Creating a tool to solve math word problems: Math Solver

Abhinav Gupta

Sutej Singh'

University of Southern California, Los Angeles, CA, USA
*{abhinavg, sutejsin}@usc.edu

Abstract

This paper presents "Math Solver", a tool ca-
pable of solving intricate mathematical prob-
lems using advanced language models. Ex-
isting models, including GPT-4, show limita-
tions in handling complex math word problems.
Previous approaches, such as seq2seq models,
reinforcement learning, and specialized archi-
tectures, have made progress but still fall short
in accuracy.

The proposed project hypothesizes that employ-
ing newer and different language models, such
as the transformer architecture, and fine-tuning
models such as T-5 and GPT-2 can surpass this
accuracy. The approach involves using corpora
of math word problems, the GSMS8K dataset
from OpenAl. The model will generate not only
the final numerical answer but also the logical
steps leading to the solution. An evaluation
tool will compare the similarity between these
generated steps and those in the test set. The
project’s success will be measured by the ac-
curacy of the final answer and the relevance
of the procedural steps, aiming to significantly
enhance the capabilities of language models in
solving math word problems.

Introduction

Advanced language models like GPT-4 have revo-
lutionized how we approach a broad spectrum of
queries, offering insightful and contextually rel-
evant responses across various domains. How-
ever, the realm of intricate mathematical problem-
solving poses unique challenges. These challenges
stem from the necessity to understand and manipu-
late numerical and symbolic information in a log-
ically coherent manner, which is fundamentally
different from general language processing.
Recognizing this gap, our project aims to de-
velop a specialized tool that bridges the capabilities
of advanced language models with the specific de-

*Equal contribution

mands of mathematical reasoning. By incorporat-
ing elements of transformer architectures, known
for their self-attention mechanism, this tool is de-
signed to accurately weigh the relevance of differ-
ent parts of a math problem. This is crucial for
understanding the sequential and hierarchical na-
ture inherent in mathematical logic.

Additionally, the use of transfer learning, where
a model is pre-trained on a vast dataset of gen-
eral text and then fine-tuned with mathematical
language and problems, is a cornerstone of our
approach. This methodology is expected to pro-
vide the model with a deep understanding of both
natural and mathematical language, enabling it to
parse, interpret, and solve math problems with an
unprecedented level of accuracy.

The potential applications of such a tool are vast
and varied:

1. Educational Aid for Students: It could serve
as a revolutionary educational aid, helping students
to understand and solve complex math problems.
By providing not only solutions but also the logical
steps and reasoning behind them, it could signifi-
cantly enhance learning and comprehension.

2. Resource for Researchers: Researchers in
fields requiring complex mathematical calcula-
tions could use this tool to overcome hurdles in
their work, enabling more efficient and accurate
problem-solving.

3. Tool for Educators: Educators could utilize
this tool to develop solution keys and enrich prob-
lem sets, both existing and new. It could aid in
curriculum development, allowing for the creation
of more challenging and diverse problem sets that
are accompanied by detailed solutions and expla-
nations.

4. Assistance in Professional Fields: Profes-
sionals in fields like engineering, finance, and data
analysis, where complex mathematical problem-
solving is routine, could leverage this tool to
streamline their workflows and enhance accuracy.

Related Work

In the past, techniques like recurrent seq2seq mod-
els (Sutskever et al., 2014), reinforcement learning
(Huang et al., 2018), specialized encoder-decoder
architectures (Chen et al., 2020) have been used to
approach this problem. OpenAl created a system
based on GPT-3 (Cobbe et al., 2021) that was fine
tuned for generative and verification tasks to solve
grade level mathematical problems. The paper also
introduced the GSM8K dataset, which is an im-
provement on other publicly available datasets in
this domain since it contains detailed step-by-step
solutions for over 8K math word problems. While
these models are promising, even the highest per-
forming implementation by OpenAl produces an
accuracy of just 55%.

Hypothesis

Our hypothesis suggests that by using advanced
Natural Language Processing (NLP) frameworks,
especially those using transformer architectures,
we can improve the way solutions to grade-level
math problems are generated. Transformers are
notable for their self-attention mechanism, which
is key in processing the sequential and hierarchical
aspects of math reasoning.

We also utilize transfer learning, where a model
initially trained on a broad text corpus is then fine-
tuned with specialized math language data. This ap-
proach is expected to not only enhance the accuracy
of answers but also enable the model to explain the
steps and logic involved in solving complex math
problems.

Methodology

In our investigation into the automatic generation
of solutions for math word problems, we leveraged
OpenAI’'s GSMSK dataset along with three differ-
ent models: 5-Gram, T5, and GPT-2—each chosen
for their unique strengths and appropriateness for
the task at hand. Below, we delve into the specifics
of our methodology.

Dataset

The GSMSK dataset, sourced from OpenAl’s open-
source repository, is a comprehensive collection of
8,500 high-quality word problems, meticulously
curated to represent a wide spectrum of mathemati-
cal concepts. This dataset is specifically designed
to challenge and evaluate the capabilities of Al in
understanding and solving complex mathematical

Answer
Each employee needs
$35,000-$20,000=$%
«35000-20000=15000»
15,000 more per
year. In total,
Emily needs to pay
$15,000%10=
$«15000*10=150000»
150,000 extra. Emily
will need to have
a new salary of
$1,000,000-$150,000=

Question

Emily makes
$1,000,000
per year. If she
has 10 employees
who make $20,000
per year, how much
would her salary be
if she took part
of her salary to
make sure all of
her employees

«1000000-
make $CZZ;(())OO per 150000=850000
year: 850,000 per year.
850,000

Table 1: Samples from the dataset

problems typically encountered at a grade-school
level.

Each entry in the dataset is structured into two
key components: a question and its corresponding
answer. The questions are formulated to mimic
real-world mathematical scenarios that students
might encounter in an educational setting. They
cover a diverse range of topics, from basic arith-
metic to more advanced concepts, ensuring a com-
prehensive assessment of the Al’s mathematical
reasoning abilities.

The answer section of each entry is particularly
noteworthy. It goes beyond providing a mere nu-
meric answer; instead, it includes a detailed expla-
nation of the logical reasoning required to solve
the problem. This is crucial for our project, as it
allows the Al not just to find the right answer, but
to understand and replicate the thought process be-
hind it. Mathematical steps involved in the solution
are meticulously enclosed within angular brack-
ets, making it easier for the model to distinguish
between the narrative explanation and the actual
mathematical calculations.

At the end of each answer, the numeric solution
to the problem is distinctly marked, preceded by
four pound signs (####). This unique formatting
allows for easy identification of the final answer, fa-
cilitating the evaluation of the model’s performance
in terms of accuracy.

By splitting this dataset into training and test
data, we have created an environment where our

model can learn from a diverse array of problem
types and complexities. The training data enables
the model to understand and internalize the pat-
terns, techniques, and logic involved in mathemat-
ical problem-solving. Meanwhile, the test data
serves as a benchmark to evaluate the model’s pro-
ficiency and its ability to generalize its learning to
solve new, unseen problems.

5-Gram Model

The n-Gram model, a statistical language model,
was employed as a baseline for our experiments.
It operates on the principle of n-grams, where the
probability of generating the next word depends
only on the previous n words. We opted for a
straightforward 5-gram model, utilizing OpenAl’s
dataset in JSON format. This simplicity makes the
5-Gram model computationally efficient and quick
to train, which is why it served as an initial ref-
erence point. Although it lacks the sophistication
of deep learning models, its usefulness lies in its
speed and the straightforward nature of its predic-
tions, providing a comparative framework against
which the more complex models’ improvements
can be measured.

After determining the average answer length to
be 48.10, we used this to set our word generation
count. The training set’s questions and answers
were merged into a single string, upon which we
trained the 5-gram model. We incorporated inter-
polation smoothing and normalized the resulting
probabilities. As we generated each word, we up-
dated the context to encompass the latest prediction,
re-calibrating and normalizing the probability ar-
ray for subsequent word generation. Using this
setup, the 5-Gram model was trained rapidly, and
it helped establish a foundational understanding of
the problem’s statistical structure.

T-5 Model (Text-to-Text Transfer Transformer)

T5 is a highly versatile and powerful model that
redefines all NLP tasks into a unified text-to-text
framework. It is pre-trained on a large corpus and
can be fine-tuned for various tasks, including trans-
lation, summarization, and question answering. For
generating math word problem solutions, T5’s abil-
ity to understand context and generate coherent,
extended text makes it particularly suitable. Its
encoder-decoder architecture can handle the com-
plex relationships and structures within math prob-
lems.

Question Answer Gen Answer
Leo and Agrey | Agrey caught together 20%
. to have
went fishing. 40+20 = 9 to each
Agrey caught «40+20=60»
20 more fish 60 fish. The are anc.l
than Leo. If total number of and to is
Leo caught 40 | fish they caught a tI(; was
fish, what’s the | is 60+40 = ; '
total number «60+40=100» 9 ar;:
of fish they 100 fish. SZ‘;‘lls;th:e
caught together. #### 100
are If much

Table 2: Sample output generated by 5-gram model

Training the TS5 model requires that the train-
ing data be split into Input-Target pairs also called
Prompt-Response pairs. In our case, the questions
were used as Prompt and the answers were used as
the response. However, before passing the training
data to TS5 model, the data was slightly modified
to ensure good performance and efficient learning
process. A prefix string was added to the the ques-
tions that were passed as the training prompt. The
prefix defined was — "Answer the Math Question:".
This was done due to the following reasons:

1. Contextualization: The prefix provides con-
text to the model. Without a task-specific pre-
fix, the model might struggle to understand
what is expected from the given input. The
prefix acts as a guide, leading the model to
generate an output that is aligned with the
desired task.

2. Improved Performance on Specific Tasks: The
model can learn task-specific nuances and sub-
tleties better when it is explicitly trained with
task prefixes. This focused learning often
leads to improved performance on those tasks.

3. Consistent Formatting: Prefixes ensure a con-
sistent format in the input data, which is im-
portant for the model to process information
correctly. This consistency is especially cru-
cial when dealing with diverse datasets or
multiple tasks within the same dataset. As
TS5 comes trained on multiple tasks, adding a
prefix for our task helps the model learn and
predict better as it allows a subtle differen-
tiation from other tasks it is trained on like
translation from English to German language.

Question Answer Gen Answer Question Answer Gen Answer
He spent $1 The mother
on lollipops lant produces .

. . pop planp Since 1
Jimmy is at because 4 x 2 baby baby plant is
the candy 25 = «4% 25= plants 2 yp .

. produced twice
store and 1» 1. He .. times a
. He spent Eddy’s spider a year,
buys 2 candy spent $2.5 in year so
$1.5 per plant produces . the mother
bars for $.75 total because . it produces .
driveway. He 2 baby plant will
cach. He then L5+1« spent $.25 lants 2 272 = have produced
buys 4 1.5+1=2.5» pent P Q2¥2=dnd P
. per lollipops. times a 2*%4 =
lollipops that | 2.5. He earned plants a year
. He spent year. After «2%4=8»
cost $.25 each. | $15 shoveling It produces
. $.25 per 4 years, 8 baby plants
He spent 1/6 driveways . 4 plants .
lollipops. He how many in 4 years.
of the money because a year so
spent 1/6 baby plants In 4 years
he earned from 2.5/(1/6) = ! after 4 .
. of the money will the . , she will
shoveling snow. «2.5/(1/6) years it
he earned mother plant . have produced
If he charges =15»15 . will produce
from shoveling have produced? 2%8=
$1.5 per He shoveled 4%4 =
. . snow. #### 10 «2*8=16»
driveway, how 10 driveways «4*4=16»
. 16 baby plants.
many driveways because 15 16 baby 4444 16
did he shovel? / 1.5= «15/1. plants
5=10» 10 H#H## 16
10

Table 3: Sample output generated by TS model

4. Efficient Fine-Tuning: When fine-tuning the
model for specific tasks, prefixes make it eas-
ier to adapt the model to new tasks or varia-
tions of tasks.

The training data was then tokenized using the
Autotokenizer imported from Huggingface’s trans-
formers. The T5 model was initially trained with a
learning rate of 2e-5, a batch size of 16, and over
3 epochs. The training arguments specified for T5
reflect a balance between computational resources
and the need for a robust model fine-tuning, with
adjustments made for batch size and learning rate
to optimize performance.

GPT-2 (Generative Pre-trained Transformer 2)

GPT-2, known for its strong language generation
capabilities, is built on a transformer architecture
with an emphasis on unsupervised learning. It is
pretrained on WebText, a dataset gathered by Ope-
nAl by scraping several internet websites whose
links are found on highly rated Reddit threads. It
can generate coherent and contextually relevant
text passages, making it apt for producing step-by-
step solutions to math word problems. The trans-
former architecture allows it to handle sequences

Table 4: Sample output generated by GPT-2 model

effectively, which is crucial when dealing with the
logical sequence of steps in math problems.

The fine-tuning involved a learning rate of 5e-5
and batch size of 4, tailored to balance the quality
of output against the limitations of available com-
puting power, ensuring the model’s training is both
effective and feasible. The model was trained on
Google Colab GPUs for 3 epochs and the same
split of 80% training and 20% test was used. As
displayed in Table 4, the output from the fine tuned
GPT-2 model was the best out of all three models,
which is further discussed in the Results section.

Improving Performance

Our BLEU scores were initially disappointingly
low, indicating a gap between the model-generated
solutions and the reference solutions. This low
score was a concern as it suggested that the models
were not accurately capturing the nuances of math-
ematical problem-solving or aligning closely with
the expected solutions.

We first implemented weight decay in our mod-
els, a common regularization technique. The ratio-
nale behind this was to address potential overfitting
issues. Overfitting occurs when a model learns the
training data too well, including its noise and out-

liers, which reduces its ability to generalize to new
data. By penalizing large weights in the model’s
parameters, weight decay helps in regularizing the
model. This means it discourages the model from
becoming too complex and fitting too closely to the
training data. A simpler model, in theory, should
generalize better to new data, potentially improv-
ing BLEU scores as the solutions might align more
closely with the varied ways problems can be cor-
rectly solved.

The second approach was to implement a sched-
uled learning rate. The learning rate is a crucial
hyperparameter in training neural networks. It de-
termines the size of the steps the model takes during
optimization. If the learning rate is too high, the
model might overshoot optimal solutions; if it’s
too low, the model might not converge or take too
long to train. We designed the learning rate to in-
crease linearly during the first 10% of the training
steps, starting from zero. This gradual increase
helps the model initially explore a broader solu-
tion space. After reaching this peak, the learning
rate then begins to decrease, allowing the model
to fine-tune and converge more precisely on opti-
mal solutions as it approaches a loss value closer
to zero. This strategy aims to strike a balance be-
tween exploration and exploitation. In the early
stages of training, the model is encouraged to ex-
plore a wide range of solutions, which is crucial
for understanding the diverse ways mathematical
problems can be solved. As the training progresses,
the focus shifts to refining and honing in on the
most effective solutions. This approach is expected
to lead to better model performance and, conse-
quently, higher BLEU scores.

While applying these methods helped us im-
prove the BLEU scores, the difference was not
as much as we had hoped as the average improve-
ment across the two models was by 0.005. The
performance of our models is evaluated below and
the results are discussed and analyzed.

Evaluation

To rigorously assess the performance of our mod-
els, we utilized three established metrics: BLEU
(Bilingual Evaluation Understudy), BERTScore,
and STS (Semantic Textual Similarity). The BLEU
score provided a measure of the correspondence be-
tween the model-generated solutions and the actual
answers, reflecting the quality of the text genera-
tion. BERTScore, leveraging the contextual embed-

Model | BLEU | STS | Fl

5-Gram | 0.0032 | 0.19 | 0.73
T5 0.0051 | 0.73 | 0.82
GPT-2 0.03 | 0.81 | 0.88

Table 5: Calcluated Results

dings from BERT, measured the semantic similarity
between the generated and the true solutions. Fi-
nally, STS offered a fine-grained analysis of the
cosine similarity between the semantic representa-
tion of generated and true answers on a sentence
level, indicating how closely the models’ outputs
matched the expected solutions in terms of mean-
ing and structure.

Results

Upon evaluation, the results revealed a clear dis-
tinction in performance among the models. The
5-Gram model, while notable for its computational
swiftness, exhibited a BLEU score close to 0.0032,
indicating a relatively poor match with the expected
answers. Additionally, it achieved an STS cosine
similarity score of 0.19, suggesting limited seman-
tic alignment with the true answers, and it was
unable to generate any correct math answers.

In stark contrast, the TS5 model marked a consid-
erable improvement, with a BLEU score of 0.005
and an STS cosine similarity of 0.73. It success-
fully generated nine correct math answers. Its
BERTScore F-1 measure, combining precision and
recall, stood at 0.82, signifying a robust capacity to
produce relevant and precise solutions.

The GPT-2 model further enhanced these out-
comes, reaching a BLEU score of 0.13 and an STS
cosine similarity score of 0.80, reflecting a strong
semantic resemblance to the target answers. The
model provided eight correct math solutions, and
its BERTScore F-1 was at an impressive 0.88, indi-
cating its proficiency in capturing the essence of the
math problems and producing accurate answers.

Analysis

These results collectively suggest that transformer-
based models like TS and GPT-2 are not only more
adept at generating text that is semantically similar
to actual solutions but also show promise in actual
problem-solving capability, a significant step for-
ward in applying NLP techniques to educational
tools.

In our case, the BLEU score, a metric typically

used for evaluating the quality of text translation,
was applied to assess the solutions generated by
our transformer language models for mathematical
problems. The low score observed indicates that
there is a discrepancy between the model-generated
solutions and our chosen reference solutions.

Key Factors Contributing to the Low BLEU
Score:

1. Variability in Mathematical Expression:
Mathematical problems often have solutions that
can be correctly expressed in multiple ways. The
language model might produce an accurate and
valid solution that is structurally or lexically differ-
ent from the reference solution. Since BLEU em-
phasizes exact word and phrase matches, it penal-
izes these valid but differently worded responses,
leading to a lower score.

2. Complexity of Reasoning Steps: Our model
generates not just answers but also the reasoning
steps leading to those answers. The complexity
and variability in explaining these steps can signifi-
cantly differ from the reference solutions, impact-
ing the BLEU score. This is particularly relevant
for more complex problems where multiple reason-
ing paths are possible.

3. Semantic Accuracy vs. Lexical Matching:
The BLEU score does not adequately capture se-
mantic accuracy — it focuses on the surface-level
lexical similarity. Hence, the model’s solutions
might be semantically correct and logically sound
but still score low on BLEU due to lexical differ-
ences.

However, higher STS and F1 scores indicate that
the GPT-2 and TS5 models were able to capture the
essence of the solution in their generated answers
in a lot of the cases. The capabilities demonstrated
by transformer-based models like TS and GPT-2 in
solving mathematical problems mark a significant
stride in applying NLP techniques to educational
tools. Their ability to understand complex problem
statements, apply logical reasoning, and adapt to
various problem types positions them as invaluable
assets in both educational and professional realms.

Potential Next Steps

We believe that this project can be extended and
further developed. Firstly, one of the major short-
comings of our models was that they often didn’t
produce the final numeric answer. This can be re-
solved by adding a seperate output that just predicts
the final numberic answer and a different output for

the steps in natural language. Other models such
as BERT could also be fine tuned for this task and
a custom transformer model could be developed
too that is primarily trained on a large corpus of
mathematical information and then fine tuned on
problem sets containing word problems. Combin-
ing different datasets in training could also help the
model perform better.

Conclusion and Discussion

This project represents a significant leap forward
in the intersection of advanced natural language
processing and mathematical problem-solving.
By integrating the sophisticated capabilities of
transformer-based models with targeted fine-tuning
in the realm of mathematical language, we have
developed a tool that can potentially adds immense
educational and practical value. Additionally, by
comparing different models, we have shed a light
on what works best for mathematical language
modelling.

This tool is poised to revolutionize how students
learn, how educators teach, and how professionals
across various fields tackle complex mathematical
challenges. It stands as a testament to the power
of Al in bridging the gap between linguistic under-
standing and logical, quantitative reasoning, mark-
ing a pivotal moment in the ongoing evolution of
Al applications in education and beyond. Our work
lays the groundwork for further innovations in this
field and opens up new possibilities for the appli-
cation of Al in solving some of the most intricate
problems faced by learners and professionals alike.

REFERENCES

1. I. Sutskever, O. Vinyals, and Q. V. Le. Se-
quence to sequence learning with neural net-
works. In Advances in neural information
processing systems, pages 3104-3112, 2014.

2. D. Huang, J. Liu, C.-Y. Lin, and J. Yin. Neu-
ral math word problem solver with reinforce-
ment learning. In Proceedings of the 27th
International Conference on Computational
Linguistics, pages 213-223, 2018.

3. K. Chen, Q. Huang, H. Palangi, P. Smolensky,
K. D. Forbus, and J. Gao. Mapping natural-
language problems to formal-language solu-
tions using structured

4. Cobbe, Karl, Vineet Kosaraju, Moham-
mad Bavarian, Mark Chen, Heewoo

Jun, Lukasz Kaiser, and Matthias Plap-
pert. “Training Verifiers to Solve
Math Word Problems.” arXiv, 2021.
https://doi.org/10.48550/ARXIV.2110.14168.

