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Abstract

In this paper, we first examine the relative lack
of phonetic representation being used for lan-
guage modeling compared to orthographic rep-
resentation. We then propose novel metrics
for evaluating rhymes across multiple rhyme
types, and compare the effectiveness of these
metrics to rhyme evaluation metrics developed
by others. These metrics employ conversion
to a phonetic representation to obtain an eval-
uation grounded in word sound. Next, we test
the effectiveness of a state of the art LLM on
a rhyming task, and compare its performance
when various prompting techniques are used.
Finally, we propose a method for analyzing
the influence of phonetic and orthographic rep-
resentation on language model performance,
specifically on a task with a strong phonetic
component, thyming.

1 Introduction

A great deal of language model development has
been based in orthographic language representa-
tion, both in the datasets used for training and in the
tasks focused on by the development. Meanwhile,
LM support for phonetic representation such as the
International Phonetic Alphabet (IPA) is very poor
(Gale et. al., 2023). The focus on orthographic
over phonetic representations is driven by multiple
factors.

The foremost factor is data availability. Huge
amounts of English text data are widely available
from both the internet and literature, whereas data
with an orthographic representation is quite limited
by comparison. The nature of the tasks being re-
searched is also relevant. Tasks like spell check and
summarization have little to no need for phonetic
representation and thus can be explored without
exiting the orthographic domain. The encoding,
too, plays an important role in language model
development. Most common encoding schemes
like byte-pair encoding (BPE) encode words at the
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word, subword, or character level and are thus in-
herently orthographic.

Ultimately, this focus on orthographic represen-
tation is not without its drawbacks. It is known that
“neural language models are able to capture implicit
information about phonology from orthography”.
However, this implicit information is limited by
encoding, training, and embeddings (Elman, 1990;
Prince and Smolensky, 1997). Thus, ignoring the
phonetic component of language may be harming
the ability of LMs to perform well on tasks with a
phonetic component such as rhyming and analyz-
ing pronunciations.

Furthermore, despite the remarkable advance-
ments in general language generation by recent
large language models (LLMs), there still needs
to be a noticeable improvement in their ability to
produce rhyming patterns reliably (Popescu-Belis
et al., 2023).

2 Background

Language inherently consists of both orthographic,
or text-based components and phonetic, or sound-
based components. These components are closely
connected with the written word having correspond-
ing pronunciations, and the spoken word having
corresponding transcriptions. Despite this connec-
tivity, orthographic and phonetic components can-
not be consistently inferred from each other. This
is demonstrated by the nontriviality of pronouncing
an unseen written word or transcribing an unseen
spoken word. English in particular is often referred
to as being “not phonetic”, meaning that the infer-
ence from orthographic to phonetic representation
within the English language is difficult and incon-
sistent.

2.1 Graphemes and Phonemes

Orthographic and phonetic representations each
have their own unit of language representation,
known as graphemes and phonemes, respectively.



— Grapheme: the smallest meaningful con-
trastive unit in a writing system

— Phoneme: the smallest unit of speech distin-
guishing one word (or word element) from
another

A grapheme is typically a single character. Ex-
amples of phonemes can be seen in the appendix.
Grapheme representation and phonemic represen-
tation are used to represent the orthographic and
phonetic components of language, respectively.

The phonemes we use here are elements of a
set of phonetic transcription codes called ARPAbet.
ARPAbet describes phonemes that are a part of
General American English with unique sequences
of uppercase characters in the English alphabet.
The phonemes of vowels can optionally be fol-
lowed by a numeric stressor with values ranging
from O to 2 inclusive that describe how the vowel
is accented.

3 Related Work

BORT (Gale et al., 2023) explores phonemic lan-
guage modeling using an LLM that accepts a mix-
ture of English pronunciations in IPA and English
orthography and demonstrates its use on a task mo-
tivated by a real-world clinical problem: analysis
of speech errors made by individuals with aphasia.
The researchers create the BORT models by ex-
tending the pre-training of an existing LLM, BART.
Their self-supervised task focuses on a novel IPA-
to-orthography translation task given a document,
they transform some words into IPA, then train the
model to restore the orthography. The pretrained
BORT model is available for anyone to download
and fine-tune.

Meanwhile, previous rhyme generation work
explores training on a corpus of a poetry form,
rap lyrics, or generic prose. Notably, these ap-
proaches use annotation techniques, such as speci-
fying rhyming words or line endings, instead of us-
ing the phonemic representation of words. The Me-
chanical Bard (Agnew et. al., 2023) consider the au-
tomated generation of sonnets using a constrained
decoding approach within preset poetic constraints
(e.g., number of syllables, rhyme scheme, and pen-
tameter). Additionally, their method includes 120
handcrafted grammar templates that encode the
part-of-speech structure of a line of poetry. They
fine-tune GPT-2 on a large corpus of over 15000
poems and a smaller corpus of sonnets, and apply

their decoding generation procedure on generated
text. Human evaluation is used to confirm that their
approach produces sonnets that resemble human au-
thored sonnets. The code for The Mechanical Bard
is available on GitHub. GPoeT (Popescu-Belis et
al., 2023) is trained on synthetic quatrains with con-
secutive thymes (AABB) and alternating rhymes
(ABAB). This approach obtains valid rhyming in
nearly 60% of consecutive lines and 45% of alter-
nating lines in generated samples. PoeLM (Ormaz-
abal et al., 2022) learns rhythm and syllables from
a large corpus of Spanish and Basque prose. This
model learns control tags, which specify the length,
end rhyme, and last syllable of every sentence, and
leverages them to generate lines of poetry. This
approach is evaluated by asking human judges if
they prefer PoeLM generated or human generated
poems.

4 Dataset

For the modeling experiment task we needed our
dataset to consist of rhyming line pairs. This kind
of data was difficult to find because while there are
many open source datasets that contain rhyming
data, it would be difficult to extract the lines that
rhyme with each other. In the end, we decided to
use a dataset called the “Chicago Rhyming Poetry
Corpus” that consists of annotated poetry across
various authors. This dataset consists of 4MB of
English text with 130K total lines and has each
stanza annotated with the rhyming scheme (Lenzo,
2023).

4.1 Parsing Rhyming Lines

The rhyme schemes provided a convenient way
to match lines with another line that rhymes with
it. Each stanza in the dataset begins with a line
that defines the rhyming scheme. The line starts
with the word “RHYME” indicating that this line
defines a rhyming scheme. Then follow a series of
letters. The first letter represents the first line, the
second letter represents the second line, and so on
(Lenzo, 2023). If two letters are the same, it means
that the lines that map to those letters rhyme. For
example: “RHYME a b a b” means that the first
and third lines rhyme and the second and fourth
lines rthyme. If the stanza is too long, the thyming
scheme ends with “*” indicating that the rhyming
scheme repeats. For example, “RHYME a a *”
means that the first two lines, second two lines, and
each pair of lines that remain in the stanza rhyme.



4.2 Grapheme to Phoneme

Now that we have the grapheme representation of
our data, we need to translate them into their phone-
mic representations. There are two main ways of
doing this. One way is to use The Carnegie Mellon
University (CMU) Pronouncing Dictionary. This
dictionary consists of the pronunciations of over
134,000 English words represented with a space
separated string of phonemes. For example, the
word “language” would be mapped to “L AE1 NG
G W AHO JH” (Popescu-Belis et al., 2023). The
other way is to use a deep learning seq2seq frame-
work from a python model called g2pE that pre-
dicts the best pronunciation of the word and returns
a space separated string of phonemes just as The
CMU Pronouncing Dictionary does (Kyubyong,
2019). This model was especially useful because
our dataset contained many words from Old En-
glish that are no longer valid words in modern En-
glish. The downside of using the g2pE model is
that it takes around half a second for it to return its
prediction. In order to optimize the speed at which
we translate our grapheme dataset to phonemes, we
first create a map that maps all unique words in our
dataset to their phonemic representations. After
creating this dictionary, we are able to have con-
stant time lookup to the phonemic representations
of any word in our dataset.

With these tools available, we can now convert
all line pairs in our grapheme dataset to phonemes.
However, we cannot simply concatenate the phone-
mic representations of words together. Because
the phonemic representations of words are a space
separated string of phonemes, we will not be able
to distinguish the start and ends of words if we
just concatenate them together. For example, con-
sider the sentence “Hello world.” If we were to
simply concatenate the phonemic representations,
we would have “HH AHL OW W ER L D,” but it
is ambiguous where one word begins and the next
starts. To fix this issue we treat each phoneme as a
token and change the phonemic representation of
a word from a space separated string of phonemes
to a list of the phonemes in order. Then to produce
the phonemic representation of a line, we join the
phonemic representations of words together with
spaces between them. For our example sentence
“Hello world,” it would now become [“HH”, “AH”,
“L7, “OW”, ““ “W”, “ER”, “L”, “D”]. This for-
mat makes it clear for both humans and machines
where the cutoff between words are.

5 [Evaluating Rhymes

A criterion for measuring the number of rhyme
pairs is key for the present study. We present a met-
ric that distinguishes between perfect rhymes, as-
sonant rhymes, consonant rhymes, and no rhymes,
using the CMU Pronouncing Dictionary. We test
it on a custom modified corpus of human poetry
annotated for rhyme and show that its accuracy is
sufficient for use in this study.

5.1 Preliminary Analysis

An initial approach is to assess the similarity of
the last K phonemes of words in a rhyme pair.
This method focuses on the terminal sounds of
words. As such, it is particularly useful for cap-
turing rthymes where the final sound is the same
between both words.

To illustrate, consider the couplet from Richard
Lovelace’s "La Bella Bona Roba":

Ye cloudy spark lights, whose vast multi-
tude,
Waite on this star in her first magnitude.

After removing punctuation and transcribing the
final words into phonemes using CMUDict, we
obtain “M AHL T AH T UW D” for *multitude’
and “M AE G N AH T UW D” for magnitude’.
Comparing the last two phonemes (“UW D”) of
each word reveals a 100% match, while com-
paring the last five phonemes shows an 80% match.

Phoneme Similarity by Number of Phonemes from End of Word

—e— Phoneme similarity

1 2 3
Number of Phonemes from the End of the Word

Figure 1: Phoneme Similarity by Number of Phonemes
from End of Word

Applying this metric on our modified Chicago
Poetry Corpus, yielded sufficient initial results.
When evaluating the similarity of the last phoneme
alone, the metric achieved a 90% accuracy rate.
However, accuracy diminished with the inclusion



of more phonemes, a trend in line with our expec-
tations.

Despite its efficacy, this metric exhibits limitations
in identifying imperfect rhymes, such as “Eye” and
“Light” (phonemes "AY" and "L AY T"). Although
they share the "AY" sound, because this sound is
not in the same position from the end in both words,
our metric registers 0% similarity. To address this
limitation, we introduce a more sophisticated algo-
rithm in the following section, which is specifically
designed to capture these nuanced aspects of poetic
rhyme.

5.2 Definitions of Rhymes

GPoeT (Popescu-Belis et al., 2023) formalized an
initial set of definitions for rhymes. They defined a
perfect rhyme as the identity of the final vowel and
consonant sound of a word, starting with the first
vowel of the last stressed syllable and an assonant
rhyme as the identity of the final vowels in the last
stressed syllable, but not of the ending consonant.

To broaden the amount of available candidates
for a rhyme, they excluded stress information from
phonemes. Additionally, they distinguish 15 phone-
mic vowels (e.g., ‘AH’, ‘AW’, ‘EY’, ‘OY’) and
consider all other phonemes as consonants.

An example of perfect rhymes are the words
"Light" and "Night" (phonemes "L AY T" and "N
AY T"). Both words share the same ending vowel
sound “AY” followed by the same consonant sound
“T”. In contrast, an example of assonant rhymes
are the words "Release" and "Feast" (phonemes "R
IY LTY S" and "FIY S T"). Both words share
the same ending vowel sound “IY”, but they are
followed by different consonant sounds “S” and “S
T.

These definitions, however, do not encompass
the full spectrum of rhyme types. In our improved
definition, we incorporate consonant thymes, draw-
ing from Peter Dale’s "An Introduction to Rhyme,"
which explores the evolution of rhymes over the
century (Dale 1998).

An example of consonant rhymes are the words
“Spot” and “Cut” (phonemes "S P AA T" and "C
AH T"). Here, the words terminate with different
vowel sounds "AA" and "AH", but they follow with
the same consonant sound "T".

Building on this, we propose a revised definition
for rhymes between two words, wl and w2, based
on their phonetic representations, phon(wi). Our
criteria are as follows:

— We have a perfect rhyme if phon(wl) and
phon(w2) end with the same vowel followed
by the same consonant(s), if any.

— We have an assonant rhyme if phon(w1) and
phon(w2) end with the same vowel, followed
by one or more non-identical consonants.

— We have a consonant rthyme if phon(w1) and
phon(w?2) end with different vowels, followed
by the same consonants.

— Otherwise, the lines do not rhyme.

This refined definition allows for a more compre-
hensive and nuanced analysis of rhymes in poetry,
catering to the diverse forms of rhyming present in
contemporary literature.

5.3 Validating our Metric

Rhyme Metrics on Chicago Rhyming Poetry Corpus Couplets
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Figure 2: Rhyme Metrics on Chicago Rhyming Poetry
Corpus

Our proposed metric for rhymes follows from
the aforementioned definitions. We validated our
metric on our modified Chicago Poetry Corpus and
compared it against the metric used in the GPoeT
paper.

Both metrics demonstrate an equivalent capac-
ity in identifying perfect and assonant rhymes, as
evidenced by the identical scores of 78% for per-
fect rhymes and 2% for assonant rhymes. However,
a notable distinction emerges in the detection of
consonant rhymes. Our metric successfully iden-
tified 12% of the rhymes as consonant rthymes, a
category in which the GPoeT Metric did not regis-
ter any. This difference underscores the enhanced
sensitivity of our metric. It effectively identifies
5636 examples of consonant rhymes, which are
overlooked by the GPoeT method. As such, we
successfully demonstrate the robustness of our met-
ric in encompassing a wider range of rhyme types.



5.4 Potential Issues

In our analysis, we encountered several challenges
which may contribute to the less than perfect scores
observed. One such challenge stems from the in-
herent complexities of the ARPABET system, par-
ticularly in its representation of phonemes. For in-
stance, in the case of words like "Heard’ (HH ER1
D) and Yard’ (Y AA1R D), the ARPABET merges
the 'R’ sound into the adjacent vowel sounds, such
as 'ER’. This merging makes it difficult to sep-
arate the vowel and consonant sounds distinctly,
challenging our metric’s ability to recognize the
similarity in the 'RD’ consonant sound at the end
of these words.

Another issue arises from inaccuracies in
grapheme-to-phoneme (G2P) conversions, espe-
cially for words not included in the CMU Pronun-
ciation Dictionary. A notable example is the word
’Behoof’, which our G2P model converts incor-
rectly (B EH1 HH UH2 D), erroneously suggesting
it ends with a ’D’ consonant sound. This incorrect
conversion leads to inaccurate rhyme comparisons,
as seen when paired with the word "Proof” (P R
UWI1 F).

Furthermore, the strict definitions of rhymes
pose their own challenges. Consider the word pair
’Commitment’ (K AHMIHTM AH N T) and
’Identical’ (AY D EH N T IH K AH L). Accord-
ing to our definition of assonant thymes — where
both words end with the same vowel sound fol-
lowed by different consonants — this pair fits the
criterion, sharing the ’AH’ vowel sound. However,
intuitively, ’Commitment’ and ’Identical’ do not
seem to thyme. This discrepancy highlights that
while some consonant pairs may sound alike, oth-
ers do not. For example, the consonant pairs N
T’ and ’L’ in this instance do not produce a similar
sound. Addressing this in future work, we might
consider integrating principles from the Mnemonic
Major System to better define consonant similarity.

These examples underscore the complexity in
rhyme detection and validation. The evolution of
pronunciation and the imperfections inherent in the
annotation process further complicate the reliability
of human assessments of rhymes. This variability
in linguistic interpretation underscores the need for
continual refinement in our metric.

6 Prompting

In our investigation, we evaluated the proficiency of
GPT-3.5 Turbo in generating subsequent thyming
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Figure 3: Rhyme Generation Comparision between Po-
etry Corpus and GPT-3.5 Turbo

lines in poetry. We conducted experiments with
the first 100 examples in our modified corpus. For
each test, GPT-3.5 Turbo was given a prompt to
generate the next line, followed by the first line of
a couplet.

The prompts varied in complexity:

— Simple Prompt: "Continue the poem with the
next rhyming line."

— Descriptive Prompt: "Continue the poem with
the next rhyming line. Ensure that the last
word of the generated line rhymes with the
last word of the provided line."

— Few Shot Prompt: Similar to the descriptive
prompt, but supplemented with an example
couplet for each type of rhyme. Full prompt
provided in the appendix.

Detailed examples of outputs from all three
styles of prompts are provided in the appendix.

The simpler prompts achieved higher success
with perfect rhymes, suggesting GPT-3.5 Turbo’s
inherent capability to follow basic rhyming struc-
tures. However, when it came to more nuanced
rhyme types like assonant and consonant rhymes,
the model struggled, potentially due to the complex-
ity and variability inherent in these rhyme types.

Notably, the Few Shot Prompt method under-
performed across all rhyme types. Our analysis
indicates that this might be due to the model’s in-
terpretation of the initial line as an incomplete frag-
ment, leading it to first attempt to complete the
provided line with its own rhyme before generating
a subsequent line. This often resulted in a mis-
matched rhyme pair. Furthermore, it occasionally
generated lines that did not rhyme at all or tried to
semantically complete the initial sentence rather
than focusing on the rhyming structure.



One hypothesis for these discrepancies is that
GPT-3.5 Turbo, given only the first line, aims to cre-
ate a contextually and semantically coherent next
line. This differs from the original poetry, which
might have been extracted from a larger piece, pro-
viding more context for the rhyme. The Al model’s
focus on contextual coherence could interfere with
its ability to strictly adhere to the rhyme pattern,
particularly in more complex rhyming structures.

These findings suggest that while GPT-3.5 Turbo
shows promise in generating thyming lines, partic-
ularly for simpler rhyme schemes, its performance
varies significantly based on the prompt structure
and the complexity of the rhyme type.

7 Modeling Experiment

The goal of the modeling experiment is to examine
how grapheme and phoneme representation affect
the ability of a language model to learn a phonetic
task. We hypothesize that phonetic representation
will improve model performance on a task of gen-
erating a rhyming line based on an input line.

7.1 Experiment Setup

To test the hypothesis, we aimed to compare
two analogous models: one model trained with
a grapheme representation at the character level
and another model trained with a phoneme repre-
sentation using ARPAbet. The nature of the task is
generation of an output sequence which rhymes (by
end word) with an input sequence. Thus, we chose
to use a sequence-to-sequence (seq2seq) model ar-
chitecture with a LSTM encoder and decoder. See
appendix for model diagram. Rhyming line pairs
extracted from the Chicago Rhyming Poetry Cor-
pus are used for training and testing of the model.

7.2 Results

Training the grapheme model on the rhyming line
pairs resulted in near identical output sequences
being generated for any input sequence we tested
on. We tried training the model several times with
varying numbers of epochs. Each time though, the
model converged to generating the same output
sequence for any input sequence. Similar results
were seen from training the phoneme model. Thus,
the experiment was unsuccessful since we could
not compare the ability of the models to generate
rhymes. The uniform generation indicates a fail-
ure of the model to learn the variation in the data.
We believe there are three main reasons for these

results.

Firstly, each input sentence is only seen once,
meaning that the significance of the rhyming end
word is less apparent than if there were several
examples in the training of possible rhyming output
lines. We could try to fix this by augmenting the
data with more output examples for each input
line. Secondly, the task of generating a rhyming
output line is both open-ended for the body of the
line and close-ended for the end word which must
rhyme. Such a task may be inherently difficult to
learn, especially without a very high number of
examples.

Thirdly, the size of our model was limited by
compute resources, which may have prevented it
from learning the variation in the data well. Increas-
ing our model size could aid the process of learning
the complex relationship between sequences.
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A Complete Few Shot Prompt

Continue the poem with the next rhyming line.

Ensure that the last word of the generated line

rhymes with the last word of the provided line.

Here are some example couplets.
Couplet 1: In the whispering calm of the starlit
light Guided by the moon’s soft, ethereal night

Couplet 2: Autumn’s dance as the golden
leaves release Preparing the ground for nature’s

E Sequence-to-Sequence Model with
Phoneme Representation

BAHT.WEHN.IHT.KAHMZ.TUW.SLAOTER. ‘“<s>YUW.WIHL.DUW.Y" <
~ ~ ‘ ~ Reinject
LSTM LSTM prediction until
encoder decoder we generate
: i . Internal LSTM : / [STOP]
states (h, c) l
AO

BAHT.WEHN.IHT.KAHMZ. TUW.SLAOTER “But when it comes to slaughter
Gunga Din by Rudyard Kipling vy Uw .WIHL.DUW. Y AOR.WERK.AAN.WAOTER~  You will do your work on water”

F ARPAbet Phoneme Table

grand feast

Couplet 3:

We searched the forest,

nook and every spot.

Through thickets

was cut

and brambles,

our path

B GPT-3.5 Turbo Performance with
Simple Prompt

every

First Line

his ship or by mischance

but then he thought

and by and by

for evry whit

that certainly

Next Line Corpus

and minish his
substance

that way was nought

covetously

by his own wit

his policy

Next Line GPT 3.5

(simple)

he stumbled upon a
mysterious island's

expanse

about all the things he
had been taught

we'll reach the sky

of darkness, there's a
beam of light

caught my attention

Type of Example

Both Rhyme

Both Rhyme
GPT Rhymes
Corpus Rhymes

Corpus Rhymes

C GPT-3.5 Turbo Performance with
Descriptive Prompt

Phoneme Example Translation
AA odd AA D

AE at AE T

AH hut HH AH T
A0 ought A0 T

AW cow K AW

AY hide HH AY D
B be B IY

CH cheese CH IY Z
D dee D IV

DH thee DH IY

EH Ed EH D

ER hurt HH ER T
EY ate EY T

F fee F IY

G green GRIYN
HH he HH IY

IH it IHT

Iy¥ eat ¥ T

JH gee JH IY

K key K IY

L lee L Iv

M me M IY

N knee N IY

NG ping P IH NG
oW oat oW T

oy toy T oy

P pee P IY

R read R IY D

s sea S IY

SH she SH IY

T tea TIY

TH theta TH EY T AH
UH hood HH UH D
Uw two T UW

v vee Vv IY

W we W IY

Y yield Y IV LD
Z zee ZIY

ZH seizure S IY ZH ER

First Line

for to begin withal

hath with good cast

he made a good purvey

he diggd it in a pot

but he doubtless

Next Line Corpus
that money was too
small

be rich at last

and took another way

and there he left it not

of his meekness

Next Line GPT 3.5
(descriptive)

we embark on a journey,
big or small

A future bright, it shall
not be surpassed

of all things wild and
furry

and stirred it with a
spoon

knew how to hustle

Type of Example

Both Rhyme

Both Rhyme

GPT Rhymes

Corpus Rhymes

Corpus Rhymes

D GPT-3.5 Turbo Performance with Few

Shot Prompt

First Line

his money to employ

men with some wile

yet ere this day

and by and by

Next Line Corpus

to see it was a joy

might him beguile

i have heard say

covetously

Next Line GPT 3.5
(few-shot)

But he soon realized it
brought him no joy

Can charm a stranger
with just a smile

is through,

We shall conquer all
obstacles that come into
view.

we reached the water's
edge so wide and vast

Type of Example

Both Rhyme

Both Rhyme

Corpus Rhymes

Corpus Rhymes




