
Guest Lecture - CSCI 544

A Few Projects on Pretraining LLMs

Willie Neiswanger

About me — some background context

About me — some background context

In PhD and postdoc: AI-driven experimental design for science and engineering.

About me — some background context

In PhD and postdoc: AI-driven experimental design for science and engineering.

Use techniques from:

Experimental Design (statistics)

Active Learning (computer science)

Bayesian Opt & Bandits (operations)

AI-Driven
Optimization and
Experimental Design

Focus on combining probabilistic machine learning with decision making.

About me — some background context

Probabilistic machine learning
● Classic probabilistic models
● Generative models

x yPredictive
Model

About me — some background context

Probabilistic machine learning
● Classic probabilistic models
● Generative models

With applications to science and engineering

About me — some background context

Probabilistic machine learning
● Classic probabilistic models
● Generative models

● Black-box optimization & experimental design:
○ Materials science (high-throughput screening).
○ Scientific machines (particle accelerators, tokamaks).
○ Computer/ML systems (config. tuning, hyperparameter opt).

With applications to science and engineering

About me — some background context

Probabilistic machine learning
● Classic probabilistic models
● Generative models

● Black-box optimization & experimental design:
○ Materials science (high-throughput screening).
○ Scientific machines (particle accelerators, tokamaks).
○ Computer/ML systems (config. tuning, hyperparameter opt).

With applications to science and engineering

● Generative + probabilistic modeling:
○ Chemical / molecular design
○ Neural architecture design

At the end of my postdoc (~mid 2023)

Some collaborators began a project on open
source reproductions of LLMs …

At the end of my postdoc (~mid 2023)

Some collaborators began a project on open
source reproductions of LLMs …

Through support from some universities/companies
they got resources to do LLM pretraining.

⇒ I thought it would be a good opportunity to learn

⇒ Started working on LLMs

GPU GPU GPU GPU

GPU GPU GPU GPU

At the end of my postdoc (~mid 2023)

Some collaborators began a project on open
source reproductions of LLMs …

Through support from some universities/companies
they got resources to do LLM pretraining.

⇒ I thought it would be a good opportunity to learn

⇒ Started working on LLMs

GPU GPU GPU GPU

GPU GPU GPU GPU

Increasingly working on LLM projects for past ~1.5 years.

● Including LLM pretraining, which I will describe today (as part of the LLM360 project).

My current research

⇒ It influenced my research!

I still do probabilistic decision making and experimental design, but…

I also combine this with LLMs, e.g.

● LLMs (large sequence models) for scientific data (e.g., in biology, materials science).

● LLMs for (sequential) decision making, and it’s variants.

Talk Outline

● Open Source LLM Reproductions — and the LLM360 project

● LLMs in Biology: Metagenomic LLM for Pandemic Monitoring

Talk Outline

● Open Source LLM Reproductions — and the LLM360 project

● LLMs in Biology: Metagenomic LLM for Pandemic Monitoring

Open Source LLM Reproductions — the LLM360 project

Previous collaboration, eventually transformed into: the LLM360 project.

LLM360

Open Source LLM Reproductions — the LLM360 project

Previous collaboration, eventually transformed into: the LLM360 project.

Goal:

To develop and release fully open source
LLMs to foster transparency, trust, and
collaborative research.

LLM360

The LLM360 Team (at COLM Conference)

What are “Fully Open Source” LLMs?

What are “Fully Open Source” LLMs?

We aim to produce models that are completely reproducible!

In contrast to “open weight LLMs”, where only the final model weights are released.

What are “Fully Open Source” LLMs?

We aim to produce models that are completely reproducible!

In contrast to “open weight LLMs”, where only the final model weights are released.

Training Code : https://github.com/llm360/

(up to) 360 Checkpoints: https://huggingface.co/LLM360

Exact Pretraining Data Sequence

Evaluation Traces: https://wandb.ai/llm360/

And more... https://www.llm360.ai

Artifacts released for all LLM360 models:We hope to:

● Provide artifacts for reproduction
and collaboration.

● Level the level the playing field for
LLM development via knowledge
sharing.

Why Make “Fully Open Source” LLMs?

The problem: LLM pretraining is a complex and expensive engineering process, hence:

1. Many in the community lack understanding of the full LLM development process.

2. Open-source projects are developed under different conditions.

3. Research efforts on LLMs are harder to be stacked/composed together.

Why Make “Fully Open Source” LLMs?

The solution — Fully open source LLMs can help:

Debunk the Mystery of LLMs

• Share details of the full process
to allow people to know what
methods lead to what outcomes.

Promote Reproducibility and
Auditability

• Full development trace
 including data, training log.

Collective and Collaborative
Research

• Provide a standard playground,
 model, or environment for
 collaboration

Why Make “Fully Open Source” LLMs?

The solution — Fully open source LLMs can help:

Debunk the Mystery of LLMs

• Share details of the full process
to allow people to know what
methods lead to what outcomes.

Promote Reproducibility and
Auditability

• Full development trace
 including data, training log.

Collective and Collaborative
Research

• Provide a standard playground,
 model, or environment for
 collaboration

Why Make “Fully Open Source” LLMs?

The solution — Fully open source LLMs can help:

Debunk the Mystery of LLMs

• Share details of the full process
to allow people to know what
methods lead to what outcomes.

Promote Reproducibility and
Auditability

• Full development trace
 including data, training log.

Collective and Collaborative
Research

• Provide a standard playground,
 model, or environment for
 collaboration

Why Make “Fully Open Source” LLMs?

The solution — Fully open source LLMs can help:

Debunk the Mystery of LLMs

• Share details of the full process
to allow people to know what
methods lead to what outcomes.

Promote Reproducibility and
Auditability

• Full development trace
 including data, training log.

Collective and Collaborative
Research

• Provide a standard playground,
 model, or environment for
 collaboration

Why Make “Fully Open Source” LLMs?

The solution — Fully open source LLMs can help:

Debunk the Mystery of LLMs

• Share details of the full process
to allow people to know what
methods lead to what outcomes.

Promote Reproducibility and
Auditability

• Full development trace
 including data, training log.

Collective and Collaborative
Research

• Provide a standard playground,
 model, or environment for
 collaboration

● Want to promote knowledge transfer rather than competitive advantage.

● Want to be open about issues, difficult parts, rough edges, problems with our models, etc.

● Imagine if the future of AI is owned by the community — like great open source projects, e.g., linux,
wikipedia, etc.

Open Weight vs Fully Open Source Models

Open Weight vs Fully Open Source Models

Open Weights = only the final
weights are released

Open Weight Models

Phi

Open weight models ⇒ learnings are not transferred, code and data cannot be

reused, and advanced models must be built from scratch.

Open Weight vs Fully Open Source Models

Open Weights = only the final
weights are released

Fully Open Source = every step
is fully reproducible

(including all data, all methods, etc)

Open Weight Models

Phi

Fully-OSS Models

LLM360

Open weight models ⇒ learnings are not transferred, code and data cannot be

reused, and advanced models must be built from scratch.

Other Fully Open Source Projects

LLM360 ❤ ’s other “fully open source” LLM projects — for example:

Pythia series,
GPT-J,
GPT-NeoX-20B
The Pile

OLMo, Tulu,
OLMoE, Molmo
Dolma

MAP-NEO,
OpenCodeInterpreter,

The field moves very fast…

Quick note on slides:

These slides were up to date (in terms of current/recent LLMs) earlier this year…

…but the field moves fast, and so you’ll see a lot of references to slightly older models!

Model Releases — Some LLM360 History

Three main model release so far:

Model Releases — Some LLM360 History

Three main model release so far:

Amber: 7B Language Model

• The first model of the LLM360
project.

Fall 2023

Model Releases — Some LLM360 History

Three main model release so far:

Crystal: 7B Language Model that
also excels at Code

• More token efficient in training than
some of the popular open-weight
models.

• A better balance between coding
and language

Fall 2023 End of 2023

Amber: 7B Language Model

• The first model of the LLM360
project.

Model Releases — Some LLM360 History

Three main model release so far:

K2-65B: a reproducible large-param
model, at Llama 2-70B performance,
trained with 35% less compute

• More FLOPs efficient in pretraining
than the Llama series

Fall 2023 End of 2023 Summer 2024

Crystal: 7B Language Model that
also excels at Code

• More token efficient in training than
some of the popular open-weight
models.

• A better balance between coding
and language

Amber: 7B Language Model

• The first model of the LLM360
project.

The Landscape of LLMs

1936 

Openness

P
erfo

rm
an

ce

OpenAI
GPT-4o

Anthropic
Claude 3.5

Google
Gemini

Close Source LLMs

Meta
Llama3 405B

Open Weight LLMs

Mistral AI
Mistral large2 ~120B

Fully-Open LLMs

Meta
Llama2 70B

LLM360
K2-65B

AI2
OLMo 7B

EleutherAI
Pythia 7B

TII
Falcon 180B

LLM360
Crystal 7B

LLM360
Amber 7B

Meta
Llama3 70B

K2 Model

But to start, let’s go through overview/results of the K2-65B model…

My plan is to go through all details of pretraining our models.

K2 Model — Goals

K2 Model — Goals

K2 was created to try and push the boundaries of sustainability, performance, and research
benefit.

We set out to answer three questions:

K2 Model — Goals

K2 was created to try and push the boundaries of sustainability, performance, and research
benefit.

1. Can a leading model be created sustainability?
(Can we train a “good” model more efficiently?)

We set out to answer three questions:

When we started in 2023, the main
“open” comparison was Meta’s Llama 2.

(Though Llama 3 was released during
our development)

K2 Model — Goals

K2 was created to try and push the boundaries of sustainability, performance, and research
benefit.

1. Can a leading model be created sustainability?
(Can we train a “good” model more efficiently?)

2. What are the key ingredients to achieve
meaningful advances in a models reasoning,
math, and coding ability?

We set out to answer three questions:

When we started in 2023, the main
“open” comparison was Meta’s Llama 2.

(Though Llama 3 was released during
our development)

K2 Model — Goals

K2 was created to try and push the boundaries of sustainability, performance, and research
benefit.

1. Can a leading model be created sustainability?
(Can we train a “good” model more efficiently?)

2. What are the key ingredients to achieve
meaningful advances in a models reasoning,
math, and coding ability?

3. How can we empower the next phase of
language model research through the release
of open source artifacts?

We set out to answer three questions:

When we started in 2023, the main
“open” comparison was Meta’s Llama 2.

(Though Llama 3 was released during
our development)

K2 Model — Comparison with Llama 2 70B

K2 Model — Comparison with Llama 2 70B

K2-65B outperforms Llama 2 70B using 35% less compute.

K2 Model — Comparison with Llama 2 70B

K2-65B outperforms Llama 2 70B using 35% less compute.

A few percent
performance
improvement

35%
reduction
in total
compute

K2 Model — Comparison with Llama 2 70B

For comparison, see other related models (closed and open)

[1] The Llama 3 Herd of Models, Dubey et. al, 2024

[1]

K2 Model — Research and Development

We want to enable future waves of LLM research and development.

A cornerstone of research is producing reproducible artifacts for others to verify and
advance your work.

“Fully open source” ⇒ all resources and learnings developed during K2's developments
are made available to all, in particular…

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric curves collected through out training lifetime and made publicly
available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric curves collected through out training lifetime and made publicly
available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric curves collected through out training lifetime and made publicly
available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric curves collected through out training lifetime and made publicly
available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric/log curves collected through out training lifetime and made
publicly available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric/log curves collected through out training lifetime and made
publicly available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Model — Released artifacts

120 intermediate checkpoints of model weights to empower research into model
training dynamics: https://huggingface.co/LLM360/K2

1.4T fully open training data tokens for advanced understanding into data
mixtures, data efficiency, and to kickstart future training

40+ metric/log curves collected through out training lifetime and made
publicly available on W&B: https://wandb.ai/llm360/K2-Diamond

100+

21

prompts and output showing how the model responses change over
training lifetime: huggingface.co/spaces/LLM360/k2-gallery

evaluation metrics showing model holistic performance output over
training lifetime: huggingface.co/spaces/LLM360/k2-eval-gallery

16TB+ collection size of model artifacts, the most complete set of ever released
(at least at the time)

https://huggingface.co/LLM360/K2
https://wandb.ai/llm360/K2-Diamond
http://huggingface.co/spaces/LLM360/k2-gallery
http://huggingface.co/spaces/LLM360/k2-eval-gallery

K2 Research Artifacts — Training Data

K2 Research Artifacts — Training Data

Training data is a closely held secret by enterprises such as OpenAI and Meta.

K2 openly shares all data to advance understanding into data composition, mixtures,
and stages to help deliver the next generation of LLMs.

Check out the data here:
huggingface.co/datasets/LLM360/K2Datasets

K2 Training Data — Stage 1

1.4 trillion tokens providing
diverse knowledge, math,
legal, and coding ability.

K2 Training Data — Stage 2

96.4 billion tokens heavily
weighted with math and
coding data.

K2 Research Artifacts — Code

K2 Research Artifacts — Code

All code is released so that others may reproduce K2 to expand or verify our findings.

● With permissible license (Apache 2.0)!

Includes: data preparation, training, fine-tuning, and evaluation.

Check out the code here:
https://github.com/LLM360

K2 Research Artifacts — Curves and Logs

K2 Research Artifacts — Curves and Logs

We show all training curves using raw logs from our Weights-&-Biases (experiment
tracking) page.

Includes: evaluation metrics, throughput, system resources (disk, network, memory, gpu), and more.

Check out the w&b page here:
https://wandb.ai/llm360/projects

K2 Research Artifacts — Galleries

K2 Research Artifacts — Galleries

The K2 Prompt Gallery and K2 Evaluation Gallery provide insights into the model's
behavior and abilities.

View output for 21 evaluations
across full training run / all

model checkpoints.

View model responses to curated
prompts and compare across all

model checkpoints

K2 Performance Results

K2 Performance Results

Based on our stages of training data (especially 2nd stage), the goal was to try and
maximize performance on:

● Logic and reasoning

● Mathematics

● Coding

K2 Performance Results — Logic and Reasoning

K2 outperforms the majority of open weight models of its size while performing similar to
larger models trained on significantly more data.

K2 Performance Results — Mathematics

K2 outperforms the majority of open weight models of its size while performing similar to
larger models trained on significantly more data.

K2 Performance Results — Coding

K2 outperforms the majority of open weight models of its size while performing similar to
larger models trained on significantly more data.

K2 Performance Results — Closing the Gap to SOTA?

Still a ways to go to compete against the top models!

So how do we train these models?

Next:

A (Brief) Pretrainer’s Guide to Large Language Models

A (Brief) Pretrainer’s Guide to Large Language Models

A (Brief) Pretrainer’s Guide to Large Language Models

• Today, your boss knocks on your door:

• What would you reply?

• Boss: Can you to prepare an LLM training proposal
by EOD? Let’s beat GPT-4 next week.

• You: ??

A (Brief) Pretrainer’s Guide to Large Language Models

• Today, your boss knocks on your door:

• What would you reply?

• Boss: Can you to prepare an LLM training proposal
by EOD? Let’s beat GPT-4 next week.

• You: ??

Advisor

A (Brief) Pretrainer’s Guide to Large Language Models

Goal: Go through the main considerations and details of all steps (before, during, and
after) when pretraining a LLM.

A (Brief) Pretrainer’s Guide to Large Language Models

Goal: Go through the main considerations and details of all steps (before, during, and
after) when pretraining a LLM.

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

1 2 3 4 5 6 7 8

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

1 2 3 4 5 6 7 8

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

1

Large-scale training is about tradeoffs

Large-scale training is about tradeoffs

● Much of large scale training just comes
down to engineering…

● Engineering requires making tradeoffs of
resources.

Large-scale training is about tradeoffs

● Much of large scale training just comes
down to engineering…

● Engineering requires making tradeoffs of
resources.

● The science here is often about predicting
the tradeoff.

Determine the Goals and Budgets

As a training team lead, need to really clarify the downstream goal of your model.

Determine the Goals and Budgets

As a training team lead, need to really clarify the downstream goal of your model.

● What’s the main use case of the model?

○ What are the major knowledge domains that need to be covered?
(Finance, biomedical, legal, etc?)

○ What are the abilities that the model should have? Logical reasoning
or programming?

Determine the Goals and Budgets

As a training team lead, need to really clarify the downstream goal of your model.

● What’s the main use case of the model?

○ What are the major knowledge domains that need to be covered?
(Finance, biomedical, legal, etc?)

○ What are the abilities that the model should have? Logical reasoning
or programming?

● Useful to write down a model use-case card

○ Evaluation types and target scores.

○ Model capabilities.

○ Use-case restrictions (latency, model size, etc).

Determine the Goals and Budgets

As a training team lead, need to really clarify the downstream goal of your model.

○ Optimize performance
○ Optimize performance per dollar
○ Optimize ROI per dollar

● With the goals in mind, it’s useful to determine precisely what you are optimizing for:

Example Optimization Goals

Final ROI

• In practice, the optimal
compute budget requires one
to consider the tradeoff
between cost of pretraining
and cost of inference

Performance per dollar (PPD)

• Find a training setting to
maximize performance per
dollar spent

• Dollar can be spent on data,
computation and other
resources

Performance (“raw score”)

• Highest performance
achievable given some
constraints (e.g., limited data)

Final ROI

• In practice, the optimal
compute budget requires one
to consider the tradeoff
between cost of pretraining
and cost of inference

Performance per dollar (PPD)

• Find a training setting to
maximize performance per
dollar spent

• Dollar can be spent on data,
computation and other
resources

Performance (“raw score”)

• Highest performance
achievable given some
constraints (e.g., limited data)

Example Optimization Goals

Final ROI

• In practice, the optimal
compute budget requires one
to consider the tradeoff
between cost of pretraining
and cost of inference

Performance per dollar (PPD)

• Find a training setting to
maximize performance per
dollar spent

• Dollar can be spent on data,
computation and other
resources

Performance (“raw score”)

• Highest performance
achievable given some
constraints (e.g., limited data)

Example Optimization Goals

Final ROI

• In practice, the optimal
compute budget requires one
to consider the tradeoff
between cost of pretraining
and cost of inference

Performance per dollar (PPD)

• Find a training setting to
maximize performance per
dollar spent

• Dollar can be spent on data,
computation and other
resources

Performance (“raw score”)

• Highest performance
achievable given some
constraints (e.g., limited data)

Example Optimization Goals

Key Decision: Model Scale

Models designed with high capacity/scale can potentially achieve high
performance .

Key Decision: Model Scale

Models designed with high capacity/scale can potentially achieve high
performance .

Main factors determining model scale:

● Model architecture (Transformer vs. RNN vs. State Space Model)
● Training FLOPs

○ # model parameters

○ # tokens of pretraining data

Key Decision: Model Scale

Models designed with high capacity/scale can potentially achieve high
performance .

Main factors determining model scale:

● Model architecture (Transformer vs. RNN vs. State Space Model)
● Training FLOPs

○ # model parameters

○ # tokens of pretraining data

⇒ Neural Scaling Laws: the study of neural network behaviors that are predictable by
scaling model size, dataset size, and training time across many orders of magnitude .

Scaling Laws

Try to develop a law (relationship) to predict loss as you scale #-model-parameters,
#-tokens, etc.

Scaling Laws

Try to develop a law (relationship) to predict loss as you scale #-model-parameters,
#-tokens, etc.

L: Loss

N: # Model Parameter

D: # Training Token s

E: A constant capturing the Entropy of the text

E, A, B, ɑ, and β are to be fit during experiments

One example:

Chinchilla Scaling Law Formulation [1]

[1] Training Compute-Optimal Large Language Models, Hoffmann et. al, 2022

Scaling Laws

Try to develop a law (relationship) to predict loss as you scale #-model-parameters,
#-tokens, etc.

L: Loss

N: # Model Parameter

D: # Training Token s

E: A constant capturing the Entropy of the text

E, A, B, ɑ, and β are to be fit during experiments

One example:

Chinchilla Scaling Law Formulation [1]

[1] Training Compute-Optimal Large Language Models, Hoffmann et. al, 2022

● Scaling law study allows one to
estimate the model behaviors of
high-capacity by experimenting on
low-capacity ones.

● Model loss is one example; other
predictions are also possible.

The phenomenon of “emergent abilities” makes the capacity decision more important.

Emergent Abilities

● Want to choose the right budget that reaches desired ability.

The phenomenon of “emergent abilities” makes the capacity decision more important.

Emergent Abilities

[1] Emergent Abilities of Large Language Models, Wei et. al, 2022

● Want to choose the right budget that reaches desired ability.

Key metrics/abilities may only start to emerge (i.e., significantly
improve) when model exceed certain capacity.

Table of emergent abilities at different model capacities.

Examples of Scaling Law Studies

Example scaling law studies: predicting loss vs other metrics.

Examples of Scaling Law Studies

Example scaling law studies: predicting loss vs other metrics.

Scaling law of different model families [1]

[1] Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster, arXiv:2304.03208
[2] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158

Examples of Scaling Law Studies

Example scaling law studies: predicting loss vs other metrics.

● In [2], a 12B model’s metric scores can be (somewhat) predicted by smaller models

Example: Text memorization prediction with scaling laws [2]

[1] Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster, arXiv:2304.03208
[2] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158

Extra tradeoffs

Also need to consider:

Extra tradeoffs

Also need to consider:

● Scaling Law Study Cost vs. Training Cost
○ The cost to fit a good scaling law curve is also significant, considering all the factors to be tried

(e.g., hyperparameters, data selection) .

Extra tradeoffs

Also need to consider:

● Scaling Law Study Cost vs. Training Cost
○ The cost to fit a good scaling law curve is also significant, considering all the factors to be tried

(e.g., hyperparameters, data selection) .

● Training Resources vs. Supporting Resource s
○ Don’t use all your GPUs for training, always reserve enough for evaluation, analysis .
○ There is a tradeoff between model evaluation frequency vs. rollback cost .

Extra tradeoffs

One more consideration:

● Choose a model size that works well on the target inference hardware .
○ 7B works great on a single A100 GPU.

○ One may also consider whether a quantized (8-Bit, 4-Bit) version of the model fit into the
memory of weaker hardware .

○ Sometimes other restrictions — e.g., in some parallel inference, make sure key layer sizes are
divisible by power of 2 .

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

2

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

2

One of the most
important parts of
LLM pretraining.

Data Collection

Data Collection

Recall in Scaling Laws, data plays a crucial role in final performance .

Chinchilla Scaling Law
● Data size denoted by D
● Intuitively, data quality changes B and β

Data Collection

Recall in Scaling Laws, data plays a crucial role in final performance .

Determine the data size based on budget
and loss goal .

Chinchilla Scaling Law

⇒ Collecting a high quality and large corpus
is essential for producing in the final model .

● Data size denoted by D
● Intuitively, data quality changes B and β

Special Domains

Sometimes one may want to collect data in special domains

Programming Code

• Enable model’s
programming ability .

• Helpful in function call .
• Could improve

reasoning.

Multiple Languages

• Multi-lingual /
non-English corpus .

• Note that filtering rules
that rely on language
statistics might need to
be adapted.

Specialist Domains

• Professional areas such
as legal, medical.

• Special document
formats such as
tables, forms, etc.

Special Domains

Sometimes one may want to collect data in special domains

Programming Code

• Enable model’s
programming ability .

• Helpful in function call .
• Could improve

reasoning.

Multiple Languages

• Multi-lingual /
non-English corpus .

• Note that filtering rules
that rely on language
statistics might need to
be adapted.

Specialist Domains

• Professional areas such
as legal, medical.

• Special document
formats such as
tables, forms, etc.

Special Domains

Sometimes one may want to collect data in special domains

Programming Code

• Enable model’s
programming ability .

• Helpful in function call .
• Could improve

reasoning.

Multiple Languages

• Multi-lingual /
non-English corpus .

• Note that filtering rules
that rely on language
statistics might need to
be adapted.

Specialist Domains

• Professional areas such
as legal, medical.

• Special document
formats such as
tables, forms, etc.

Special Domains

Sometimes one may want to collect data in special domains

Programming Code

• Enable model’s
programming ability .

• Helpful in function call .
• Could improve

reasoning.

Multiple Languages

• Multi-lingual /
non-English corpus .

• Note that filtering rules
that rely on language
statistics might need to
be adapted.

Specialist Domains

• Professional areas such
as legal, medical.

• Special document
formats such as
tables, forms, etc.

When dealing with internet-scale data, it
is typical to filter documents based on a
pipeline of heuristic rules .

Data Preprocessing

(Note that rules will be different in
different domains)

Data Preprocessing

When dealing with internet-scale data, it
is typical to filter documents based on a
pipeline of heuristic rules .

(Note that rules will be different in
different domains)

LLM360 has released a dataset (TxT360) with
careful data processing, with fully documented
decision process

From TxT360 project…
will describe later on.

Data Deduplication

Empirically, many studies have confirmed that deduplication can improve model
quality [1-3].

Data Deduplication

● Falcon uses RefinedWeb (deduplicated Common Crawl).

● LLM360/Crystal uses SlimPajama (deduplicated RedPajama).

[1] To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis, arXiv:2305.13230
[2] Deduplicating Training Data Makes Language Models Better, arXiv:2107.06499
[3] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[4] Scaling Data-Constrained Language Models, arXiv:2305.16264

Empirically, many studies have confirmed that deduplication can improve model
quality [1-3].

Data Deduplication

● Falcon uses RefinedWeb (deduplicated Common Crawl).

● LLM360/Crystal uses SlimPajama (deduplicated RedPajama).

[1] To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis, arXiv:2305.13230
[2] Deduplicating Training Data Makes Language Models Better, arXiv:2107.06499
[3] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[4] Scaling Data-Constrained Language Models, arXiv:2305.16264

OTOH, there is also evidence that it can be good to repeat certain training data

● [4] trains the model on multiple epochs .
● Llama and several of our models (LLM360/Amber, K2) also upweight certain high quality datasets

(such as Wikipedia) . K2 performs generally better after upweighting.

Data Deduplication

In practice, we upsampled about 10%
data in K2 training.

Some high quality data sources (such as
Wikipedia) are repeated ~6 times.

Data Deduplication

[1] hypothesize that a lot of duplicate data
causes the model to replace generalization
with memorization

And that duplicate data induces a
double-descent [2] phenomenon

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[2] Superposition, Memorization, and Double Descent, Transformer Circuits Thread

Data Deduplication

[1] hypothesize that a lot of duplicate data
causes the model to replace generalization
with memorization

And that duplicate data induces a
double-descent [2] phenomenon

● Repeating a few times does not cause much
damage

● Repeating very many times also does not
cause much damage

● Eventually grokking happens, but hard to
predict “when” in real-world scenarios

[1] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[2] Superposition, Memorization, and Double Descent, Transformer Circuits Thread

Data Deduplication

The Fineweb [1] report shows that
deduplicating more greedily and globally
actually hurts performance.

Deduplicating within groups (that are
organized by year) is the best [1].

[1] https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1

Some studies on deduplication are less clear/positive.

Data Deduplication — Summary

The impact of data deduplication on performance is complex but important!

Data Deduplication — Summary

● Be careful when repeating the data, or training multiple epoch s.

● Repeating high quality data is a bit safer.

● Conduct a scaling law study on memorization [1, 2] can be helpful.

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158
[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[3] Scaling Data-Constrained Language Models, arXiv:2305.16264

● If you deduplicate, you can control repetition precisely, and know the repeats of your data.

● Monitor when the training process reaches repeated data.

○ Check for key metrics at the start of epochs .

○ Pay attention to generalization results in addition to memorization evals.

Data Deduplication — Summary

● Be careful when repeating the data, or training multiple epoch s.

● Repeating high quality data is a bit safer.

● Conduct a scaling law study on memorization [1, 2] can be helpful.

[1] Emergent and Predictable Memorization in Large Language Models, arXiv:2304.11158
[2] Scaling Laws and Interpretability of Learning from Repeated Data, arXiv:2205.10487
[3] Scaling Data-Constrained Language Models, arXiv:2305.16264

Main takeaways

The impact of data deduplication on performance is complex but important!

● TxT360 (Trillion eXtracted Text) is a new pretraining dataset released by LLM360.

● We deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from
diverse domains (e.g., FreeLaw, PG-19, etc.).

● 15 trillion tokens in total.

TxT360

● Pipeline of filtering steps on web data — for details see the blog post:
https://huggingface.co/spaces/LLM360/TxT360

TxT360
Gray denotes the
filtered data at each
step of the pipeline.

https://huggingface.co/spaces/LLM360/TxT360

Vocabulary

Vocabulary is typically determined by a subword tokenization algorithm over dataset.

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613

[2] StarCoder: may the source be with you! arXiv:2305.06161

Vocabulary

Vocabulary is typically determined by a subword tokenization algorithm over dataset.

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613

[2] StarCoder: may the source be with you! arXiv:2305.06161

A few important decisions:
● Are there special characters (such as control tokens in StarCoder [2]) ?
● If multilingual, take special care with tokenization [1], especially with the case of continuous

pretraining over different languages.

● Vocabulary size: a hyperparameter to choose .

Vocabulary

Vocabulary is typically determined by a subword tokenization algorithm over dataset.

A few important decisions:
● Are there special characters (such as control tokens in StarCoder [2]) ?
● If multilingual, take special care with tokenization [1], especially with the case of continuous

pretraining over different languages.

● Vocabulary size: a hyperparameter to choose .

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613

[2] StarCoder: may the source be with you! arXiv:2305.06161

A few metrics can be used to help decisions

● One good one: “Tokenizer fertility ” → see next slide.

Vocabulary

Tokenizer Fertility: the average number of subwords produced per tokenized word .

● Fertility measures how aggressively a tokenizer splits.

[1] How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models. arXiv:2012.15613

[2] StarCoder: may the source be with you! arXiv:2305.06161

One should check the fertility score before reusing an existing tokenizer on another
domain or language .

● Low score is preferable as it indicates that the tokenizer is well suited to the target domain .

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

3

Model Architecture Choices

There are now quite a few popular architectures

● Transformer based: GPT series, Llama variants

● State Space Model: Mamba, Striped Hyena
● RNN-like models: RWKV

Model Architecture Choices

There are now quite a few popular architectures

In LLM360 experiments, transformer-based models still work consistently well.

● Transformer based: GPT series, Llama variants

● State Space Model: Mamba, Striped Hyena
● RNN-like models: RWKV

● In our preliminary study, we find SSMs are hard to be trained for coding tasks
● There is also a large ecosystem around transformer-based models; good for community support.

Hardware-aware Decisions

The details of model architecture choice
depend a lot on the underlying hardware.

Hardware-aware Decisions

The details of model architecture choice
depend a lot on the underlying hardware.

● E.g., on Nvidia GPUs we typically want to
control matrix dimensions to be multiples
of 8 or 16 according to the official
documentation [1] .

● More parameter suggestions can be found
in a study [2], key heuristic in the table

[1] https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
[2] The Case for Co-Designing Model Architectures with Hardware, arXiv:2401.14489

Parameter Recommendation

Vocab size divisible by 64

b As large as possible

b*s, h/a, and h/t divisible by a power of 2

(b*a)/t should be an integer

t As small as possible

a: # attention heads
s: seq length
t: tensor-parallel size
h: hidden dimension size
b: microbatch size

Model Architecture Efficiency

Bottlenecks in LLM models often happen with memory constraints — leads to
various ways of improving memory usage.

● KV-Cache.

● Group Query Attention in place of regular Multi Query Attention.

● FlashAttention [1].

[1] FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Dao et.al. 2022

[2] Mamba: Linear-Time Sequence Modeling with Selective State Spaces, Dao etl.al. 2023

Model Architecture Efficiency

Bottlenecks in LLM models often happen with memory constraints — leads to
various ways of improving memory usage.

When choosing architecture, often need to consider the performance on specific
hardware.

● KV-Cache.

● Group Query Attention in place of regular Multi Query Attention.

● FlashAttention [1].

[1] FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, Dao et.al. 2022

[2] Mamba: Linear-Time Sequence Modeling with Selective State Spaces, Dao etl.al. 2023

● Mamba [2] on our hardware was found to be slower in terms of Wall Time.

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

4

Hyperparameter Study

Hyperparameter Study

● Learning rate, batch size, optimization algo params, architecture sizes, etc.

Need a way to select hyperparameters for our models!

● How can optimal hyperparameters be “predicted” across model sizes?
● Some methods are available for this, particularly µP and µTransfer [1] .

Hyperparameter Study

● Often conducted during scaling law study.
Ideally, want to conduct hyperparameter selection on smaller models .

Can scaling laws work here?

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466

● Learning rate, batch size, optimization algo params, architecture sizes, etc.

Need a way to select hyperparameters for our models!

µTransfer

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466
[2] Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks, arXiv:2310.02244

µTransfer

Parameterizing model with µP ⇒ optimal
hyperparameters are same across scales.

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466
[2] Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks, arXiv:2310.02244

● E.g., in right-hand, learning rate consistent across
different model widths.

● Applies only to certain hyperparameters.

µTransfer

Zero-shot transfer hyperparameters via µTransfer *

Parameterizing model with µP ⇒ optimal
hyperparameters are same across scales.

[1] Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer, arXiv:2203.03466
[2] Tensor Programs VI: Feature Learning in Infinite-Depth Neural Networks, arXiv:2310.02244

[1] proves the mechanism for “widthwise hyperparameter transfer”, though people use this method
beyond the theoretical guarantee (applied on depth, different data sizes).

● Recently in [2], “depthwise transfer” is proposed.

● E.g., in right-hand, learning rate consistent across
different model widths.

Hyperparameter study — tuning on a smaller model

We do this in practice: first quickly tune hyperparameters on a small (proxy) model.

Hyperparameter study — tuning on a smaller model

We do this in practice: first quickly tune hyperparameters on a small (proxy) model.

A hyperparameter
search experiment on
one of our models

Hyperparameter study — tuning on a smaller model

We do this in practice: first quickly tune hyperparameters on a small (proxy) model.

A hyperparameter
search experiment on
one of our models

Then use µTransfer for
zero-shot transfer from
the proxy model to large
model (small → large)

…which works very well
with scaling law study

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

5

Determine Training Curriculum

Model training is a very long and costly process…

● Before starting, we need to plan for a few key decisions involving the training data mixes.

● I.e., determine what happens during training, or what’s the “training curriculum” *.

* Not to be confused with curriculum learning, though some ideas are very similar

● During early stage of training, we want the model to “warm-up” well to a new data distribution.

● Based on project needs, at the middle stages sometimes we have special training curriculums,
leading to multi-stage training.

● At the end of training, we want to make sure the model converges well — model ramp down.

Determine Training Curriculum

Model training is a very long and costly process…

● Before starting, we need to plan for a few key decisions involving the training data mixes.

● I.e., determine what happens during training, or what’s the “training curriculum” *.

What should we consider in a training curriculum? For example:

* Not to be confused with curriculum learning, though some ideas are very similar

Learning Rate Schedule

The learning rate schedule is strongly
dictated by the training curriculum.

Learning Rate Schedule

The learning rate schedule is strongly
dictated by the training curriculum.

● Need to plan the learning rate schedule in
response to the curriculum details.

● Since the model will be trained for months,
too large or small learning rate could cause
instability or major performance slow down.

Learning Rate Schedule

LLM360/Amber uses cosine decay with an initial LR of 3e−4
and a final rate of 3e-5. The learning rate is warmed up for
2,000 steps.

Learning Rate Schedule

 Phase 1 Phase 2 Phase 3

LR Warmup Steps 86 86 276

LR Initial Value 0.012 0.0087825 0.002

LR Final Value 0.00012408 0.00013679 0.0002

LR Decay Linear Linear Linear

LLM360/Amber uses cosine decay with an initial LR of 3e−4
and a final rate of 3e-5. The learning rate is warmed up for
2,000 steps.

LLM360/Crystal’s multi-phase schedule. (Note that
only the base LR is shown).

Note that Amber uses standard parameterization while Crystal uses µP, hence Amber uses a shared learning rate while Crystal uses a per-layer learning rate.

Ramp-off and Warmups

Concretely, there are three factors that affect the learning rate schedule:

1. When your data distribution shifts over multiple stages.

2. When you want to get a final checkpoint for use (either at intermediate stage or at end) .

3. When you want to do continual training (i.e., restart training on larger set of data).

1. Prepare a learning rate schedule spanning all the stages, and ramp-off models at each stage .
○ Pro: Overall training is smoother, no risk of having an incorrect warmup .

○ Con: Hard to plan the whole learning rate schedule without knowing the full data size in advance.

Ramp-off and Warmups

Here are two possible strategies:

1. When your data distribution shifts over multiple stages.

2. When you want to get a final checkpoint for use (either at intermediate stage or at end) .

3. When you want to do continual training (i.e., restart training on larger set of data).

Concretely, there are three factors that affect the learning rate schedule:

1. Prepare a learning rate schedule spanning all the stages, and ramp-off models at each stage .
○ Pro: Overall training is smoother, no risk of having an incorrect warmup .

○ Con: Hard to plan the whole learning rate schedule without knowing the full data size in advance.

Ramp-off and Warmups

Here are two possible strategies:

2. Have a learning rate schedule for each stage, and re-warmup at each stage .
○ Pro: Easy to plan and implement

○ Con: Warm-up and hyperparameter choices can be tricky

1. When your data distribution shifts over multiple stages.

2. When you want to get a final checkpoint for use (either at intermediate stage or at end) .

3. When you want to do continual training (i.e., restart training on larger set of data).

Concretely, there are three factors that affect the learning rate schedule:

Ramp-off and Warmups

[1] https://github.com/Stability-AI/StableLM/?tab=readme-ov-file#stablelm-3b-4e1t
[2] Continual Pre-Training of Large Language Models: How to (re)warm your model? arXiv:2308.04014

Ramp-off approach, used in some LLM360 models tests.
Prior work such as [1] suggests linearly decaying to
zero .

Multi-stage warm-up approach, as in LLM360/Crystal
and K2. Prior work such as [2] empirically confirms
that warmup is necessary in different settings

Visualizing both strategies:

Data Mix

How do we determine our data weighting?

[1] DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, arXiv:2305.10429

Data Mix

How do we determine our data weighting?

● Methods such as DoReMi [1] aim to determine the best data weights.
○ Difficult to find scaling law: we empirically find DoReMi predictions are different when using different proxy sizes .

● A more common approach is to find data weighting empirically by performing sweeps

[1] DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, arXiv:2305.10429

● Note that most scaling law studies assume the dataset is sampled uniformly from the same distribution
across training .

● Hence it is possible to estimate data mix for a large model using a small proxy model .

● It is uncertain whether we can estimate data schedules (for multi-stage training) with a proxy .
○ Intuitively: larger model may learn a certain “ability” with less data, allowing them want “next step” earlier .

○ In LLM360, we attempt to estimate this phenomenon but don’t have enough compute to draw conclusions .

Data Mix

How do we determine our data weighting?

● Methods such as DoReMi [1] aim to determine the best data weights.
○ Difficult to find scaling law: we empirically find DoReMi predictions are different when using different proxy sizes .

● A more common approach is to find data weighting empirically by performing sweeps

Can we find a scaling law for multi-stage data schedules?

[1] DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining, arXiv:2305.10429

Data Readiness

In reality, not everything is ready at the start of training .

Data Readiness

In reality, not everything is ready at the start of training .

● New requirement, new data may be available during training
LLM training usually spans over weeks if not months

Data Readiness

In reality, not everything is ready at the start of training .

● New requirement, new data may be available during training
LLM training usually spans over weeks if not months

Practically, we suggest model ramp-off and warm-up strategies as described earlier ,
when things change.

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

6

Preparation of runtime before pretraining

This section is about determining:

● Pretraining implementation frameworks.

● Parallel/distributed training strategies.

● Fault tolerance and handling hardware (or other) failures.

● Various problems we encountered in practice.

Pretraining Framework

There are various requirements we need from the training framework:
● Code stability and implementation correctness.
● Parallelization support .

Pretraining Framework

There are various requirements we need from the training framework:
● Code stability and implementation correctness.
● Parallelization support .

Need to choose a framework that fits your needs!

● We found many existing open source frameworks
were not perfect for our needs:

Dataset & model supports

All parallelism support

FlashAttention-2

Our customized and
integrated solution

See code:
https://github.com/
LLM360/k2-train

Background on Parallel Training

Two cases to consider — large data vs large model:

Background on Parallel Training

1. The input dataset is very large.

😃 Easy.
Data parallelism: partition input data
and replicate the model

GPU 1

GPU 2

Model

Model

Input batch 1

Input batch 2

Two cases to consider — large data vs large model:

Background on Parallel Training

1. The input dataset is very large.

😃 Easy.
Data parallelism: partition input data
and replicate the model

2. The model is very large.

😖 Harder !!

GPU 1

GPU 2

Model

Model

Input batch 1

Input batch 2

Model
(350 GB)

GPU 1
(32 GB)

GPU 2
(32 GB)

Challenge: How to partition a
computational graph?

Two cases to consider — large data vs large model:

Background on Parallel Training

Different strategies for model parallelism:

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Consider this
compute graph.

Background on Parallel Training

Different strategies for model parallelism:

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Strategy 1: Inter-operator Parallelism

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Strategy 2: Intra-operator Parallelism

Consider this
compute graph.

[1] Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning, 2022, arXiv: 2201.12023

Device 1

Device 2

Background on Parallel Training

Different strategies for model parallelism:

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Device 1

Device 2
x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Strategy 1: Inter-operator Parallelism

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Strategy 2: Intra-operator Parallelism Inter-operator
Parallelism

Intra-operator
Parallelism

Communication Less More

Device Idle Time More Less

Trade-off

Consider this
compute graph.

[1] Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning, 2022, arXiv: 2201.12023

Background on Parallel Training

A couple of additional variations:

Background on Parallel Training

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Combine Intra-op and Inter-op

A couple of additional variations:

Background on Parallel Training

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Combine Intra-op and Inter-op

A couple of additional variations:

Pipeline the execution for inter-op parallelism

w3 

w2 

w1  MatMul 

MatMul 

MatMul 

MatMul 

MatMul 

MatMul 

Matmul  

MatMul 

MatMul 

Background on Parallel Training

Can automatically choose distributed strategy based on network topology!

Checkout more on this topic in MLSys work,
such as Alpa [1] and RedCoast [2].

Background on Parallel Training

Can automatically choose distributed strategy based on network topology!

[1] Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning, arXiv:2201.12023

[2] RedCoast: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs, arXiv:2310.16355

x  sub ReLU  MatMul 

w2 

MatMul 

w1 

Determine Method to Assign Compute
Graph to According Network Topology

Fast connections

Slow connections

machine machine machine machine

Checkout more on this topic in MLSys work,
such as Alpa [1] and RedCoast [2].

Background on Parallel Training

Can automatically choose distributed strategy based on network topology!

[1] Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning, arXiv:2201.12023

[2] RedCoast: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs, arXiv:2310.16355

Altogether, here is the training parallelism strategy of our K2 model (on 60 nodes)

Background on Parallel Training

DP: Data Parallelism

TP: (Tensor) Model Parallelism

PP: Pipeline Parallelism

Altogether, here is the training parallelism strategy of our K2 model (on 60 nodes)

Background on Parallel Training

DP: Data Parallelism

TP: (Tensor) Model Parallelism

PP: Pipeline Parallelism

Over groups of 15 nodes,
have data parallelism.

Altogether, here is the training parallelism strategy of our K2 model (on 60 nodes)

Background on Parallel Training

DP: Data Parallelism

TP: (Tensor) Model Parallelism

PP: Pipeline Parallelism

Over groups of 4 nodes,
have pipeline parallelism

Altogether, here is the training parallelism strategy of our K2 model (on 60 nodes)

Background on Parallel Training

DP: Data Parallelism

TP: (Tensor) Model Parallelism

PP: Pipeline Parallelism

Within each node, have model
parallelism (over 8 GPUs).

Hardware Failures and Fault Tolerance

LLM pre-training still can have many issues:

Hardware Failures and Fault Tolerance

LLM pre-training still can have many issues:

● Hardware failure, e.g., CUDA NCCL error.

● Unknown hardware/network slowing
down.

● Loss spikes during training.

● NaN loss and training divergence.

Types of Hardware Failure

Many possible types of hardware failures, most of which we encountered

Types of Hardware Failure

Type of failure Description

NCCL timeout Timeout duration has been exceeded by init container.

Dead GPU A GPU is down.

Unhealthy GPU nodes GPU node-level hardware failure.

OS input/output error Operating systems issue/failure.

Lustre file system error GPU nodes reboot due to lustre error.

Mount failure GPU nodes mount failures because the user job is stuck in pending
state.

Lack of storage Running out of disk space on the cluster.

Many possible types of hardware failures, most of which we encountered

Fault Tolerance

How did we handle these failures in practice?

Fault Tolerance

How did we handle these failures in practice?

Skip the current data batch when loss
spike or NaN loss are observed.

Fault Tolerance

How did we handle these failures in practice?

Replacing “failed” node with a new one from the
backup GPU pool.

Skip the current data batch when loss
spike or NaN loss are observed.

Still, problems were encountered!

During LLM360 training, we still encountered a few problems during runtime:

Still, problems were encountered!

During LLM360 training, we still encountered a few problems during runtime:

● Models get stored at incorrect precision in certain environments.

● Precision changes midway due to Cerebras hardware upgrade.

● Configuration bug in Lit-llama repository

● Incorrect precision details in Megatron-LLM repository

Still, problems were encountered!

During LLM360 training, we still encountered a few problems during runtime:

● Models get stored at incorrect precision in certain environments.

● Precision changes midway due to Cerebras hardware upgrade.

● Configuration bug in Lit-llama repository

● Incorrect precision details in Megatron-LLM repository

⇒ All issues detailed in our reports! [1, 2]

[1] LLM360: Towards Fully Transparent Open-Source LLMs, arxiv.org/abs/2312.06550

[2] LLM360 K2-65B: Scaling Up Fully Transparent Open-Source LLMs, www.llm360.ai/blog/several-new-releases-to-further-our-mission.html

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

7

● One mistake during K2 training was that we didn’t have enough machines to eval the 65B model!

● Frequent evaluation will ensure we don’t waste time on an ill-behaved model for too long.

○ This is again a tradeoff: evaluation resources vs. training resource

Evaluation and Logging

Remember to plan enough resources for evaluation

● One mistake during K2 training was that we didn’t have enough machines to eval the 65B model!

● Frequent evaluation will ensure we don’t waste time on an ill-behaved model for too long.

○ This is again a tradeoff: evaluation resources vs. training resource

● Held-out perplexity: one of the most direct measures.

○ Practically, training loss is reasonably correlated / works reasonably well (if the data is dedup).

○ Held-out set is still important to ensure no accidental data repetition.

● Benchmark: task-based benchmarks to directly measure desired metrics (but make sure you don’t
have data leaks!)

● Test generation — you should frequently sample output from the model.

Evaluation and Logging

Remember to plan enough resources for evaluation

Which evaluation measures to run during training?

Benchmarks — Multiple Choice vs. Generation

Two examples “types” of popular benchmarks: multiple choice and generation-based.

Benchmarks — Multiple Choice vs. Generation

• Example: BigBench, GSM8K, MBPP

• Often involve CoT, or complex generation

• More reliable benchmarks for generation
tasks

• Difficult and high variance for small-scale
models

• Example: MMLU, ARC (AI2 Reasoning Challenge)

• Easy to implement and evaluate

• Some metrics can be misleading and cannot
detect degenerated models

Multiple Choice Generation

Two examples “types” of popular benchmarks: multiple choice and generation-based.

Dealing with Problems that Arise

Example: Loss Spikes

Dealing with Problems that Arise

Example: Loss Spikes

● Loss spikes are common problems during large scale pretraining

○ Empirically, we only observe spikes during our 65B model training but not in the 7B training

Dealing with Problems that Arise

Example: Loss Spikes

● Loss spikes are common problems during large scale pretraining

○ Empirically, we only observe spikes during our 65B model training but not in the 7B training

[1] Early Weight Averaging meets High Learning Rates for LLM Pre-training arXiv:2306.03241

● There are many solutions to loss spikes

○ Simple ones: can simply skip a data instance and restart the training.

○ Some other methods are also reported to alleviate spikes, such as model averaging [1], alternative losses.

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

8

After pretraining,
there’s still some
work to be done

Annealing Stage

At end of pretraining, anneal learning rate down to zero.

Linear decay to 0 at
annealing stage

Model Averaging

Averaging the model weights of subsequent training steps sometimes can improve
performance [1].

● In some training tests, we averaged model weights over last 10 epochs and obtained a better model.

● Though we did not find this effect with Amber and Crystal (7B) models.

[1] Averaging Weights Leads to Wider Optima and Better Generalization arXiv:1803.0540

[2] Early Weight Averaging meets High Learning Rates for LLM Pre-training arXiv:2306.03241

● High learning rate (LR) can better performance when performing model averaging.

● The training trajectory of averaging with high LR mimics a low LR scenario.

○ ⇒ if we use model averaging, we may be able to keep high LR for longer time (less LR decay).

Model Averaging

Averaging the model weights of subsequent training steps sometimes can improve
performance [1].

● In some training tests, we averaged model weights over last 10 epochs and obtained a better model.

● Though we did not find this effect with Amber and Crystal (7B) models.

More recent work [2] shows that

[1] Averaging Weights Leads to Wider Optima and Better Generalization arXiv:1803.0540

[2] Early Weight Averaging meets High Learning Rates for LLM Pre-training arXiv:2306.03241

Quantization

Quantization converts the final model into much
lower precision (e.g., BF16 → Int8).

● Some work [1] shows that some parts of a model may be
less suitable for quantization.

[1] LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

[2] https://pytorch.org/docs/stable/quantization.html

“FP8: Efficient model inference with 8-bit floating point numbers”, baseten blog post,
https://www.baseten.co/blog/fp8-efficient-model-inference-with-8-bit-floating-point-numbers/

● QAT models the effects of quantization during training allowing for higher accuracy compared to
other quantization methods

● These techniques are supported by popular learning frameworks such as PyTorch [2]

Quantization

Quantization converts the final model into much
lower precision (e.g., BF16 → Int8).

● Some work [1] shows that some parts of a model may be
less suitable for quantization.

Another strategy: Quantization Aware Training (QAT)

[1] LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

[2] https://pytorch.org/docs/stable/quantization.html

“FP8: Efficient model inference with 8-bit floating point numbers”, baseten blog post,
https://www.baseten.co/blog/fp8-efficient-model-inference-with-8-bit-floating-point-numbers/

Finetuning and Alignment

● E.g., Crystal-Vision and K2-Vision (coming soon)

Finetuning and Alignment

Can finetune an instruction-following, chat, or other model variants.

● Or for enhance specific abilities: arithmetic, coding

Finetune with vision ability — using multimodal architectures

Tune with safety and culture alignment

● Larger models tend to overfit on finetuning data a lot more (e.g., harder to tune K2 than Crystal)

A (Brief) Pretrainer’s Guide to Large Language Models

Goal & budgets Data
preparation

Model architecture
choices

Hyperparameter
study

Training curriculum
plan

Prepare
runtime

Pretraining
The end

stage

1 2 3 4 5 6 7 8

Check Out Our Website

Software for reliable uncertainty quantification and experimentation.
LLM360 — enables community-owned AI through open-source large model R&D.

Links to all of our artifacts mentioned above!

● Multiple pre-trained models (7B+).
● 360 model checkpoints.
● All training code.
● All datasets, data processing.
● Analysis of checkpoints, logs, metrics.
● And more…

Check out:
https://www.llm360.ai

https://www.llm360.ai

