

Instructor: Swabha Swayamdipta USC CSCI 544 Applied NLP Oct 31, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning and Qinyuan Ye and Justin Cho

## Lecture 19: LLMs: Post-training





### Announcements

- Today, Thu, 10/31 Lecture + Paper Presentation I
- Tue, 11/5 Lecture + Paper Presentation II
- Thu, 11/7 Quiz 4 + Paper Presentation III
- Tue, 11/12 Quiz 5 + Paper Presentation IV
- Thu, 11/14 Guest lecture on LLM Pretraining by Prof. Willie Neiswanger on 11/14 + HW4 due
  - Questions from lecture materials will be included in final exam
- Quizzes 4 and 5 all topics after the midterms
  - Consider these as practice tests for final exams



## Lecture Outline

- Announcements
- Last Lecture: LLM Generative Evaluation + Pre-training
- Today:
  - Post-training with Supervised Finetuning
    - Instruction Tuning
  - Interacting with LLMs: Prompting
  - Post-training with Alignment with Human Feedback:
    - Preference Tuning: RLHF



# The need for post-training

A Pre-trained GPT-3

**Prompt**: Explain the moon landing to a six year old in a few sentences. **Output**: Explain the theory of gravity to a 6 year old.

**Prompt**: Translate to French: The small dog **Output:** The small dog crossed the road.

- Make LLMs more helpful
  - Supervised Finetuning: Instruction Tuning
  - Prompting
- Make LLMs less harmful
  - Model Alignment with Human Preferences: Intro to RLHF / DPO



Ouyang et al., 2022; J&M Chap 12

## Lecture Outline

- Announcements
- Last Lecture: LLM Generative Evaluation + Pre-training
- Today:
  - Post-training with Supervised Finetuning
    - Instruction Tuning
  - Interacting with LLMs: Prompting
  - Post-training with Alignment with Human Feedback:
    - Preference Tuning: RLHF



# Supervised Fine-tuning LLMs: Instruction-Tuning



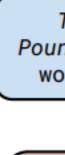
## Instruction Tuning

### • Pretraining:

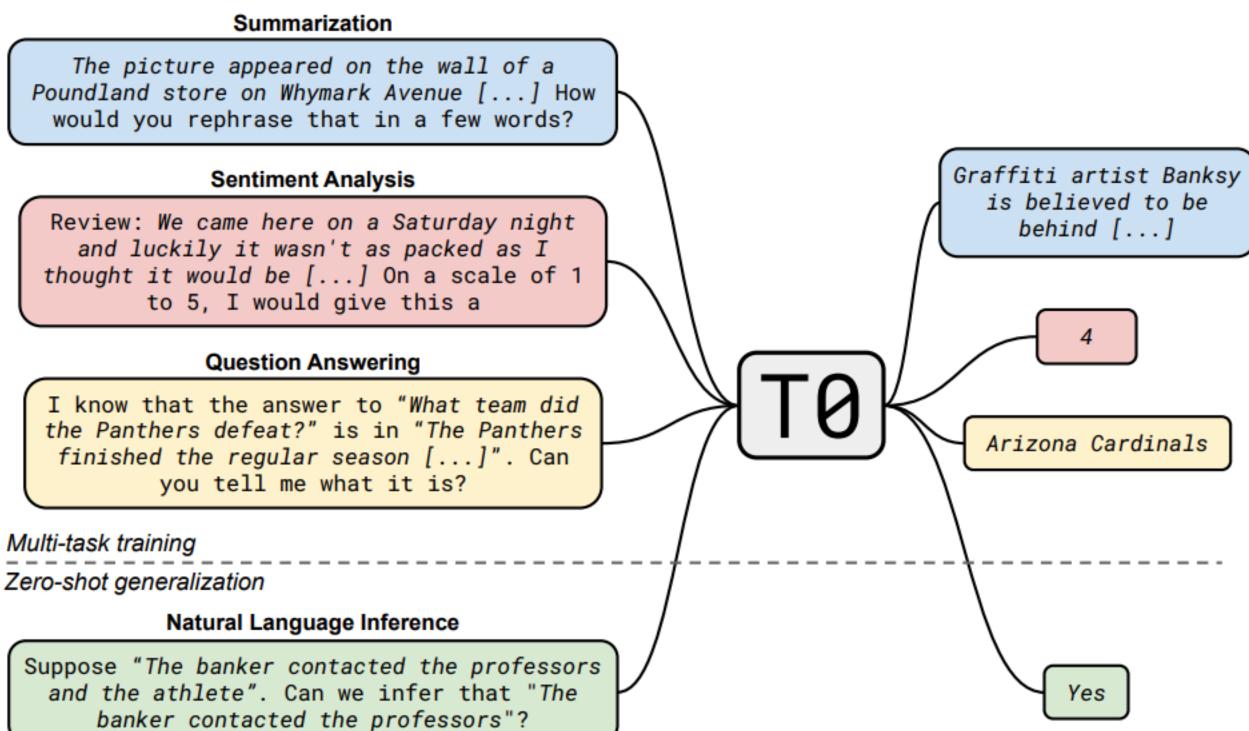
 Train a model to continue a given context

### Instruction Tuning:

- Train a model to follow varied instructions
- Needed because the vast majority of pretraining is done on data which are not in the form of instructions
- Fine-tuned (using the next-tokenprediction objective) on a dataset of instructions together with correct responses







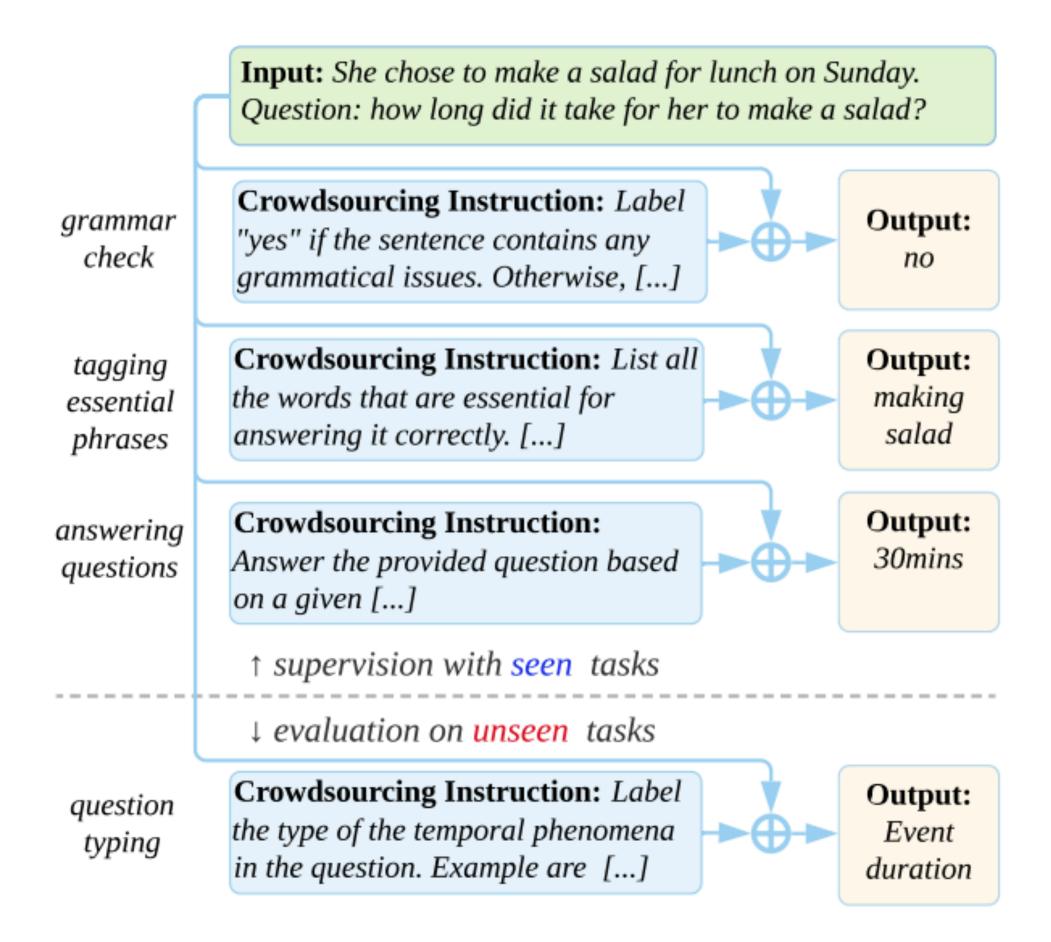
"Multitask Prompted Training Enables Zero-Shot Task Generalization" (Sahn et al., 2022)

## Instruction Tuning and Task Generalization

- During training (supervised fine-tuning), the model learns to follow instructions of given tasks
- At test time, it generalizes to follow instructions on unseen tasks!



### **USC** Viterbi



"Cross-Task Generalization via Natural Language Crowdsourcing Instructions" (Mishra et al., 2022)





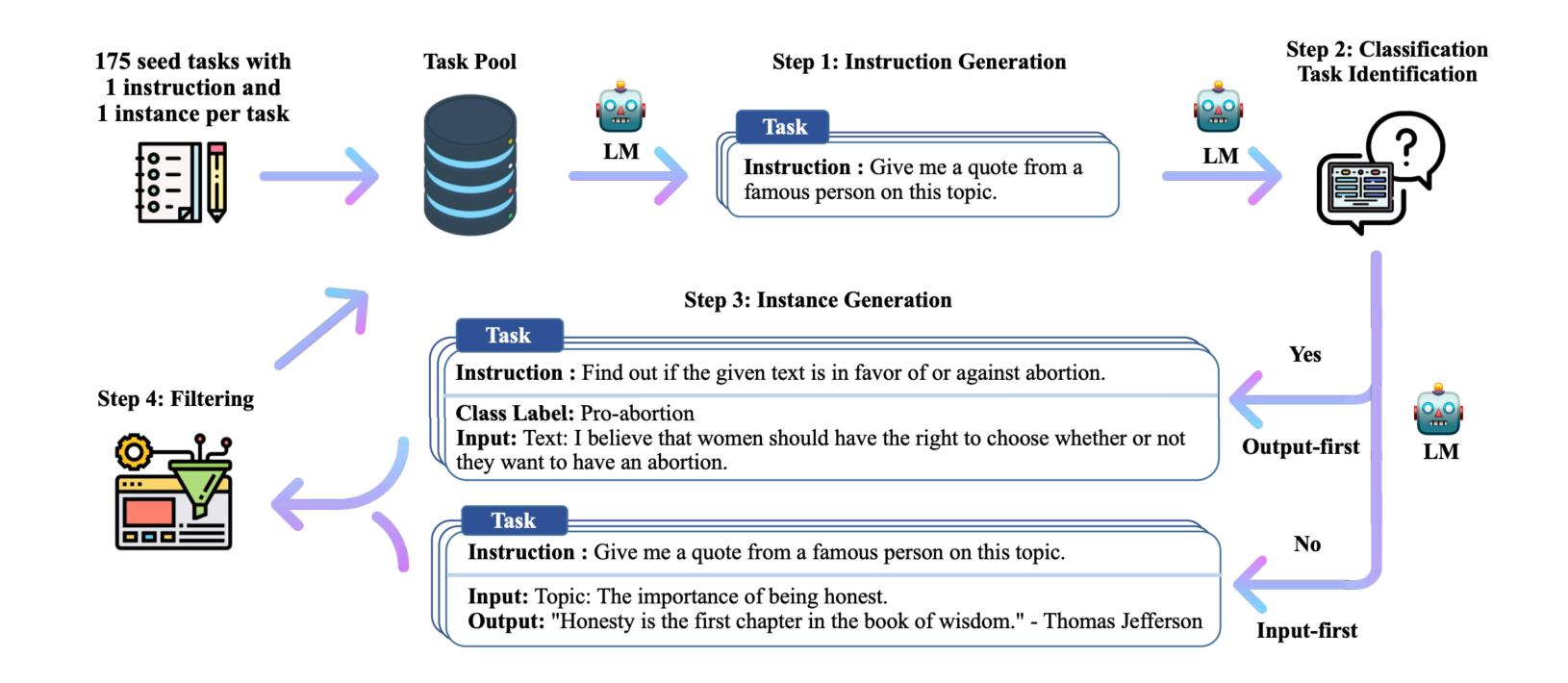


### More data (instructions) $\rightarrow$ better model

#### Resource $\rightarrow$

Has task instructions? Has negative examples? Has non-English tasks? Is public? Number of tasks Number of instructions Number of annotated tasks types Avg. task definition length (word

"Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks" (Wang et al., 2022) https://arxiv.org/abs/2212.10560





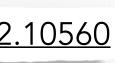
## Instruction Tuning Data

|      | SUP-NATINST<br>(this work) | NATINST<br>(Mishra et al., 2022b) | CROSSFIT<br>(Ye et al., 2021) | PROMPTSOURCE<br>(Bach et al., 2022) | FLAN<br>(Wei et al., 2022) | INSTRUCTGI<br>(Ouyang et al., 2 |
|------|----------------------------|-----------------------------------|-------------------------------|-------------------------------------|----------------------------|---------------------------------|
|      |                            |                                   | ×                             |                                     | <ul> <li>✓</li> </ul>      | 1                               |
|      | 1                          | ✓                                 | ×                             | ×                                   | ×                          | ×                               |
|      | 1                          | ×                                 | ×                             | ×                                   | 1                          | 1                               |
|      | 1                          | ✓                                 | ✓                             | ✓                                   | ✓                          | ×                               |
|      | 1616                       | 61                                | 269                           | 176                                 | 62                         |                                 |
|      | 1616                       | 61                                | -                             | 2052                                | 620                        | 14378                           |
| s    | 76                         | 6                                 | 13                            | 13*                                 | 12                         | 10                              |
| rds) | 56.6                       | 134.4                             | -                             | 24.8                                | 8.2                        | -                               |
|      |                            |                                   |                               |                                     |                            |                                 |

### Diverse data (instructions) → better model

"Self-Instruct: Aligning Language Models with Self-Generated Instructions" (Wang et al., 2023)







- Instruction tuning datasets are often created by repurposing standard NLP datasets for tasks like question answering or machine translation
- Often synthesized!
  - Prompting existing LLMs
- More variety in the instruction templates  $\rightarrow$ better models!





## Instruction Tuning Data

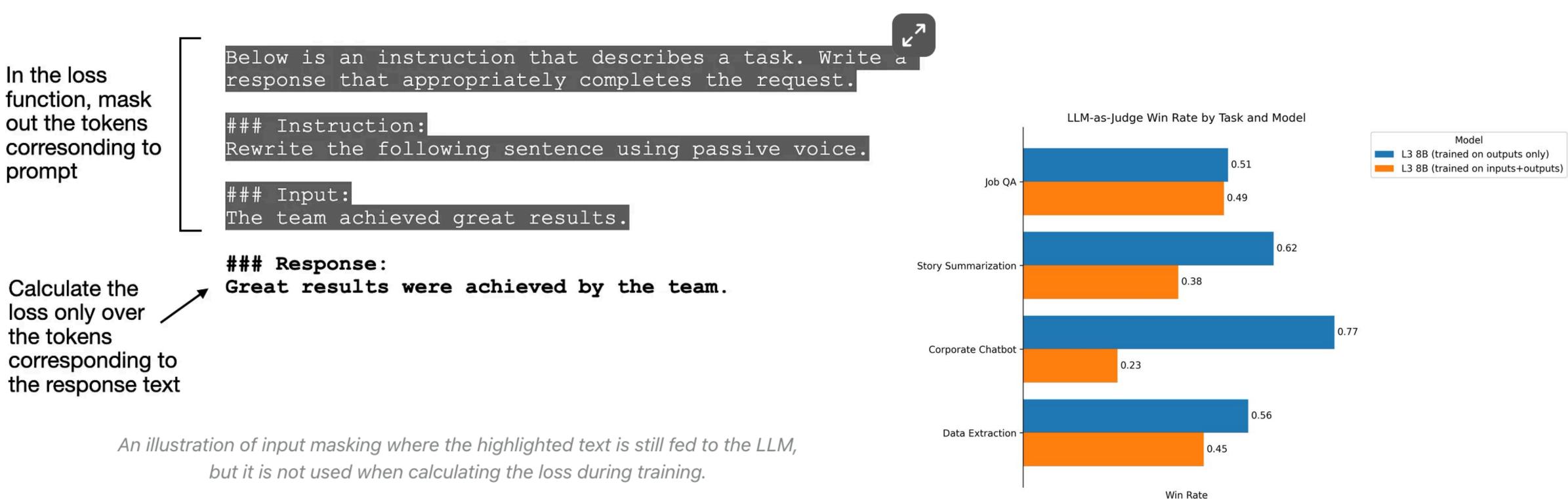
|                         | Model Details      |             |          |         | Data Collection & Training Details |               |       |                                                           |
|-------------------------|--------------------|-------------|----------|---------|------------------------------------|---------------|-------|-----------------------------------------------------------|
| llection                | Model              | Base        | Size     | Public? | Prompt Types                       | Tasks in Flan | # Exs | Methods                                                   |
| dQA                     | UnifiedQA          | RoBerta     | 110-340M | P       | ZS                                 | 46/46         | 750k  |                                                           |
| it                      | BART-CrossFit      | BART        | 140M     | NP      | FS                                 | 115 / 159     | 71.M  |                                                           |
| al Inst v1.0            | Gen. BART          | BART        | 140M     | NP      | ZS/FS                              | ଗେ / ଗେ       | 620k  | + Detailed k-shot Prompts                                 |
| 021                     | Flan-LaMDA         | LaMDA       | 137B     | NP      | ZS/FS                              | 62 / 62       | 4.4M  | + Template Variety                                        |
|                         | TO, TO+, TO++      | T5-LM       | 3-11B    | P       | zs                                 | 62 / 62       | 12M   | + Template Variety<br>+ Input Inversion                   |
| CL                      | MetalCL            | GPT-2       | 770M     | P       | FS                                 | 100 / 142     | 3.5M  | + Input Inversion<br>+ Noisy Channel Opt                  |
|                         | ExT5               | Т5          | 220M-11B | NP      | ZS                                 | 72 / 107      | 500k  | + With Pretraining                                        |
| Natural Inst.           | Tk-Instruct        | T5-LM, mT5  | 11-13B   | P       | ZS/FS                              | 1556 / 1613   | 5M    | + Detailed k-shot Prompts<br>+ Multilingual               |
|                         | GLM-130B           | GLM         | 130B     | P       | FS                                 | 65 / 77       | 12M   | + With Pretraining<br>+ Bilingual (en, zh-cn)             |
|                         | BLOOMz, mT0        | BLOOM, mT5  | 13-176B  | P       | ZS                                 | 53 / 71       | 81M   | + Massively Multilingual                                  |
| ural Inst. <sup>†</sup> | T5-LM-Unnat. Inst. | T5-LM       | 11В      | NP      | zs                                 | ~20 / 117     | 64k   | + Synthetic Data                                          |
| struct <sup>†</sup>     | GPT-3 Self Inst.   | GPT-3       | 175B     | NP      | zs                                 | Unknown       | 82k   | + Synthetic Data<br>+ Knowledge Distillation              |
| 1L Bench <sup>†</sup>   | OPT-IML            | OPT         | 30-175B  | P       | ZS + FS<br>Cot                     | ~2067 / 2207  | 18M   | + Template Variety<br>+ Input Inversion<br>+ Multilingual |
| 022 (ours)              | Flan-T5, Flan-PaLM | T5-LM, PaLM | 10M-540B | P       | ZS + FS                            | 1836          | 15M   | + Template Variety<br>+ Input Inversion<br>+ Multilingual |
|                         |                    |             |          |         |                                    |               |       |                                                           |

"The Flan Collection: Designing Data and Methods for Effective Instruction Tuning" (Longpre et al., 2023)



## Instruction Tuning: Masking Instructions

- We're still using decoder-only models
- The instruction itself is masked, so the model does not generate instructions.



### **USC** Viterbi





### How else to make language models do our tasks well?

- gradient updates and no / a few examples, by simply:
  - Specifying the right sequence prediction problem
  - You can get interesting zero-shot behavior if you're creative enough with how you specify your task!

| Basic Prompt Templates     |                                  |  |  |  |  |
|----------------------------|----------------------------------|--|--|--|--|
| Summarization              | <pre>{input};tldr;</pre>         |  |  |  |  |
| Translation                | <pre>{input};translate to</pre>  |  |  |  |  |
| Sentiment                  | <pre>{input}; Overall, it</pre>  |  |  |  |  |
| Fine-Grained-<br>Sentiment | <pre>{input}; What aspects</pre> |  |  |  |  |



• Prompting (or In-Context / Few-Shot Learning): the ability to do many tasks with no

o French:

was

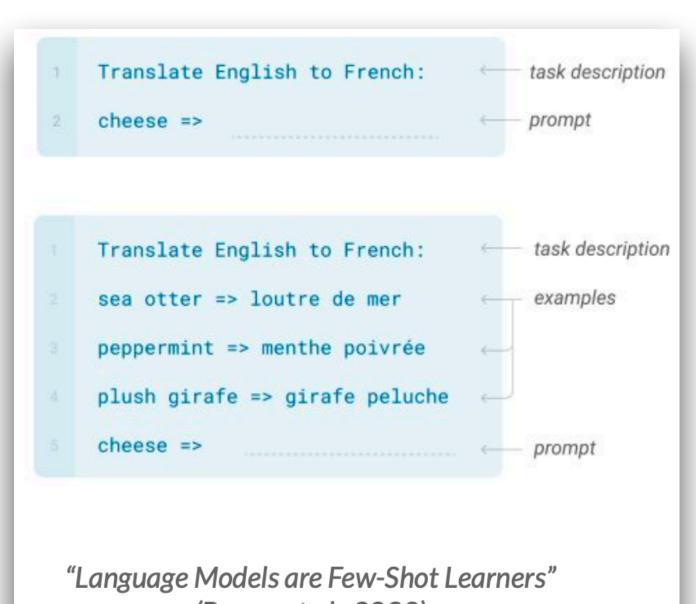
s were important in this review?



# Interacting with LLMs: Prompting



### Translate this to Spanish: Goodbye.



(Brown et al., 2020)

#### Input



## Prompting vs. Instruction Tuning



Model

Adiós.

Output

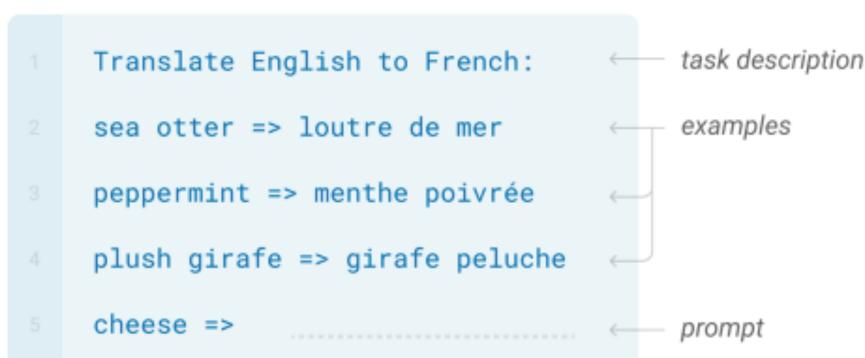
# Prompting

- Interface to a language model: prompts in natural language
- Very large language models seem to perform some kind of "learning" without gradient steps simply from examples you provide within their contexts
- Sometimes called in-context learning
  - Misnomer: no learning (parameter update) actually happens during prompting
  - But the right examples seem to steer the language model in the right direction
- Can be zero shot (without examples) or few-shot (with a few examples)
  - Typically <10





Zero-Shot



#### **Few-Shot**

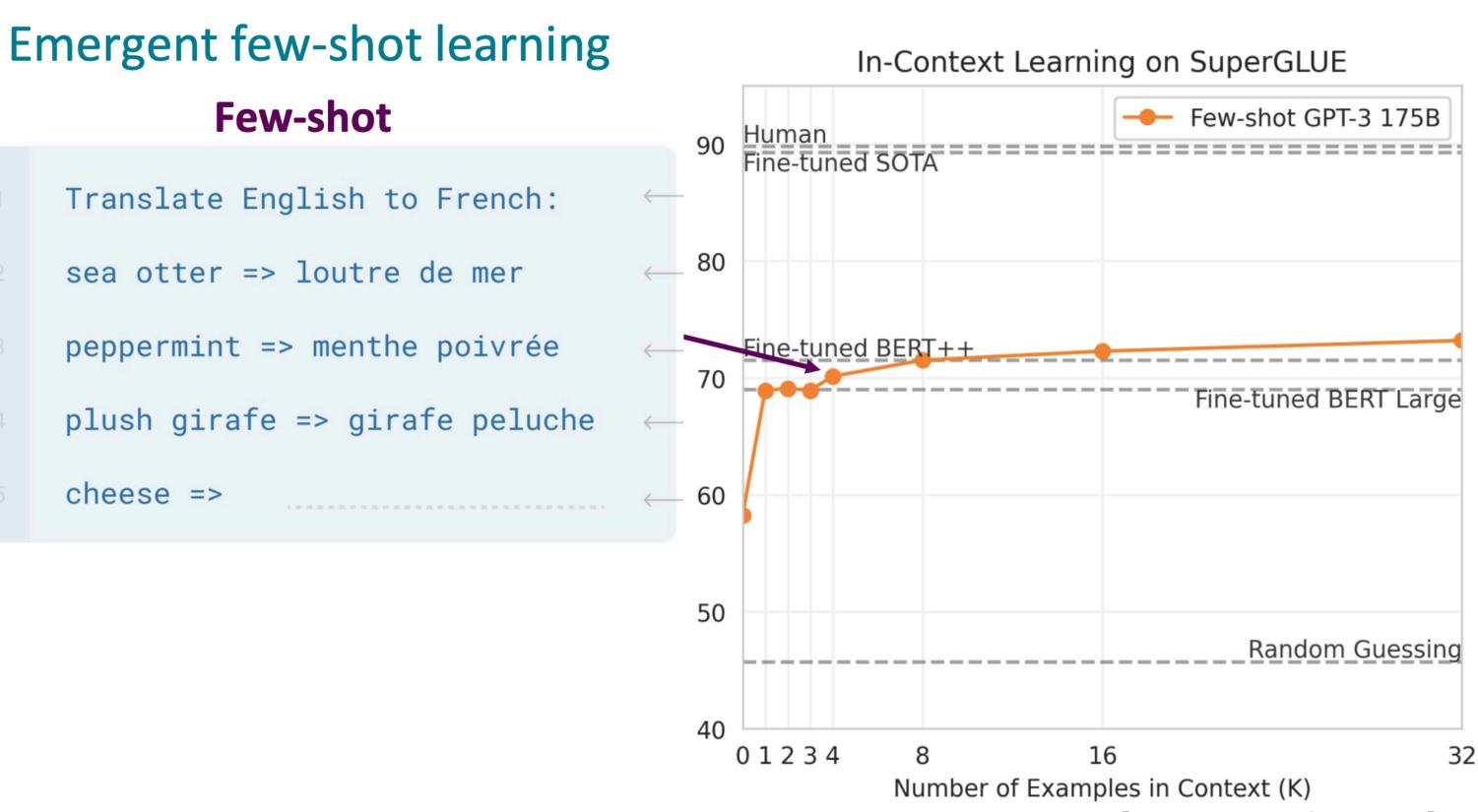
"Language Models are Few-Shot Learners" (Brown et al., 2020)

# Prompting: Successes

- Much more flexible than older formulation of pretraining encoder-only models and fine-tuning to specific classification tasks (the BERT paradigm)
- Now, pre-train one large model and prompt it to do a variety of tasks!
- Much much more generalizability!

| Translate |
|-----------|
| sea otter |
| peppermin |
| plush gir |
| cheese => |





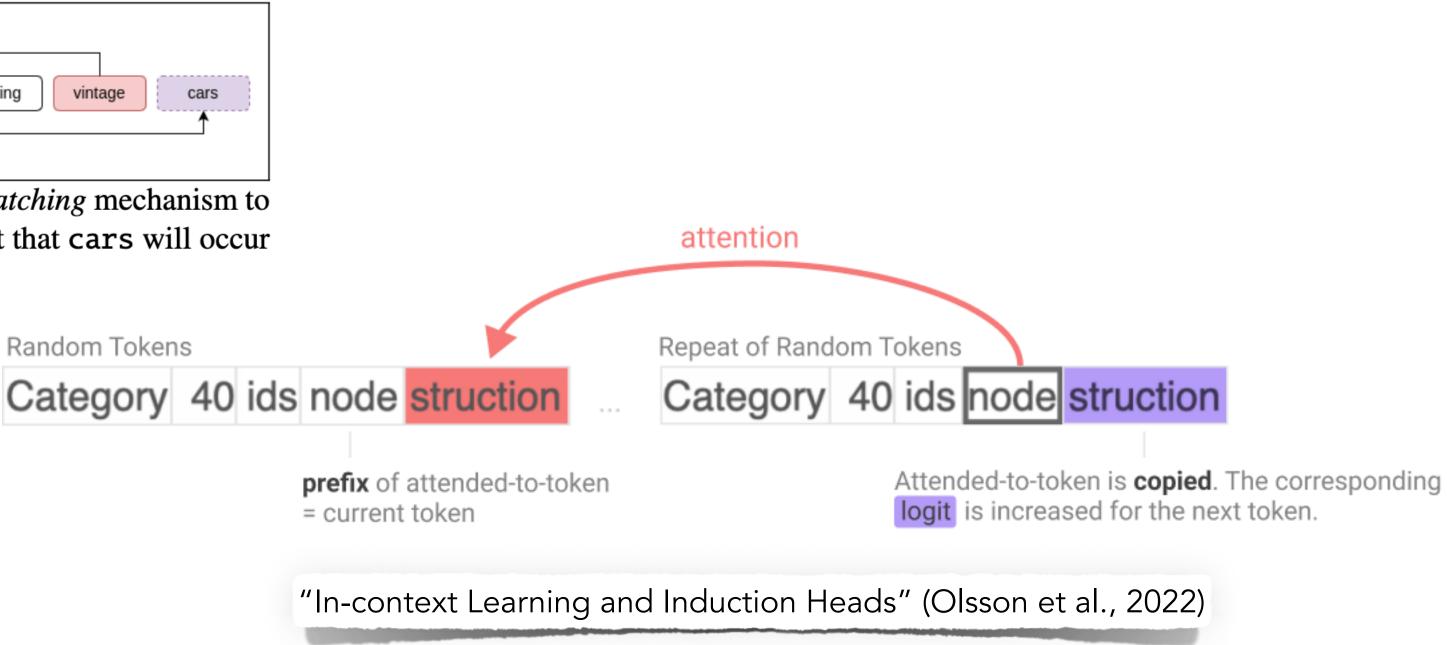


# Why does prompting work so well?

- Induction heads
- Discovered by looking at mini language models with only 1-2 attention heads
- pattern completion rule AB...  $A \rightarrow B$
- context learning

|                     | Prefix matching                   |   |
|---------------------|-----------------------------------|---|
| She owns vintage ca | ars . He dreams of owning vintage | C |
|                     | Copying                           |   |

An induction head looking at vintage uses the *prefix matching* mechanism to **Figure 12.3** find a prior instance of vintage, and the *copying* mechanism to predict that cars will occur again. Figure from Crosbie and Shutova (2022).



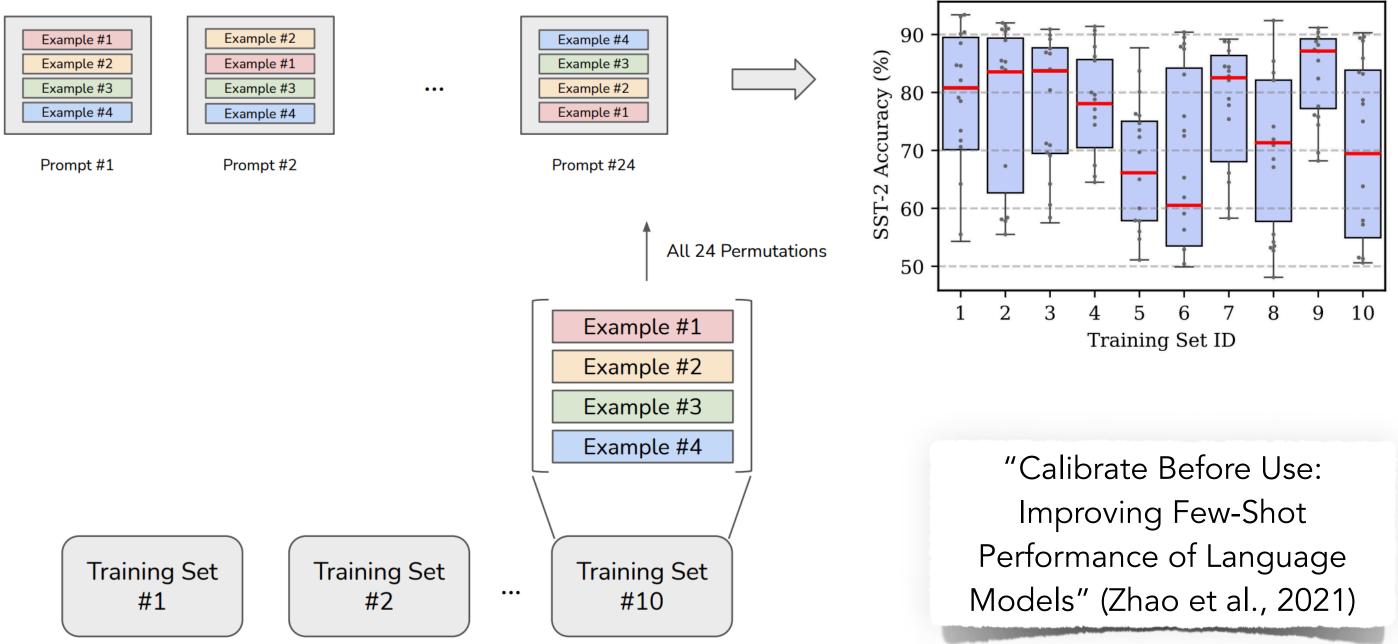


• If the model sees the pattern AB ... A in an input sequence, it predicts that B will follow, instantiating the

• Perhaps a generalized fuzzy version of this pattern completion rule, implementing a rule like  $A^*B^* \dots A \rightarrow B$ , where  $A^* \approx A$  and  $B^* \approx B$  (by  $\approx$  we mean some form of semantically similarity), might be responsible for in-

# Prompting Limitations: Prompt Design

- Task performance is sensitive to prompt design
- Formatting
- Ordering of demonstrations
- Wording of the prompt



### **USC** Viterbi

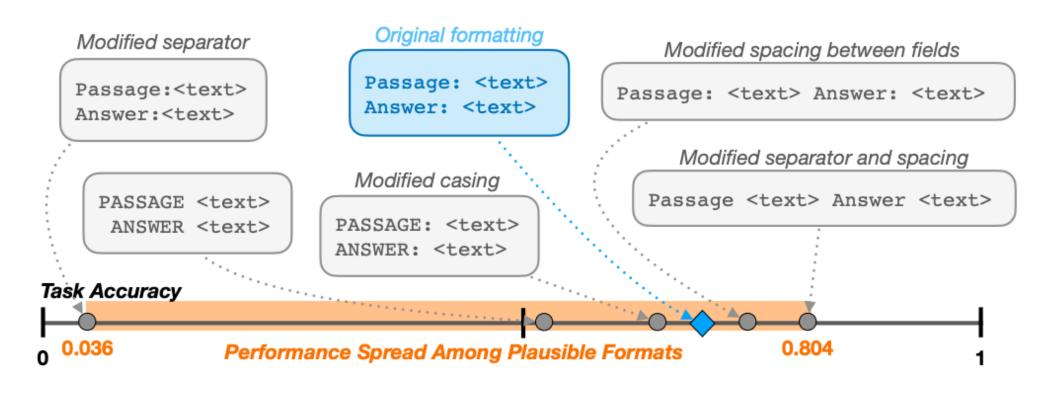
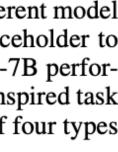


Figure 1: Slight modifications in prompt format templating may lead to significantly different model performance for a given task. Each <text> represents a different variable-length placeholder to be replaced with actual data samples. Example shown corresponds to 1-shot LLaMA-2-7B perfornances for task280 from SuperNaturalInstructions (Wang et al., 2022). This StereoSet-inspired task Nadeem et al., 2021) requires the model to, given a short passage, classify it into one of four types of stereotype or anti-stereotype (gender, profession, race, and religion).

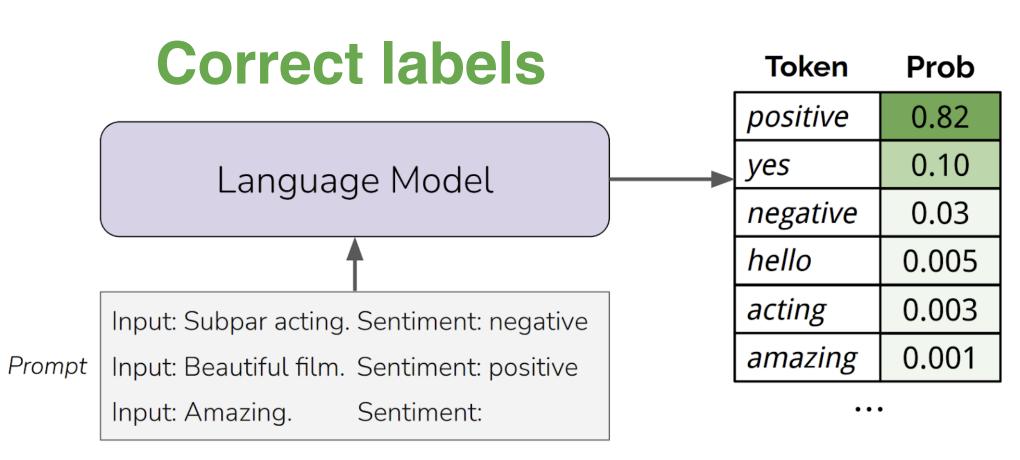
Sclar et al., ICLR 2024



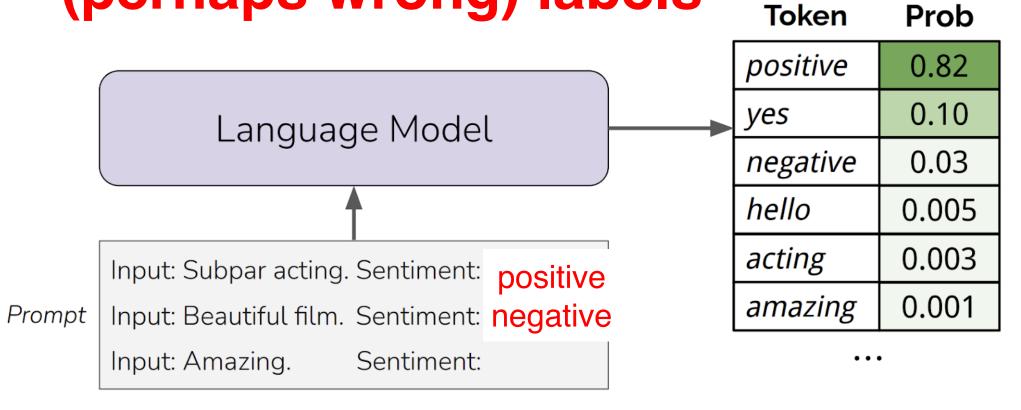




# Prompting Limitations??: Robustness

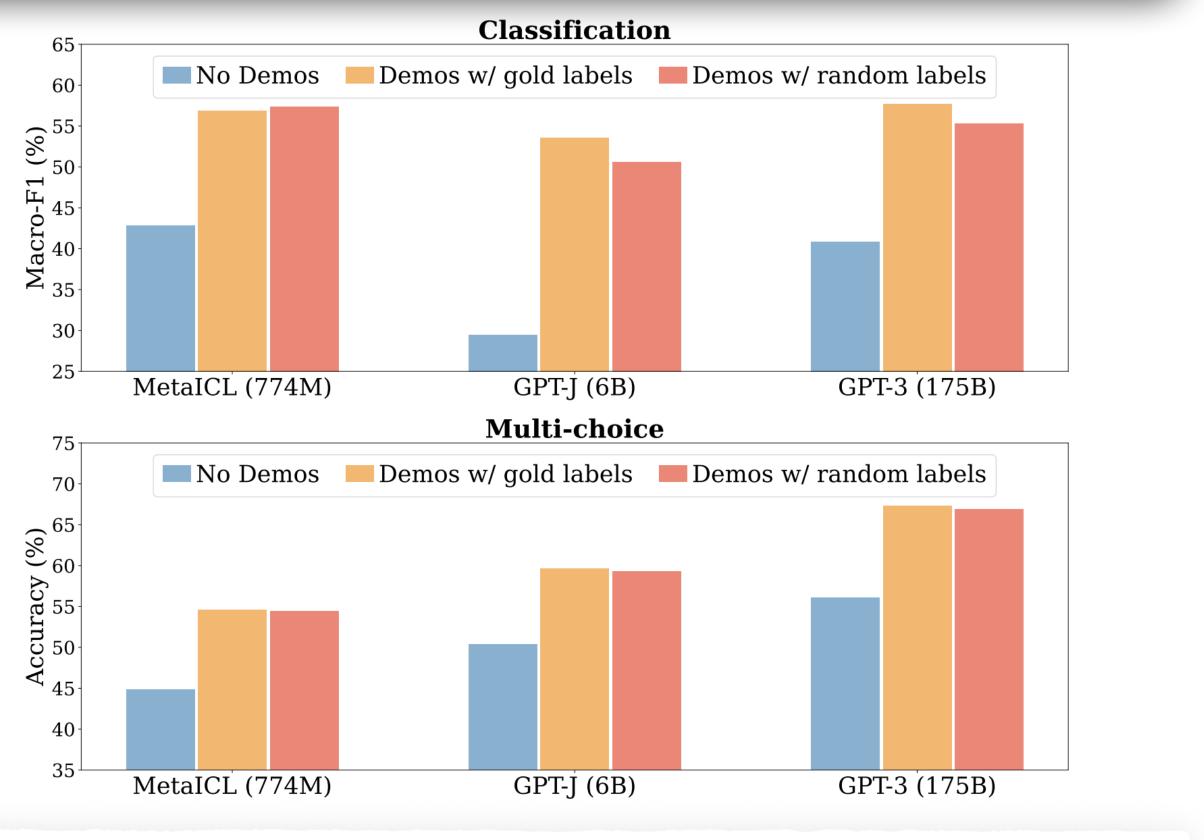


### Random (perhaps wrong) labels

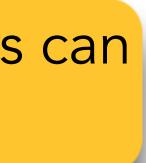




Demonstrations that have incorrect answers can still improve a system!

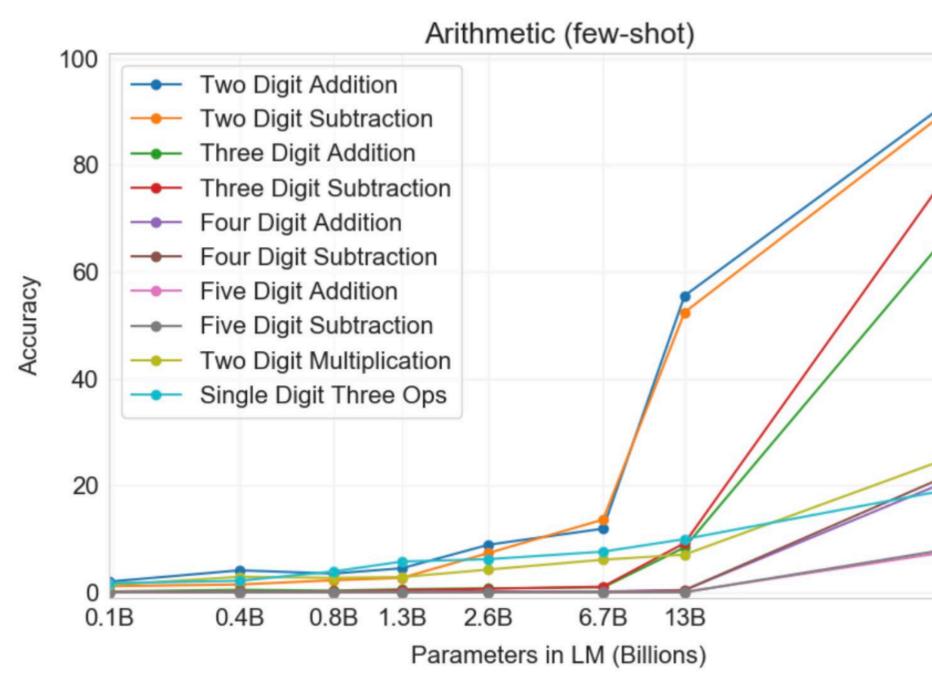


"Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?" (Min et al., 2022)



# Prompting Limitations: Math and Reasoning

tasks involving richer, multi-step reasoning. (Humans struggle at these tasks too!)





• Some tasks seem too hard for even large LMs to learn through prompting alone. Especially

|      | Q: Roger has 5 tennis balls. He buys 2 more cans of<br>tennis balls. Each can has 3 tennis balls. How many<br>tennis balls does he have now? |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|
|      | A: The answer is 11.                                                                                                                         |
|      | Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?                               |
|      |                                                                                                                                              |
| -    | Model Output                                                                                                                                 |
| 175B | A: The answer is 27.                                                                                                                         |



# Chain-of-Thought Prompting

• Since the model is trained on lots and lots of language data, perhaps relying on its capabilities to generate language can make it more accurate!

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output



#### **Standard Prompting**



## Zero-Shot Chain-of-Thought Prompting

• The model may not even need examples of reasoning, it may be able to "reason" on its own if provided the right trigger context

#### Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

#### Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. 🗸

### **USC**Viterbi

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: Let's think step by step. There are 16 balls in total. Half of the balls are golf balls. That means there are 8 golf balls. Half of the golf balls are blue. That means there are 4 blue golf balls.



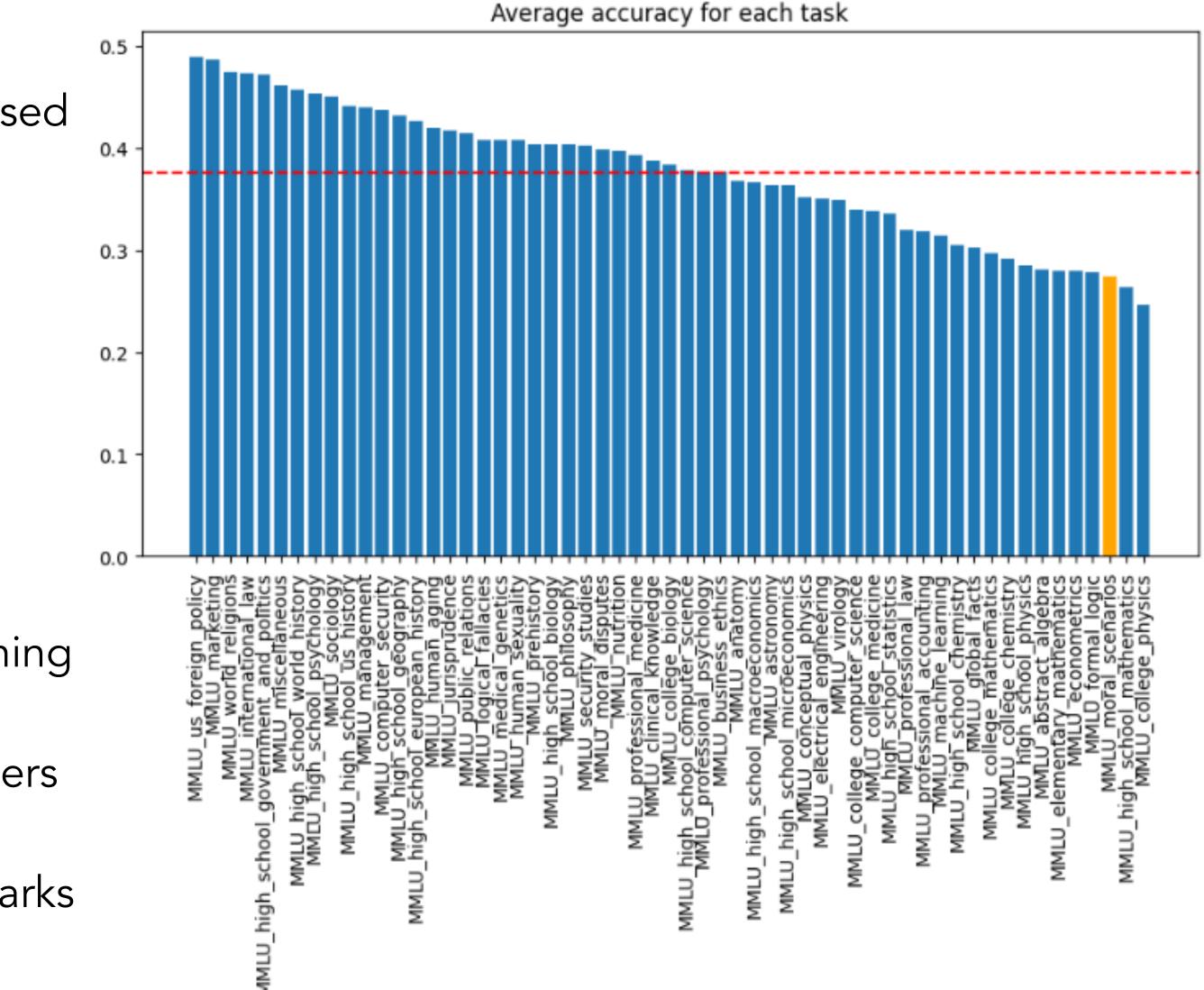




## Evaluation of LLMs

- Almost exclusively on downstream tasks, as opposed to intrinsic metrics
  - Intrinsic metrics, e.g. perplexity
- Few popular multitask benchmarks
  - GLUE Language Understanding Tasks
  - SuperGLUE Language Understanding Tasks
  - HellaSwag Commonsense Reasoning
  - Truthful QA Fact Verification
  - MMLU Massive Multitask Language Understanding, 15908 knowledge and reasoning questions in 57 areas including medicine, mathematics, computer science, law, and others
  - GSM 8K Grade School Math
  - BigBench subsumes some of these benchmarks





## Chain-of-Thoughts Performance

|                                                                                                            | MultiArith                                           | GSM8K                       |                                                                                                                                                    |                              |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| <b>Zero-Shot</b><br>Few-Shot (2 samples)<br>Few-Shot (8 samples)                                           | 17.7<br>33.7<br>33.8                                 | <b>10.4</b><br>15.6<br>15.6 | Kojima et al., 2022                                                                                                                                |                              |
|                                                                                                            |                                                      |                             | Zero-shot CoT Trigger Prompt                                                                                                                       | Accura                       |
| <b>Zero-Shot-CoT</b><br>Few-Shot-CoT (2 samples)<br>Few-Shot-CoT (4 samples : First) (*1)                  | Greatly outperforms → 78.7<br>zero-shot 84.8<br>89.2 | <b>40.7</b><br>41.3         | Let's work this out in a step by step way to be sure we have the right answer.                                                                     | 82.0                         |
| Few-Shot-CoT (4 samples : First) (1)<br>Few-Shot-CoT (4 samples : Second) (*1)<br>Few-Shot-CoT (8 samples) | Manual CoT 90.5<br>90.5<br>93.0                      | -<br>48.7                   | Let's think step by step. (*1)<br>First, (*2)<br>Let's think about this logically.<br>Let's solve this problem by splitting it into<br>steps. (*3) | 78.7<br>77.3<br>74.5<br>72.2 |
|                                                                                                            |                                                      |                             | Let's be realistic and think step by step.<br>Let's think like a detective step by step.<br>Let's think                                            | 70.8<br>70.3<br>57.5         |
| There seems to be sor                                                                                      | me wiggle room in the                                |                             | Before we dive into the answer,<br>The answer is after the proof.                                                                                  | 55.7<br>45.7                 |
| exact prompt to be use                                                                                     |                                                      |                             | (Zero-shot)                                                                                                                                        | 17.7                         |

performance!





## Prompt Engineering and Auto Prompts

| = | WikipediA             |
|---|-----------------------|
|   | The Free Encyclopedia |

#### **Prompt engineering**

Article Talk

From Wikipedia, the free encyclopedia

Prompt engineering is a concept in artificial intelligence, particularly natural language processing (NLP). In prompt engineering, the description of the task is

#### **Prompt Engineer and Librarian**

SAN FRANCISCO, CA / PRODUCT / FULL-TIME / HYBRID

### Job: keep trying new prompts for better performance, usually via tedious trialand-error efforts

文A 5 languages ~

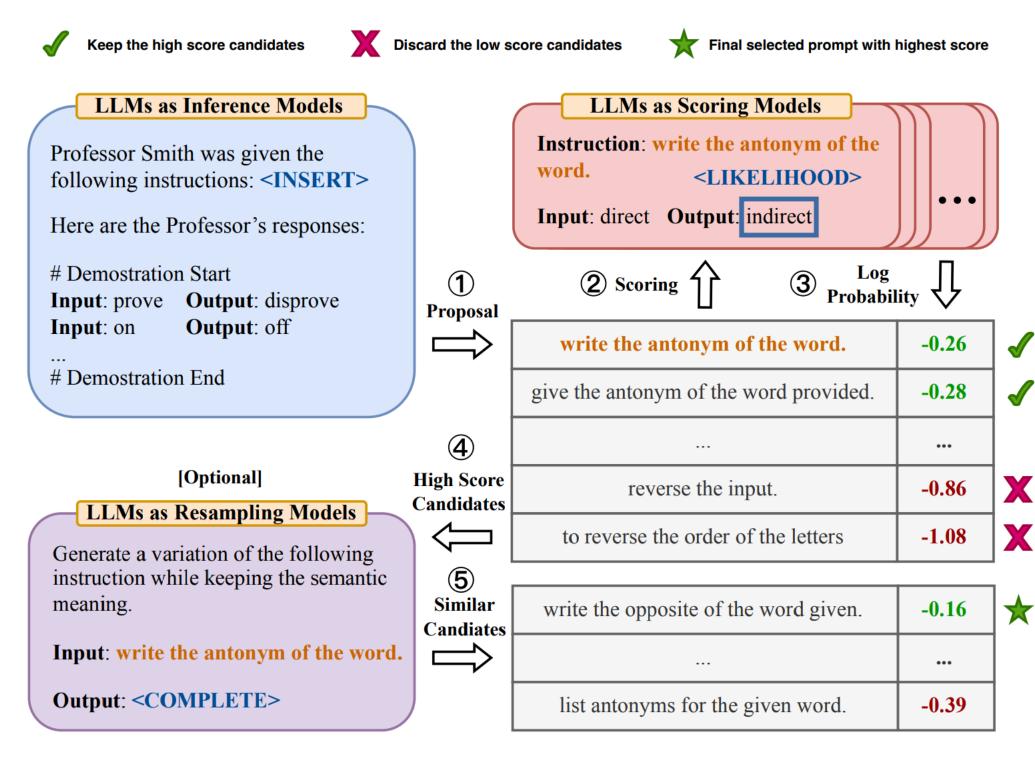
Q

More ∨

...

APPLY FOR THIS JOB

### **USC**Viterbi



Automatic Prompt Engineer (APE). LLMs Are Human-Level Prompt Engineers. Zhou et al., ICLR 2023

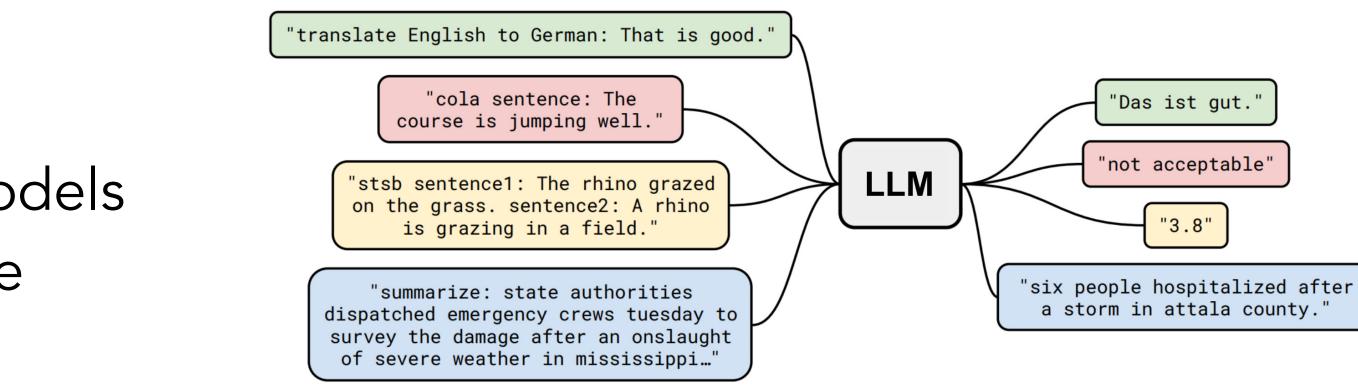


# Prompting LLMs: Parting Thoughts

- Prompting is an interface into language models • Works best with instruction-tuned language models
- demonstrations can be sufficient
- examples drawn from a labeled training set

  - dynamically retrieve demonstrations for each input, based on their similarity to the current example

### **USC** Viterbi



• How Many Demonstrations? small number of randomly selected labeled examples used as

• How to Select Demonstrations? Demonstrations are generally created by formatting

• using demonstrations that are similar to the current input seems to improve performance









## Lecture Outline

- Announcements
- Last Lecture: LLM Generative Evaluation + Pre-training
- Today:
  - Post-training with Supervised Finetuning
    - Instruction Tuning
  - Interacting with LLMs: Prompting
  - Post-training with Alignment with Human Feedback:
    - Preference Tuning: RLHF



# Model Alignment with Human Preferences



# Preference Alignment

• Let's say we were training a language model on some task (e.g. summarization). of that summary:  $R(x, y) \in \mathbb{R}$ , higher is better.

| SAN FRANCISCO,<br>California (CNN)<br>A magnitude 4.2<br>earthquake shook the<br>San Francisco | An ea<br>San F<br>There<br>prope<br>but n |
|------------------------------------------------------------------------------------------------|-------------------------------------------|
| overturn unstable<br>objects.                                                                  | R(x,                                      |
| $\boldsymbol{\chi}$                                                                            | Π(λ,                                      |

• Maximize the expected reward of samples from our LM:  $\mathbb{E}_{\hat{y} \sim p_{\theta}(y|x)}[RM_{\phi}(x, \hat{y})]$ 



• For an instruction x and a LM sample y, imagine we had a way to obtain a human reward

arthquake hit Francisco. e was minor erty damage, o injuries.

 $y_1$  $y_1) = 8.0$  The Bay Area has good weather but is prone to earthquakes and wildfires.

 $y_2$  $R(x, y_2) = 1.2$ 

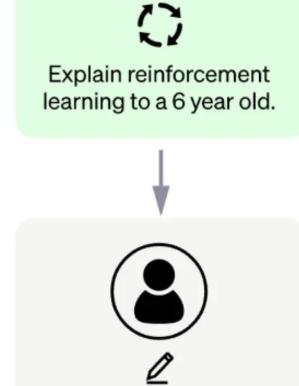
#### Step 1

**Collect demonstration data** and train a supervised policy.

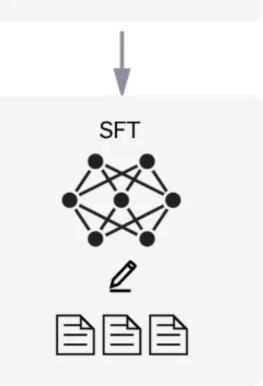
A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.



We give treats and punishments to teach...



### Instruction Tuning!

Step 2

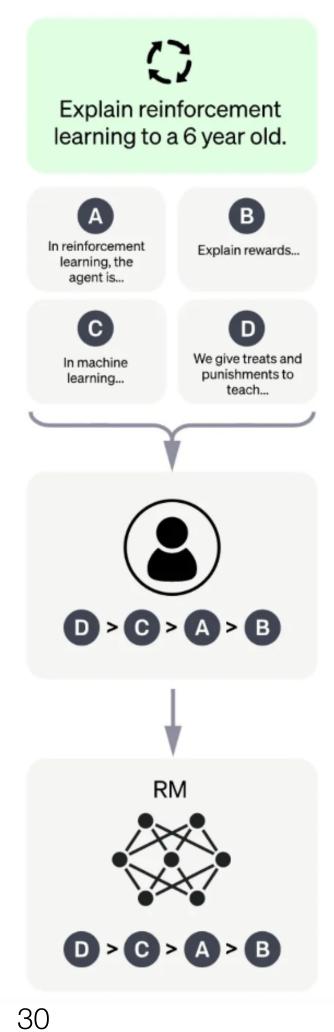
Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

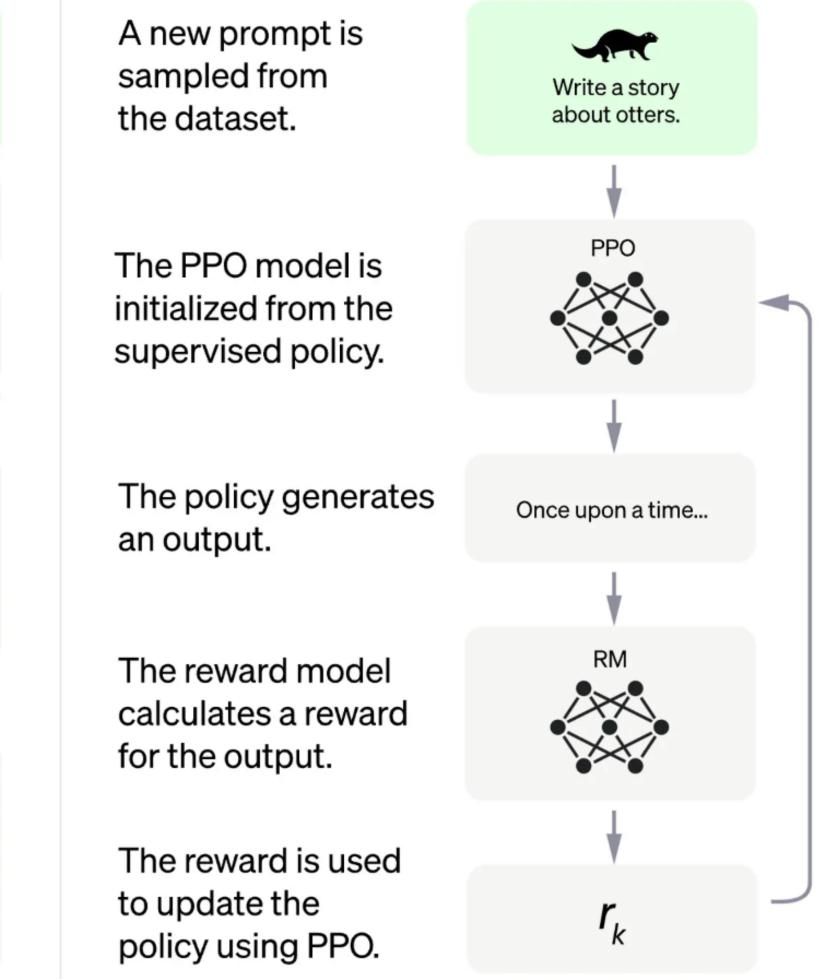
This data is used to train our reward model.





#### Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.



#### Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the

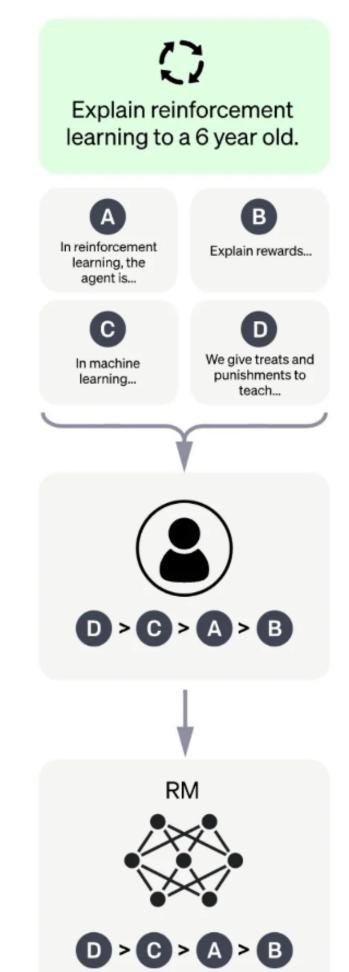
outputs from best

This data is used

reward model.

to train our

to worst.



- Getting on-the-fly annotations with a human-in-the-loop is expensive!
  - model their preferences as a separate (NLP) problem!
- Instead of directly asking humans for preferences, • Human judgments are noisy and miscalibrated!
  - Instead of asking for direct ratings, ask for pairwise comparisons, which can be more reliable
- Train a reward model,  $RM_{\phi}(x, y)$  to predict human reward from an annotated dataset
- - Pairwise preferences converted into scores

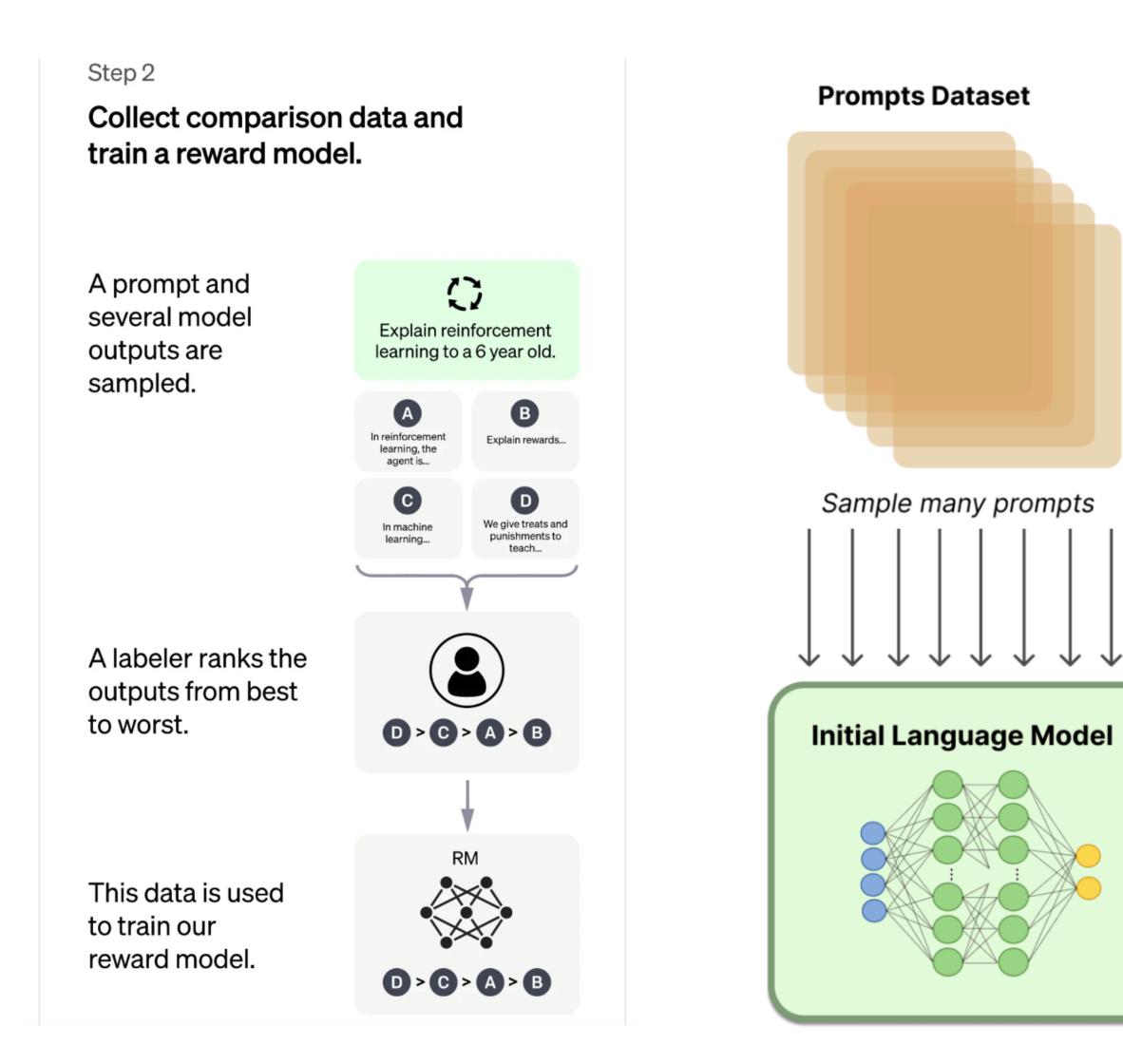


## Preference Data



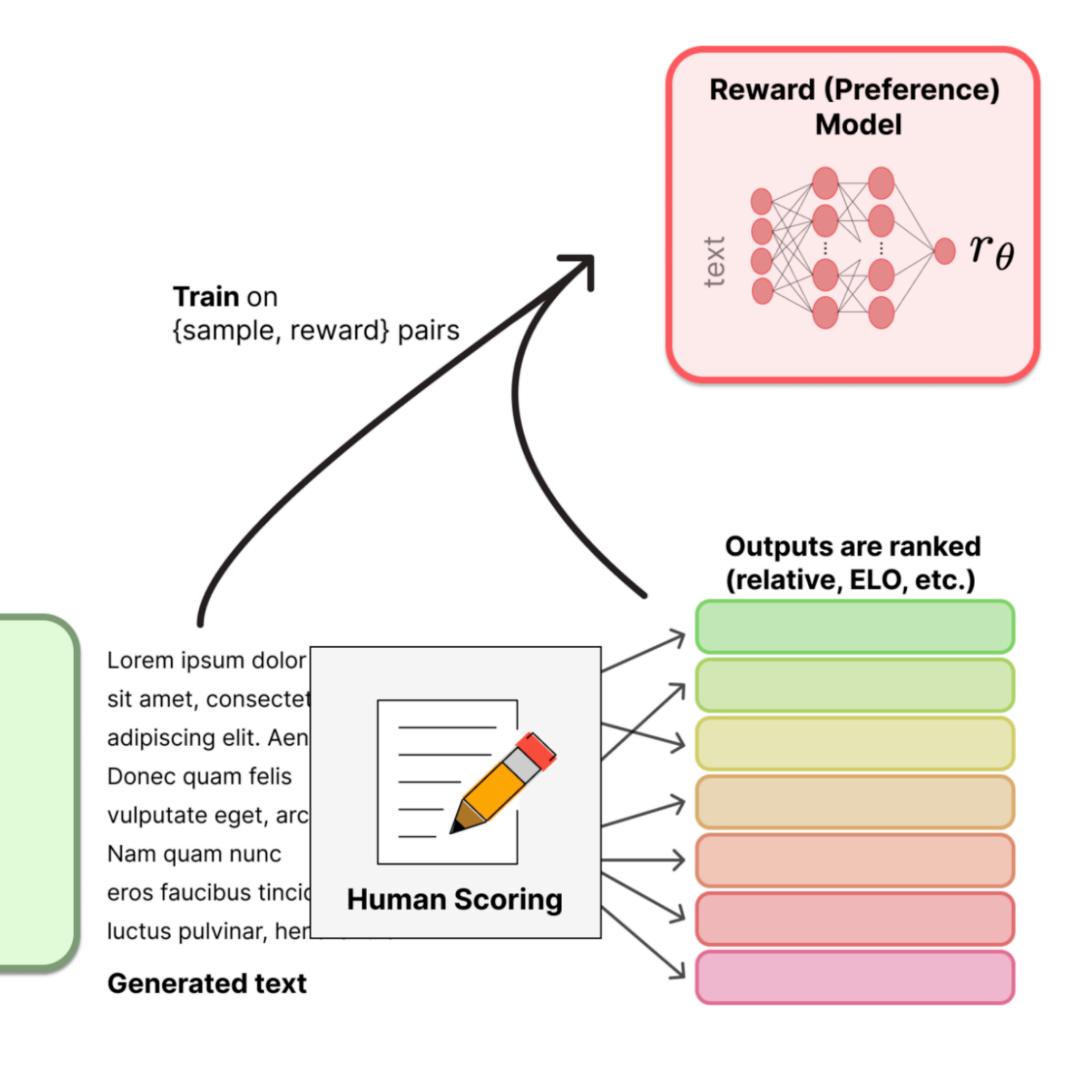








## Reward Modeling



### Reinforcement Learning with Human Feedback

### Ingredients

- An instruction-tuned LM  $p^{SFT}(\hat{y} | x)$
- A reward model  $RM_{\phi}(x, y)$
- Step 3 involves:
  - Copy the model to  $p_{\theta}^{RL}(\hat{y} | x)$
  - Optimize:  $\mathbb{E}_{\hat{y} \sim p_{\theta}^{RL}(\hat{y}|x)}[RM_{\phi}(x,y)]$
  - But, we still want a good instruction-tuned model, not just a reward maximizer
    - Hence, we add a penalty for drifting too for from the

initialization:  $\mathbb{E}_{\hat{y} \sim p_{\theta}^{RL}(\hat{y}|x)} \left[ RM_{\phi}(x, y) - \beta \log \frac{p_{\theta}^{RL}(\hat{y}|x)}{p^{SFT}(\hat{y}|x)} \right]$ 

Use a reinforcement learning algorithm, like Proximal Policy Optimization (PPO) to maximize the above

### **USC**Viterbi

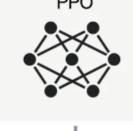
Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

Write a story about otters.

The PPO model is initialized from the supervised policy.



The policy generates an output.

Once upon a time..

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.



 $\mathbf{r}_k$ 



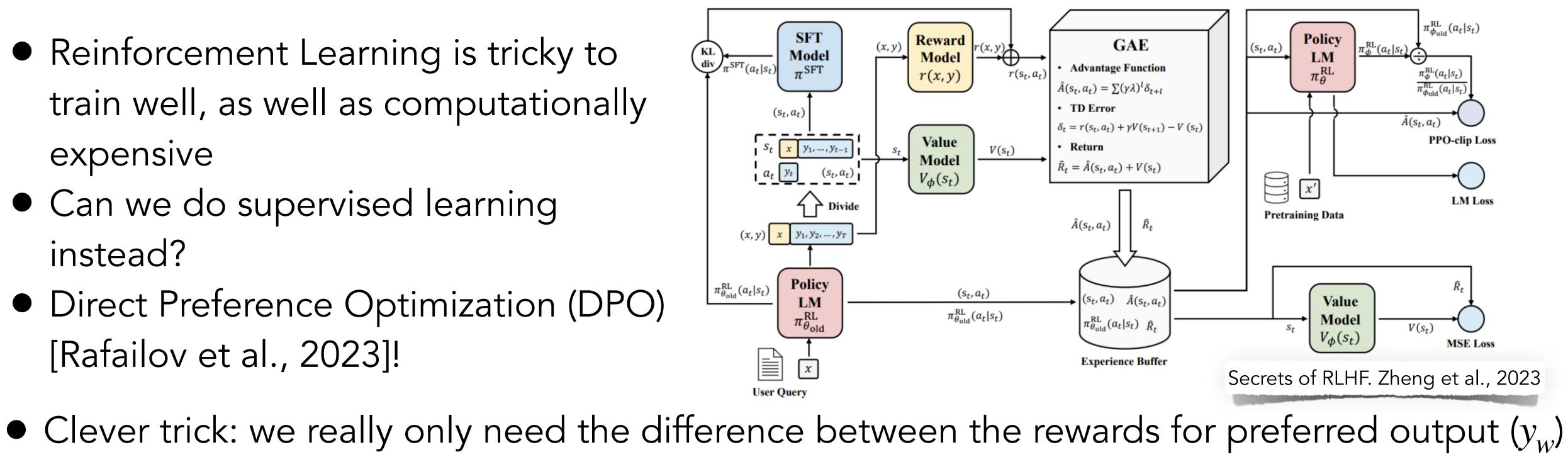




- Reinforcement Learning is tricky to train well, as well as computationally expensive
- Can we do supervised learning instead?
- Direct Preference Optimization (DPO) [Rafailov et al., 2023]!
- and dispreferred output  $(y_l)$
- Everything is now a supervised learning objective!



## RLHF to DPO



• Change the reward model  $RM_{\theta}(x, y)$  as a modification of the language model itself:  $p_{\theta}^{RL}(\hat{y} \mid x)$ 

$$\mathbb{E}_{(x,y_l,y_w)\sim D} \Big[ \log \sigma \Big( \beta \log \frac{p_{\theta}^{RL}(y_w \mid x)}{p^{SFT}(y_w \mid x)} - \beta \log \frac{p_{\theta}^{RL}(y_l \mid x)}{p^{SFT}(y_l \mid x)} \Big]$$





# Preference Tuning: Parting Thoughts

• We want to optimize for human preferences as it's an important step towards LLM safety • Instead of humans writing the answers or giving uncalibrated scores, we get humans to

rank different LM generated answers

• Reinforcement learning from human feedback

completion

• Optimize the LM to maximize the predicted score without deviating too much • Very effective when tuned well, computationally expensive and tricky to get right

- Direct Preference Optimization
  - Optimize LM parameters directly on preference data
  - Simple and effective, similar properties and performance to RLHF
- Next Class: Safety and Harms of LLMs



• Train an explicit reward model on comparison data to predict a score for a given