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Abstract

This paper proposes a prompting pipeline,001
named self-instruct, that uses language-model-002
generated demonstration rationales to perform003
few-shot prompting on another language model.004
Specifically we apply self instruct on the e-005
SNLI task with Llama2-7B as the testing model006
and investigate the effectiveness of language-007
model-generated few-shot demonstrations as008
compared to existing human-curated prompts009
in improving Llama2-7B’s response accuracy.010
We conclude that model-generated demonstra-011
tions can surprisingly lead to better responses012
than human-curated demonstrations, but their013
effects still heavily depend on both the amount014
of reasoning involved in the language task as015
well as the size of the language model used.016

1 Introduction017

The recent rise of large language models has018

brought forth a new era of possibilities. Model pre-019

dictions on traditional tasks have reached astonish-020

ing super-human performance. Likewise, tasks like021

multi-hop reasoning that were previously thought022

to be decades away now seem well within reach of023

AI. However, as with all machine learning, model024

interpretability is an ever-growing concern. Models025

nowadays like Llama2 or GPT3 are able to achieve026

great task performance, but it is unclear how these027

models are able to come to the right conclusions.028

Thus, making language models provide their line029

of reasoning as they arrive at their conclusion is030

of paramount importance. In addition to increased031

interpretability, making models output their reason-032

ing has also been shown to dramatically improve033

the performance of the model. Thus, developing034

methods that can allow models to "self-prompt"035

themselves to generate their own reasoning is not036

only ideal in terms of increased model interpretabil-037

ity, but also to improve model task performance.038

Statement of Problem We want to investigate039

whether a black-box (generative) language model’s040

performance on classification tasks can be im- 041

proved by prompting the model to self-reason. 042

Specifically, for a target model MT and a helper 043

model MH , we perform chain-of-thought (CoT) 044

prompting for MT on the task of sentiment analy- 045

sis using example shots generated by MH . 046

2 Related work 047

Prior studies have demonstrated the potential of 048

free-form rationales (Sun et al., 2022) in enhancing 049

model interpretability and performance. Investi- 050

gations indicate that incorporating even a small 051

fraction of high-quality rationales during training 052

can lead to substantial performance improvements 053

in common sense question-answering datasets like 054

CoS-E and ECQA. One notable work exploring 055

the effects of reasoning is Chain-of-Thought (CoT) 056

prompting (Wei et al., 2023). In this work, the 057

authors improve existing few-shot prompting meth- 058

ods by including detailed reasoning for why each 059

shot is assigned its corresponding outputs. This led 060

to an almost doubled performance for the largest 061

GPT and PaLM models on the GSM8K dataset. 062

However, this work primarily focuses on prompt- 063

ing the model with human-curated data, which still 064

requires lots of human labor. Instead, it would 065

be ideal to develop a method where models can 066

prompt themselves to produce a chain of reason- 067

ing. On a different note, Self-Instruct (Wang 068

et al., 2023) explores the idea of taking humans 069

(almost completely) out of the loop and developing 070

pipelines to allow the model to improve itself. In 071

particular, it employs an off-the-shelf LM to gen- 072

erate instructions that are then used to instruction- 073

tune another language model. However, this work 074

focuses on automating instruction tuning, which 075

can oftentimes be costly and infeasible when com- 076

pared to other prompting methods. 077
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Figure 1: Illustration of Our Methodology and its comparion with CoT (Wei et al., 2023): As depicted in the left side
(the blue section) of the graph, our approach leverages a rationale-generating helper model to produce explanatory
content based on the inputs and labels from the demonstration dataset. On the right-hand side (the yellow section),
our testing model is prompted and supported in a similar manner as CoT.

3 Methods078

3.1 Self-Instruct079

For some benchmark classification task dataset C,080

we start by prompting the helper model Mh to cre-081

ate few-shot demonstrations for the target model082

MT . Specifically, we extract a subset of examples083

Cdemo ⊂ C that will be used as demonstrations.084

For n-shot demonstration, we then feed n input-085

label pairs (xdemo, ydemo) ∈ Cdemo into the helper086

model MH and instruct it to generate rationale rH087

for each specific pair. We then concatenate all the088

generated rH to their corresponding examples in089

Cdemo to get090

D = {d(i) = (x
(i)
demo, y

(i)
demo, r

(i)
H ) : ∀i ∈ [1, n]}091

, which will then be used as in-context demonstra-092

tions for the testing language model MT .093

In the second stage, we extract another sub-094

set Ctest ⊆ C which is mutually independent of095

Cdemo. The testing model MT will be tested on096

Ctest by answering its problem with the demonstra-097

tions generated by the helper model using exam-098

ples from Cdemo. In more detail, for each problem099

instance ctest ∈ Ctest, we give MT all demon-100

strations in D and prompt it to predict ŷtest and a101

corresponding rationale rT for every input xtest.102

4 Experiments 103

Reasoning type # of shots Acc (%)

w/o rationale 0-shot prompting 40.30
1-shot 46.48

one-sentence rationale
1-shot e-SNLI 40.62
1-shot Steven 50.69
1-shot GPT4 56.41

Detail rationale 1-shot Steven 26.63
1-shot GPT4 47.73

Table 1: Baseline and Main Results

4.1 Experimental Setup 104

Dataset We evaluate on SNLI (Bowman et al., 105

2015), a natural language inference benchmark 106

with 550,000 examples. Each example contains a 107

premise and a hypothesis as input, and the model’s 108

goal is to determine whether the relationship be- 109

tween the premise and hypothesis should be catego- 110

rized as entailment, contradiction, or neutral. 111

Data Preprocessing We perform the same 112

dataset preprocessing for all our experiments. 113

Following the previous notation, we now have 114

C = SNLI. Each example c ∈ C has two generic 115

components: the problem input x, and the corre- 116

sponding correct label y. From the dataset, We 117
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fetch the demonstration and testing pools Cdemo118

and Ctest. We let Cdemo be the training set of the119

SNLI dataset and the Ctest be the first 512 instances120

of the testing set.121

We then express each instance cdemo ∈ Cdemo as122

cdemo = (xdemo, ydemo). This same notation rule123

applies to ctest as well, with ctest = (xtest, ytest).124

Models We used GPT-4 as our helper model Mh125

because it can more consistently answer our instruc-126

tion that prompts it to annotate the demonstration127

examples with rationales.128

For the testing model MT , we chose the129

instruction-tuned Llama2-7B1 (Touvron et al.,130

2023) because it is open-sourced while still main-131

taining strong in-context learning capacity.132

Evaluation We want to investigate whether133

language-model-based in-context demonstration134

prompting can improve the performance of the test-135

ing model MT on a classification task Ctest. At136

the current stage, we consider the performance im-137

provement as MT predicting more accurate labels,138

so our evaluation metric should reflect how well139

ŷtest align to ytest140

Since SNLI is well-balanced (i.e. each label141

class has approximately equal numbers of prob-142

lems), the naive accuracy is sufficient to assess the143

quality of the alignment. Specifically, we calculate144

accuracy over Ctest as follows:145

Accuracy =

∑
ctest∈Ctest

1ŷtest=ytest

|Ctest|
146

Recall that the testing model’s output is formatted147

in natural language, so we need a way to extract its148

label prediction from this natural language output.149

At the end, we found that it was easier to go one150

step further and determine whether the model’s151

outputs align with the ground truth labels. Our152

definition is summarized as the following:153

ŷtest = ytest if154

1. The last word of the response is ytest or,155

2. The entire response contains and only contains156

ytest157

The choice for this criteria is because the instruc-158

tions given to the model asks it to give its solution159

at the end of its response. Also, keep in mind that160

ŷtest ∈ {entailment, contradiction, neutral}161

1https://huggingface.co/NousResearch/
Nous-Hermes-llama-2-7b

Prompt Design In our study, we aim to examine 162

the impact of varying rationale types on model 163

performance. This investigation is structured along 164

two primary dimensions. 165

Firstly, we consider the source of the rationales. 166

Given that different sources may provide divergent 167

interpretations for the same context, it’s crucial to 168

understand how these variations affect the model’s 169

output. Specifically, we have utilized three distinct 170

sources for our analysis: (1) e-SNLI (Camburu 171

et al., 2018), which is an extensive dataset built 172

upon SNLI and augmented with human-annotated, 173

free-form rationales; (2) Steven-written, compris- 174

ing rationales authored by Steven, a junior under- 175

graduate student at USC; and (3) GPT-4, featuring 176

rationales generated by the GPT-4 model. 177

Secondly, we focus on the level of detail in the 178

rationales. This dimension explores the model’s 179

response under two forms of rationale presenta- 180

tion: (1) concise, single-sentence rationales and (2) 181

more elaborate, detailed rationales. This bifurca- 182

tion allows us to assess how the depth and breadth 183

of information in rationales influence the model’s 184

performance. 185

Definition of Number of Shots From now on for 186

the rest of the paper, we define 1-shot as 1-shot 187

three-way, meaning that for each shot, there will 188

be three QA pairs as demonstrations since there are 189

exactly three categories for SNLI. 190

4.2 Baselines 191

Similar to CoT prompting (Wei et al., 2023), we 192

investigate the impact of including few-shot ex- 193

amples along with answers’ rationales on testing 194

models’ performance. Therefore, it is important to 195

incorporate baselines under two conditions: first, 196

when rationales are excluded, and second, when 197

both rationales and few-shots examples are ex- 198

cluded. These baselines correspond to the 0-shot 199

and 1-shot experiments under the w/o rationale 200

experiments category. 201

In addition, given that the e-SNLI dataset already 202

provides simple human-curated rationales for each 203

instance in SNLI, we want to evaluate how well 204

these rationales are in comparison to our model- 205

generated rationales. Thus, we include another 206

baseline experiment using e-SNLI rationales in the 207

demonstration shots. This experiment is denoted 208

as the 1-shot e-SNLI experiment under the one- 209

sentence reasoning category. 210
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4.3 Main Results211

The data presented in Table 1 first indicates212

that simply providing demonstration examples im-213

proves the model’s performance, as we can see214

that the accuracy grows from 44.27% of 0-shot to215

46.48% of 1-shot. More importantly, the results216

show that the inclusion of rationales in demonstra-217

tions enhances the model’s performance. Specifi-218

cally, the performance improves from 46.48% to219

56.41%. This suggests that the model’s accuracy220

is positively influenced when it provides rationales221

alongside answers.222

However, it’s important to note that not all types223

of rationales yield the same beneficial effect. When224

the model adopts Steven’s handwritten rationales,225

there is minimal enhancement in performance. Sur-226

prisingly, the use of e-SNLI’s rationales even re-227

sults in a decrease in performance. These outcomes228

are somewhat counterintuitive. To further under-229

stand these discrepancies, we conducted a case230

study to scrutinize the differences among various231

rationales.232

4.3.1 Comparison of Human and Model233

Generated Rationales234

One example of demonstrations from different235

sources:236

Premise: A man and a woman are walking237

on a street at the top of a hill.238

Hypothesis: Two men play catch on a hill.239

Label: Contradiction240

241

e-SNLI Rationale: A man and a woman242

are not the same as two men. Walking and243

playing catch is different.244

245

Steven’s Rationale: The premise states that246

there is “a man and a woman”, which contra-247

dicts with the hypothesis which suggests that248

there are “two men”.249

250

GPT-4 Rationale: The premise and251

hypothesis contradict each other in terms252

of the number and gender of the people253

involved.254

Here is an example illustrating how the model’s255

response varies after being exposed to demonstra-256

tions from different sources.257

Premise: A land rover is being driven across258

a river.259

Hypothesis: A land rover is splashing water 260

as it crosses a river. 261

Label: Entailment 262

263

Model seeing e-SNLI Rationale: Be- 264

cause one cannot splash water without 265

being driven across a river, the answer is 266

contradiction. 267

268

Model seeing Steven’s Rationale: Be- 269

cause the activity “being driven across a 270

river” and “splashing water as it crosses a 271

river” are contradictory in nature and cannot 272

take place at the same time, the answer is 273

contradiction use one cannot splash water 274

without being driven across a river, the answer 275

is contradiction. 276

277

Model seeing GPT-4 Rationale: Be- 278

cause The hypothesis is a specific statement 279

that is directly supported by the general 280

premise., the answer is entailment. 281

Two key observations emerge from our analysis. 282

Firstly, the model exhibits a high degree of adher- 283

ence to the format of the provided demonstrations. 284

The structure and presentation of the rationales 285

in its predictions closely mirror those seen in the 286

demonstrations. Secondly, it is noteworthy that 287

GPT-4 tends to generate more generalized ratio- 288

nales, which, interestingly, correlate with improved 289

answer quality. 290

4.3.2 Impact of Rationale Detailedness 291

Building these findings, we investigate the rationale 292

detailedness’ impact on the model’s performance. 293

We requested both Steven and GPT-4 to provide 294

more detailed rationales (see Appendix A) and ran 295

another round of experiments with these rationales. 296

The outcomes, as documented in Table 1, reveal a 297

significant decline in accuracy for both cases. This 298

suggests a counterintuitive impact of the level of 299

detail in rationales on the model’s effectiveness. 300

4.4 Ablation Studies 301

A series of counterintuitive phenomena were ob- 302

served in the experiments listed above. For one, 303

1-shot prompting with e-SNLI rationales saw a 304

decrease in performance as compared to 1-shot 305

prompting with no rationales at all. For another, 306

during few-shot prompting, more general rationales 307

seemed to activate better model performance than 308
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more specific rationales. This is especially surpris-309

ing because, intuitively, providing more specific310

examples allows the model to extract more infor-311

mation with regards to the logic behind the solution,312

which should be able to better prompt it to arrive313

at its own correct conclusions.314

Upon closer inspection into the Llama2-7B out-315

puts, we arrive at an interesting observation where316

the ability of Llama2-7B to follow its given in-317

structions begins deteriorating as more shots or318

more detailed rationales are given to it. See the fol-319

lowing as a specific example of which Llama2-7B320

gets wrong when provided with a detailed rationale321

demonstration:322

The tan girl in the wool hat is not running and323

leaning over an object. The answer is neutral.324

neutral. Premise:A man with a guitar and a325

woman with a book are sitting on a bench326

in the park. Hypothesis: A man plays the327

guitar while a woman reads a book. Response:328

The man with a guitar and the woman with329

a book are not sitting on a bench in the park.330

The answer is contradiction. contradiction.331

Premise: [continued. . . ]332

In the example listed, Llama2-7B begins by pro-333

viding the correct result but then proceeds to make334

up example queries that it then answers itself (in-335

correct portions of response italicized). As the com-336

plexity of the demonstration rationales increases,337

we see more examples in which the model’s out-338

put resembles this pattern where the model doesn’t339

seem to know when to stop its response.340

To answer the reason why this is the case, we341

form a hypothesis that this phenomenon is occur-342

ring because the 7B model is incapable of han-343

dling long contexts. We next investigate this hy-344

pothesis in a range of experiments. In all of the345

following experiments, demonstrations were sam-346

pled directly from the training set of e-SNLI, and347

Ht was asked to solve the first 500 examples of348

the e-SNLI test set. Furthermore, the results are349

averaged across three random seeds, decreasing350

the probability that the trends observed are due to351

random chance.352

4.4.1 Ablation Study: K-shots353

To study how demonstrations affect Llama2-7B,354

the first ablation study we conduct is to observe the355

model’s performance as one increases the number356

of shots. Since each demonstration includes a ra-357

tionale that can oftentimes be long, and due to the358

limited input token length of Llama2-7B, we only 359

conduct this experiment up to 2-shots. 360

The specific results are as follows: 361

# of Shots Acc (%) Response Length Unanswered

1-shot-3way 40.3 283.4 24.7
2-shot-3way 40.6 339.9 40.3

Table 2: Results of k-shot Experiments in Section 4.4.1

The output of the model is analyzed in three 362

varying degrees. For one, we analyze Llama2-7B’s 363

output based on its accuracy amongst the 500 eval- 364

uation examples. We also analyze the outputs of 365

the model based on their response length. Finally, 366

since Llama2-7B is a decoder-only model, there 367

is no guarantee that Llama2-7B will output ratio- 368

nales and responses in the format we intended. The 369

third metric in analyzing Llama2-7B’s responses is 370

a count of the total number of these "unanswered" 371

responses amongst the 500 examples. 372

As seen in Table 2, there is no significant differ- 373

ence in accuracy between 1-shot and 2-shot demon- 374

strations. However, as the number of e-SNLI shots 375

increases, the model’s response observes a signifi- 376

cant increase in terms of length (oftentimes corre- 377

sponding to scenarios where the model starts hal- 378

lucinating its own e-SNLI problems) as well as 379

the number of responses that no longer follow the 380

specified response template. 381

This illustrates a possible insight. As the number 382

of shots increases (i.e, the complexity of the demon- 383

strations increases), Llama2-7B’s ability to provide 384

a clear, concise response that follows the prompt 385

format specified starts decreasing. A possible ex- 386

planation is that the model might be forgetting what 387

it’s supposed to do. 388

4.4.2 Ablation Study: Task Reminder 389

To investigate whether Llama2-7B still remembers 390

its task as the complexity of the demonstrations 391

increases, we conduct the following two studies, 392

which are slight deviations from the 2-shot experi- 393

ments in the K-shots ablation section. 394

The first study, which we denote as summa- 395

rize_instruction, differs from the standard 2-shot 396

approach in Section 4.4.1. It includes changing the 397

instructions to ask the model to first summarize its 398

objective and then give its answer. As an example, 399

see the following: 400

Previous Instruction: 401
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Give your final answer at the end of your re-402

sponse403

New Instruction:404

First repeat the objective of your task, then405

give your final answer at the end of your re-406

sponse407

The second study, which we denote as reiter-408

ate_instruction_each_shot, differs from the stan-409

dard 2-shot approach in Section 4.4.1 by repeating410

the instruction each time in each demonstration411

during prompting. See the following:412

Previous Structure:413

Instruction + demo1(input1, response1) +414

demo2(input2, response2) + demo3. . .415

New Instruction:416

Instruction + demo1(input1, response1) + In-417

struction + demo2(input2, response2) + In-418

struction + demo3. . .419

Llama2-7B’s responses are again analyzed on420

three metrics - Accuracy, Response Length, and421

the number of unanswered responses. The results422

are shown in Table 3423

Reminder Acc (%) Resp. Len. Unans.

2-shot-3way (Baseline) 40.6 339.9 40.3
Summarize Instruction 44.2 332.4 16.3
Reiterate Instr. each Shot 46.3 274.8 17.0

Table 3: Results of Task Reminder Experiments in Sec-
tion 4.4.2

A few interesting observations from this study424

are that asking the model to summarize instructions425

seems to dramatically improve accuracy and reduce426

the number of unanswered responses. Furthermore,427

repeating the instruction during each demonstra-428

tion dramatically decreases the response length,429

although the accuracy does not improve. Finally,430

we combine the two methods together, as denoted431

as reiterate_instruction_each_shot, and observe432

not only a significant increase in accuracy but also433

a decreased response length (thus implying that434

the model is more confident and succinct in its re-435

sponses) as well as a decrease in the number of436

responses that do not follow the intended template.437

Thus, from these studies, it could be deduced that438

the reason why Llama2-7B performed worse when439

provided with more sophisticated demonstration440

rationales was because it was potentially forgetting441

its objective and instructions for the task.442

4.4.3 Ablation Study: GPT3.5 Ablation 443

Above ablation studies suggest that a potential rea- 444

son why the performance of Llama2-7B dropped 445

when more sophisticated rationales were provided 446

was because it was potentially forgetting its ob- 447

jective and instructions for the task. Since the 448

ability to remember and interpret inputs is highly 449

dependent on the size and capacity of the model, 450

in this ablation study, we validate this hypothesis 451

by running the same experiments as highlighted 452

in section 4.3, but with GPT3.5 text-davinci-003. 453

Whereas the Llama2-7B saw a decrease in accuracy 454

when given more detailed rationales, we suspect 455

that GPT3.5, which is a much larger and more capa- 456

ble model, will not experience the same decrease in 457

accuracy for detailed rationales because it is more 458

capable of remembering its objective and instruc- 459

tions for the task. See Table 4 for results. When 460

comparing model accuracy between Steven’s one- 461

sentence rationales versus Steven’s detail rationales 462

(note: these are the exact same demonstrations used 463

in 4.3), we see that the results of GPT3.5 show an 464

increase in accuracy of 1.2%. This result sheds 465

more light on how the potential reason why we see 466

a performance drop of Llama2-7B was because of 467

its limited capacity to interpret and remember. 468

Reasoning type # of shots Acc (%)

w/o Rationale 0-shot 57.6
1-shot 67.5

One-sentence Ratinoale 1-shot Steven 63.4
1-shot GPT4 69.2

Detail Rationale 1-shot Steven 64.8

Table 4: Results of experiments in Section 4.4.3 that
uses GPT3.5 as the testing model

4.4.4 Ablation Study: Random 469

Demonstration 470

The interesting phenomenon observed was that 471

more shots did not lead to an increase in accuracy 472

by the Llama2-7B model. One way to explain this, 473

as done above, was that the model was forgetting 474

its task objective. Another potential reason why 475

providing more demonstrations does not lead to a 476

performance increase is because the model might 477

simply not be using the demonstrations. To investi- 478

gate this, we provide the following three studies. 479

The first study, which we denote as 480

dummy_rationale, differs from the stan- 481

dard 2-shot approach in Section 4.4.1 by using 482
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naive rationales that give no logical information,483

as compared to the rationales that were previously484

sampled from the e-SNLI dataset. See the485

following as an example:486

Previous rationale:487

eSNLI rationale488

New Rationale:489

Because (input A) entails (input B), the an-490

swer is entailment491

The second study, which we denote as ran-492

dom_label, differs from the standard 2-shot ap-493

proach in Section 4.4.1 by replacing each demon-494

stration shot with a wrong label. However, note495

that the rationales are still the correct rationales496

from e-SNLI.497

The second study, which we denote as ran-498

dom_rationale_and_label, differs from the stan-499

dard 2-shot approach in Section 4.4.1 by com-500

pletely mixing and matching the rationale and la-501

bels across all 6 demonstrations (6 demonstrations502

= 2 shot * 3 way). Under this context, the rationales503

and labels may also not match up.504

The following shows the results of these three505

studies, which are again analyzed on the three506

scales of accuracy, response length, and the number507

of responses that don’t follow the desired format.508

Demo Randomness Acc (%) Resp. Len. Unans.

2-shot-3way (Baseline) 40.6 339.9 40.3
Dummy Rationale 42.2 191.9 1.3
Random Label 40.0 285.9 49.7
Rand. Rat. & Lab. 29.9 360.6 70.7

Table 5: Results of Random Demonstration Experi-
ments in Section 4.4.4

The first observation to take away is that in-509

cluding a dummy rationale dramatically improves510

Llama2-7B’s accuracy. The potential hypothesized511

reason why is because these dummy rationales are512

more general and have a simplified structure, which513

allows the Llama2-7B (which has a more limited514

understanding capacity) to better follow the instruc-515

tions. A good analogy would be trying to teach an516

infant to perform a task. The easier your explana-517

tion and the simpler the task, the better the infant518

is able to follow what you’re saying.519

Another counter-intuitive observation within520

these results is that randomly assigning demon-521

stration labels does not drop the accuracy of the522

model. Furthermore, performance only drops when523

the rationales and inputs begin to mismatch. One 524

potential explanation for this is that the models 525

are only using the demonstration rationales as a 526

structure/template for their own rationales. It is not 527

really learning the logic behind what the rationales 528

are saying, but rather only mimicking its structure. 529

If this were true, then it would also explain why pro- 530

viding more shots to the model does not increase its 531

performance, the main reason probably being that 532

the model has already observed enough templates 533

to form its responses, and that giving the model 534

more demonstration will only serve to confuse it. 535

5 Discussion 536

5.1 Limitation of SNLI Dataset 537

As seen in Table 4 and Table 1, for both Llama2-7B 538

and GPT3.5 models, the inclusion of CoT ratio- 539

nales into demonstrations oftentimes did not sub- 540

stantially improve the models’ accuracies on the 541

SNLI dataset. This phenomenon is different for 542

other datasets, where it has been well-documented 543

that the performance of GPT3.5 dramatically in- 544

creases with CoT prompting on other datasets and 545

benchmarks. 546

One hypothesis we have is that SNLI is an easy 547

task that doesn’t incorporate too many steps of 548

logical reasoning, so including rationales for it 549

is not only unnecessary but also might distract 550

the model’s attention. On the contrary, in most 551

works on CoT prompting, authors select datasets 552

like GSM8k or other logic-driven tasks, as in those 553

cases the model has low performance even under 554

a few-shot setting (without rationales). Thus, one 555

possible next steps to continue this experiment is 556

to run the same results on other datasets, such as 557

GSM8K. 558

5.2 Evaluation of Generated Rationales 559

The testing model’s output is composed of two 560

parts, the predicted label ŷtest and the rationale rT 561

for this predicted label. In the current experiments, 562

we only accessed the accuracy of the predicted 563

label because this metric is the most direct crite- 564

rion against the model’s performance. However, 565

to further understand how well the model follows 566

instructions and understands language tasks, we 567

also need to assess the soundness of the generated 568

rationale. 569

We hypothesize an approach to evaluate the gen- 570

erated rationales rT of MT by fine-tuning a lan- 571

guage model. As potential next steps, we can train 572
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a BERT(Devlin et al., 2019) classifier that takes573

in a rationale h for a problem instance c = (x, y)574

and output a prediction on the target class y. In575

particular, we plan on masking all tokens in h that576

also occur in y, and feed the masked version of h577

into BERT, which will attempt to classify it with a578

predicted ŷ label. Note that we are not feeding the579

original problem instance x into the BERT model.580

Thus, BERT’s prediction is solely based on the581

provided masked rationale.582

The advantage of this BERT classifier is that we583

can interpret its outputs as probabilities or confi-584

dence levels across the possible labels if we look at585

the logits just before the final output. In this way,586

we can assume that a good rationale would elicit587

the classifier to assign a high probability to the cor-588

rect label class. We can then use the probabilities589

that BERT assigns to the correct label to evaluate590

the quality of the generated rationales in a "soft"591

manner.592

To obtain this evaluation BERT model, we plan593

on fine-tuning a pretrained BERT model by using594

the generated rationales from MH on examples in595

Cdemo. Since Cdemo and Ctest are mutually ex-596

clusive, the finetuned BERT model will not have597

train-test overlap, since it is being trained on exam-598

ples of Cdemo and being used to evaluate examples599

in Ctest.600

6 Conclusion601

This study delves into the impact of demonstration-602

based prompting strategies on Llama2-7B, exam-603

ining various factors that could influence model604

performance. A surprising discovery is that de-605

tailed rationales actually degrade the model’s per-606

formance, rendering it less effective than having607

no rationales at all. In contrast, generic rationales608

appear to enhance performance.609
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A Detailed Rationales in Section 4.3.2647

Lengthier and more detailed rationales that have648

longer chains of thought, written by Steven and649

GPT-4.650

Premise: A man and a woman are walking651

on a street at the top of a hill.652

Hypothesis: Two men play catch on a hill.653

Label: Contradiction654

655

Steven’s Rationale: The premise does656

not entail the hypothesis because the dog is657

not necessarily “chasing a fish” given that658

it is “swimming in the ocean”. It might be659

doing some other things like escaping from660

a shark. The premise does not contradict661

with the hypothesis because “chasing a fish”662

is something the dog might do if it were663

“swimming in the ocean”. Thus, the premise664

neither entails nor contradicts the hypothesis.665

666

GPT4 Rationale: The premise states667

that a dog is swimming in the ocean but668

does not specify the dog’s activity, and the669

hypothesis suggests a specific activity —670

chasing a fish — which is not confirmed671

or denied by the premise. The premise672

neither explicitly supports nor contradicts the673

hypothesis.674
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