fitting. That said, within those results,466

Bach has the highest, followed by Mozart, then467

Beethoven, then Monteverdi as the lowest. Mon-468

teverdi was also the lowest in the N-gram model,469

but all other composers have there order changed,470

likely due to the RNN’s ability to learn the com-471

posers beyond simply n-gram representation.472

Finally, human evaluation was carried out for473

the the RNN with the same methodology as earlier,474

with 3 generated musical scores for each composer.475

This produced the following average ratings for476

each composer as generated by the RNN.477

Composer RNN Mean Human Eval
Mozart 5.25
Monteverdi 4.917
Beethoven 4.5
Bach 5.417

478

Figure 8: RNN Human Evaluations479

5.3 Transformer 480

For the Transformer model, we used most of the de- 481

fault parameters that came with the Pytorch model. 482

Additionally, we used a batch size of 64 and a learn- 483

ing rate of 0.01. In general, we found that the more 484

epochs, the lower the loss. We ended up doing 485

5 epochs. The following are the transformer test 486

perplexities for each composer. 487

Composer Test Perplexity
Mozart 1.0007
Monteverdi 1.0004
Beethoven 1.0005
Bach 1.0008

488

Figure 9: Model Test Perplexity 489

5.4 Phase 1 Comparison 490

We have 2 tables for a side-by-side model compari- 491

son. Figure 4 shows perplexity and Figure 5 shows 492

human evaluation scores. 493

494
Composer N-Gram RNN Transformer
Mozart 7.577 1.0010 1.0007
Monteverdi 7.325 1.0006 1.0004
Beethoven 7.735 1.0007 1.0005
Bach 5.822 1.0012 1.0008

495

Figure 10: Model Test Perplexity 496

497
Composer N-Gram RNN Transformer
Mozart 4.053 5.25 5.417
Monteverdi 4.133 4.917 5.75
Beethoven 3.773 4.5 5
Bach 4.39 5.417 5.917

498

Figure 11: Average Human Feedback Score 499

In general, the RNN outperformed the n-gram 500

model, and the transformer outperformed the RNN 501

both in regards to test perplexity and human eval- 502

uations. Specifically, the N-gram produces val- 503

ues greater than 5, but the RNN and transformer 504

produce values close to 1. We can see the trans- 505

former’s worst results, on Bach, are still better than 506

the RNN’s results on Mozart. However, both the 507

RNN and transformer have the same ordering of 508

best to worst in regards to perplexity. Monteverdi, 509

followed by Beethoven, then Mozart and finally 510

Bach. Additionally, in regards to human evalua- 511

tions, Bach performed the best across the board, 512

and Beethoven perform the worst. This may speak 513

to some of the underlying choices these musicians 514

make, and how universally pleasing their songs are, 515

which our model was trained off of. 516

6

5.5 Phase 2517

518
Composer N-Gram RNN Transformer
Mozart 0.181 0 0.044
Monteverdi 0.218 0 0.044
Beethoven 0.161 0.018 0.085
Bach 0.360 0 0.021
Haydn 0.176 0.012 0.031
Josquin 0.302 0 0
Schubert 0.140 0 0
Weber 0.125 0.029 0.040
Palestrina 0.261 0.003 0.020

519

Figure 12: Average Human Feedback Score520

In regards to Figure 6, it should be noted that521

cells with with a reported BLEU score of 0 were ac-522

tually non-zero. Instead, the scores produced were523

incredibly close to 0 and were of less magnitude524

than 10−100. Specifically, these values ranged from525

4.16 × 10−206 to 5.59 × 10−104. As such, these526

values provided little information for analysis and527

comparison and we made the decision to replace528

these with 0.529

So while N-grams have the highest BLEU score,530

there are more theoretical reasons it wouldn’t be the531

best model to work on for music. First off, while532

the scores are better than the RNN and Transformer,533

they still aren’t that high. Secondly, N-grams are534

still too simple and depend heavily on the choice of535

N, lambdas, and epsilon. Additionally, for our data,536

certain composers have more notes than others, so537

their sequences of notes will be more represented538

than other composers in the counts and probability539

maps. It is much more reasonable to continue to540

work on a Transformer since it would be more541

versatile, despite the current results showing low542

BLEU scores.543

One reason for why the Transformer made poor544

choices for duration in its generations compared to545

the N-gram is due to the fact that if the Transformer546

happened to select an oddly timed next token, the547

token after that would have to attend to the poorly548

chosen token along with the previous tokens. So in549

other words, it could take just one poorly generated550

token to prevent the model from generating the551

better tokens afterwards.552

6 Future Work553

We effectively tried two main approaches in the554

work we did. First, we tried to model each com-555

poser by training one model for each set of data be-556

longing to a composer. Our issue, as we later found557

with that approach, was that the library of music21 558

data that we used was fairly small, while just train- 559

ing one model, whether it was the Transformer, 560

RNN, or N-gram, on just the target composer’s 561

previous works, overfit the model to just that com- 562

poser. Another issues is that we just looked at the 563

note being generated rather than the other aspects 564

of the music, like timing. Our second approach 565

used data with tokens for the note and timing and 566

tried to create one model that was trained on multi- 567

ple composers with the goal of having a model that 568

could perhaps learn how each composer is different. 569

We chose the works of several more classical com- 570

posers, but the size of the training data set we ended 571

up constructing was still just under 4 MB. Addi- 572

tionally, we used the same set of hyperparameters 573

for testing both approaches across all the 3 models. 574

Issues in both our approaches lead us to believe 575

our issue is primarily a lack of enough data and 576

potentially a more robust hyperparameter tuning 577

on the different models. 578

Future work can effectively look at transforming 579

the data we currently have so it can contain more 580

features to train a model on. For example, Muse- 581

Former was trained on much more data than we had 582

and used more features too than simply timing and 583

note, though it did take a similar approach to nor- 584

malizing the data like we did. Our RNN ended up 585

having a little more than 280K parameters, and our 586

Transformer ended up having a little over 22.1M 587

parameters. Museformer ended up having 16.1M 588

parameters and MusicTransformer ended up hav- 589

ing 16.6M parameters. While our Transformer has 590

more parameters, we also probably did not feed it 591

enough meaningful data. That would most likely 592

mean we would have to increase the training time 593

cost if we do use a dataset that’s larger but con- 594

tains more features. In either case, our future work 595

would aim to solve our current issues of having too 596

small of a dataset and too simple of a model by 597

transforming our data to have more features and 598

doing more training on larger and more complex 599

Transformer models in particular. Additionally, our 600

Transformer model may have to attend to more 601

musically complex objects, such as Museformer 602

attending to the bars of music rather than just the 603

previous notes. In other words, we may have to 604

modify a Transformer’s architecture to be more spe- 605

cialized to the nuances of music rather than using 606

a general purpose Transformer for the task. 607

One more change we will likely make is how 608

7

we choose to represent these new features. We de-609

cided that expanding the vocabulary through the610

‘note-duration’ tokens would have been a signifi-611

cant enough way to represent the duration feature612

in addition to the note. However, as mentioned ear-613

lier, the results of the Transformer generations were614

not musically pleasant with the timing of notes not615

sounding musical at all. We think that this is due616

to the probability mass being too sparsely spread617

out amongst the choices for the next most likely618

note. We would therefore think that having parallel619

inputs, where one input stream is just the notes, an-620

other input stream is just the duration, another input621

stream is another feature, etc. and having multiple622

heads output a note, duration, and other features623

for a single time step may do a better job of gener-624

ating the next note since each feature has its own,625

smaller vocabulary and the probability mass may626

not be spread so sparsely over a larger vocabulary.627

As mentioned in the last section, if the next gen-628

erated token was one that was odd or not seen dur-629

ing training, then using that as part of the context630

for subsequent token generations means that the631

model wouldn’t know how to deal with "incorrect"632

sequences. This is similar to the issues encountered633

during teacher-forcing where the model doesn’t un-634

derstand how to deal with an unseen or "incorrect"635

sequence as the context, so future work would also636

aim to solve this issue.637

7 Bibliography638

References639

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David640
Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre641
Défossez. 2023. Simple and controllable music gen-642
eration. arXiv preprint arXiv:2306.05284.643

Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan,644
Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan Liu.645
2022. Museformer: Transformer with fine-and646
coarse-grained attention for music generation. Ad-647
vances in Neural Information Processing Systems,648
35:1376–1388.649

8

