

Lecture 18: LLMs: Prompting and Finetuning

Instructor: Swabha Swayamdipta USC CSCI 544 Applied NLP Oct 29, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning and Qinyuan Ye and Justin Cho

Announcements

- Today: Tue, 10/29 Project proposal
- Thu, 10/31 Lecture + Paper Presentation I
- Tue, 11/5 Lecture + Paper Presentation II
- Thu, 11/7 Quiz 4 + Paper Presentation III
- Tue, 11/12 Quiz 5 + Paper Presentation IV
- Thu, 11/14 Guest lecture on LLM Pretraining by Prof. Willie Neiswanger on 11/14 + HW4 due
 - Questions from lecture materials will be included in final exam
- Quizzes 4 and 5 all topics after the midterms
 - Consider these as practice tests for final exams
- Paper Presentation (also on the class website):
 - assigned TAs by 11:59 PM the day before the presentation. Content of the slides:
 - Slide 1: Main Research Question in the paper,
 - Slide 2: Main Results Summarized,
 - Slide 3: How this influences your project.

• The project teams will present a scientific publication related to their project to the class. All members of the team are expected to identify the central points of the research, and present that research to the class, as well as answer questions from the instructor and fellow students. One member of team---randomly picked by the instructors a couple of hours before the presentation---will be the presenter, so please prepare accordingly! The presenter is responsible for the entire team's grade, so please ensure both you and your teammates are prepared! The total time of each team's presentation is 5 minutes (3 min presentation + 2 min QA) - we will be very strict about this. If you are NOT presenting, you could participate in Q/A - bonus points will be awarded to folks who ask insightful questions (announce your name before you ask a question). Each team will prepare 3 slides to be shared with their

Lecture Outline

Announcements

- Recap: Decoding Algorithms
- Evaluating Generated Language
- LLMs
 - Pretraining
 - Post-training with Supervised Finetuning:
 - Instruction Tuning
 - Interacting with LLMs: Prompting
 - Post-training with Alignment with Human Feedback:
 - Preference Tuning: RLHF [Next Class]

Recap: Natural Language Generation - Search Algorithms

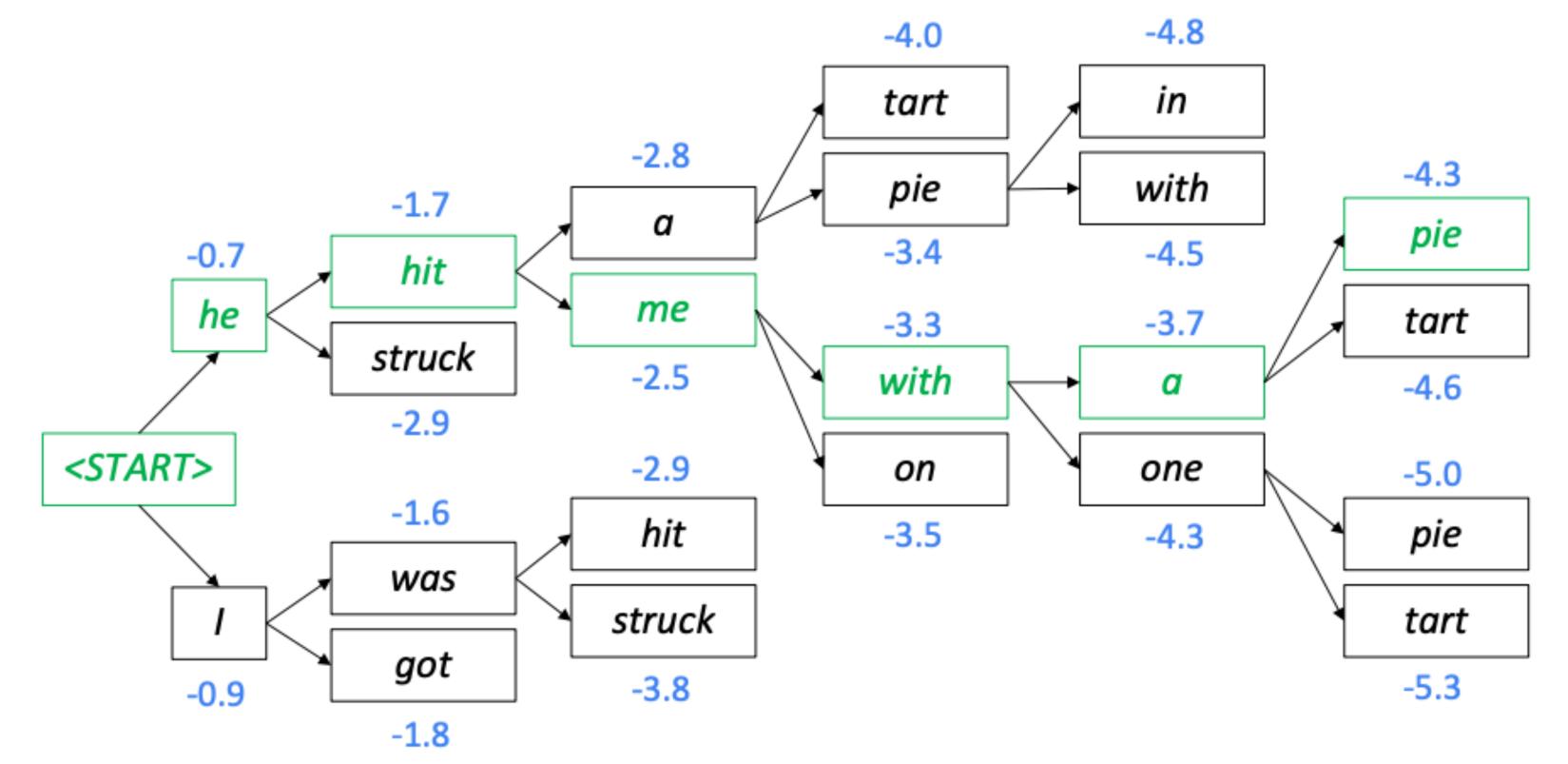
Beam Search Decoding

 Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability: $score(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

 Scores are all negative, and higher score is better • We search for high-scoring hypotheses, tracking top k on each step Beam search is not guaranteed to find optimal solution • But much more efficient than exhaustive search!

Beam Search Decoding: Example Beam size = k = 2. Blue numbers = $score(y_1, ..., y_t) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$ i=1



USCViterbi

Backtrack to obtain the full hypothesis

Slide credit: Chris Manning

Beam Search Decoding: Stopping Criterion

- Greedy Decoding is done until the model produces an </s> token • For e.g. <s> he hit me with a pie </s> • In Beam Search Decoding, different hypotheses may produce </s> tokens at different
- time steps

 - When a hypothesis produces </s>, that hypothesis is complete. • Place it aside and continue exploring other hypotheses via beam search.
- Usually we continue beam search until:

 - We reach time step T (where T is some pre-defined cutoff), or • We have at least *n* completed hypotheses (where n is pre-defined cutoff)

Beam Search Decoding: Longer Hypotheses

• We have our list of completed hypotheses. Now how to select top one? • Each hypothesis y_1, \ldots, y_t on our list has a score

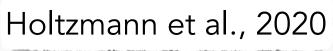
score
$$(y_1, \dots, y_t) = \log P_{\text{LM}}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{\text{LM}}(y_i | y_1, \dots, y_{i-1}, x)$$

 Problem with this: longer hypotheses have lower score • Fix: Normalize by length. Use this to select top one instead

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{\rm LM}(y_i | y_1, \dots, y_{i-1}, x)$$

- Either greedy or beam search
- Another key issue:

Continuation: The study, published in the Proceedings of the Generation can be bland or National Academy of Sciences of the United States of repetitive (also called degenerate) America (PNAS), was conducted by researchers from the **Universidad Nacional Autónoma de México (UNAM)** and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México...



Maximization Based Decoding

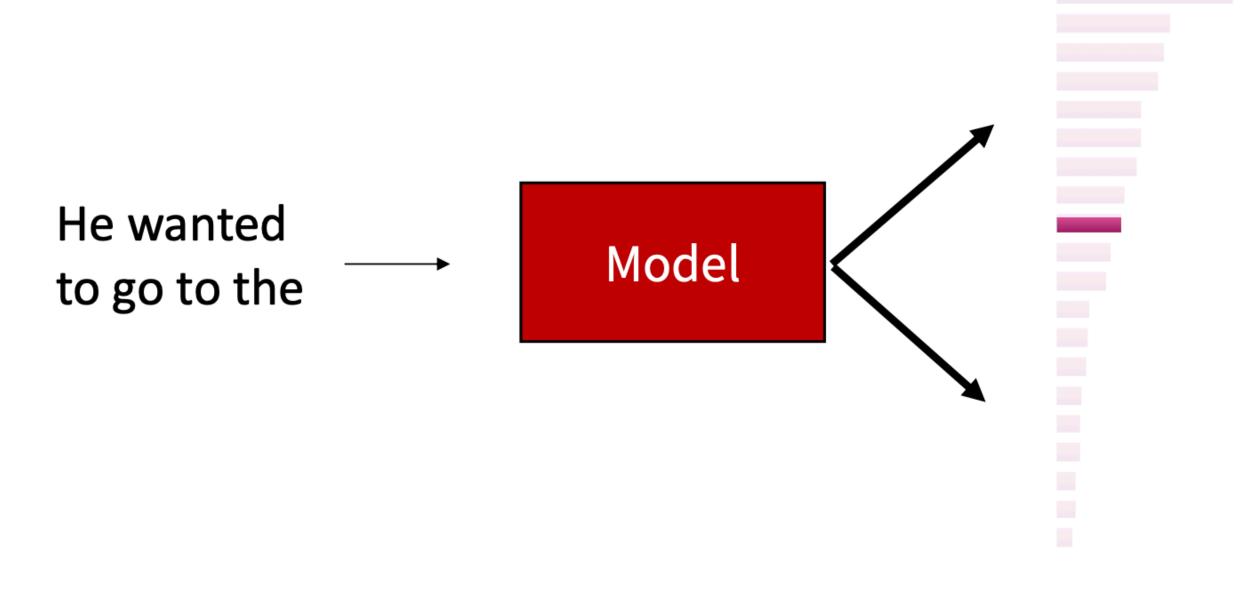
• Beam search can be more effective with large beam width, but also more expensive

In a shocking finding, scientist discovered a herd **Context:** of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Solution: Don't Maximize, Pick a Sample

- Sample a token from the distribution of tokens.

 - Or else, you would get something meaningless
 - Many good options which are not the maximum probability!



• But this is not a truly random sample, it is a sample for the learned model distribution • Respects the probabilities, without going just for the maximum probability option

grocery airport bathroom doctor hospital pub gym

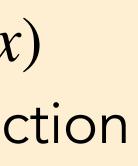
Sampling from a Distribution

• Choose x by randomly sampling from p(x)

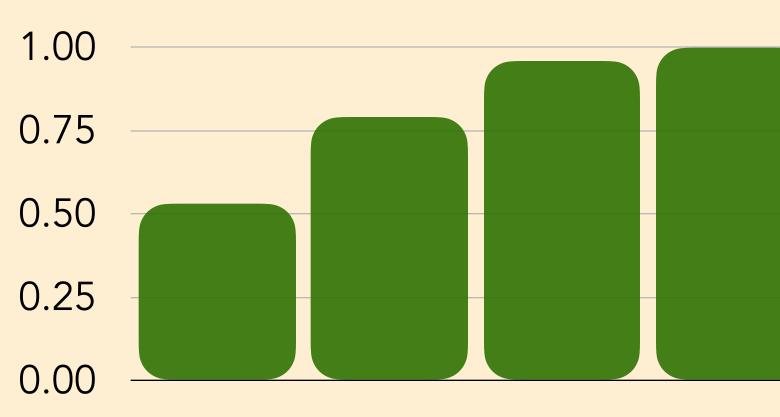
- Construct cumulative distribution function P(x)
- Sample value q between 0-1 from a uniform random distribution
- Pick x with largest P(x) such that $P(x) \leq q$

/iterbi

Prob. Dist. p(x)



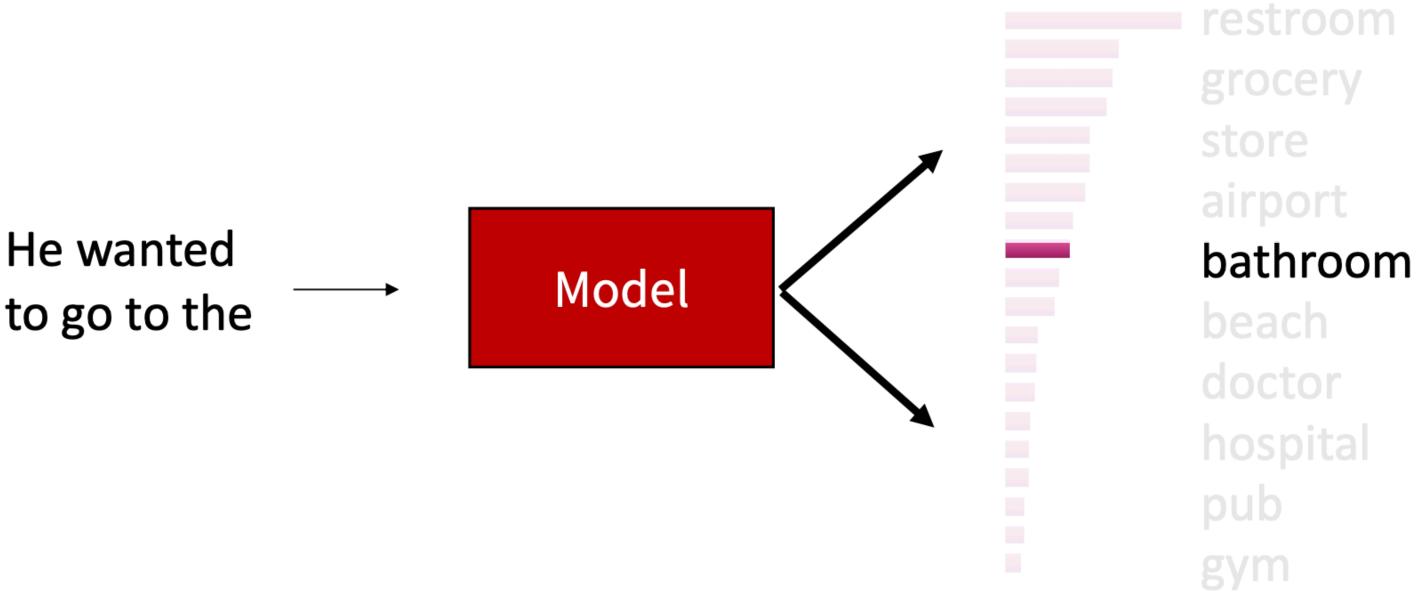
Cumulative Dist. P(x)



Pure / Ancestral Sampling

- Sample directly from P_t
- Still has access to the entire vocabulary
- But if the model distributions are of low quality, generations will be of low quality as well
- Often results in ill-formed to go to the generations
 - No guarantee of fluency

 $y_t \sim P_t(w) = \frac{\exp(S_w)}{\sum_{v \in V} \exp(S_v)}$



- Problem: Ancestral sampling makes every token in the vocabulary an option
 - Even if most of the probability mass in the distribution is over a limited set of options, the tail of the distribution could be very long and in aggregate have considerable mass
 - Many tokens are probably really wrong in the current context. Yet, we give them individually a tiny chance to be selected.
 - But because there are many of them, we still give them as a group a high chance to be selected.
- Solution: Top-*K* sampling
 - Only sample from the top *K* tokens in the probability distribution

Top-K Sampling

Fan et al., ACL 2018; Holtzman et al., ACL 2018

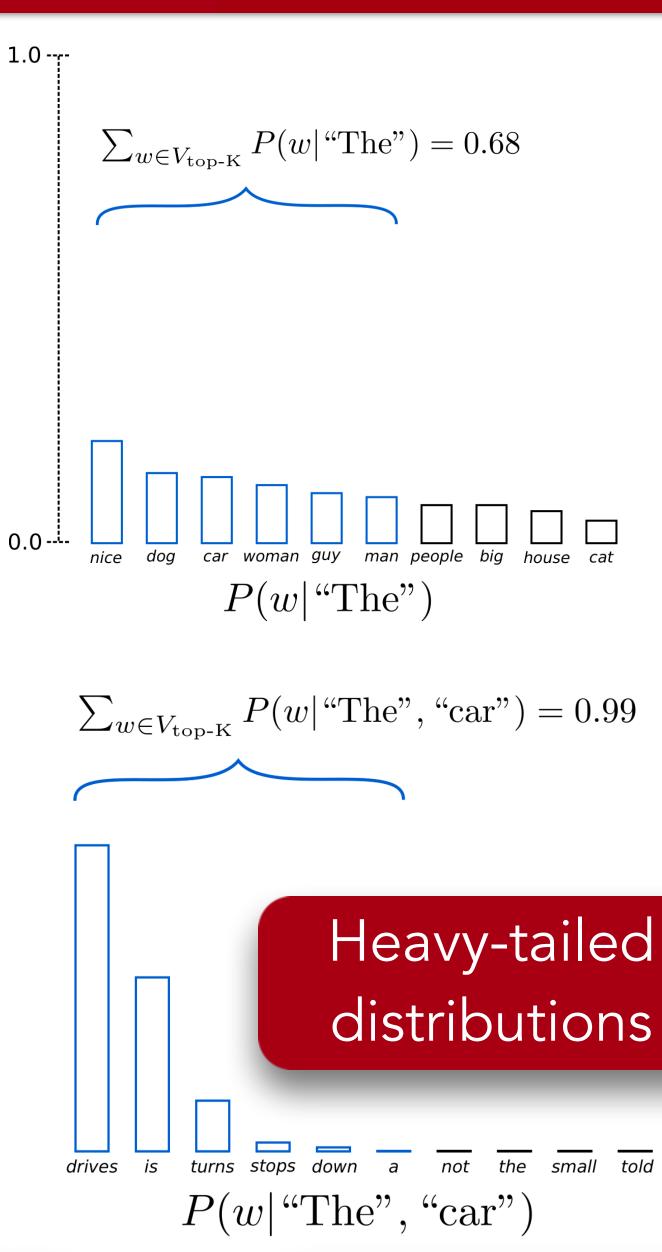


Image Source: Huggingface

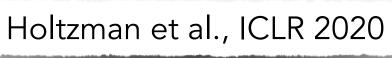
Nucleus (Top-*P*) Sampling

• Top-*P* sampling: Different threshold for different contexts

- Sample from all tokens in the top P cumulative probability mass (i.e., where mass is concentrated)
- Varies K depending on the uniformity of P_{τ}

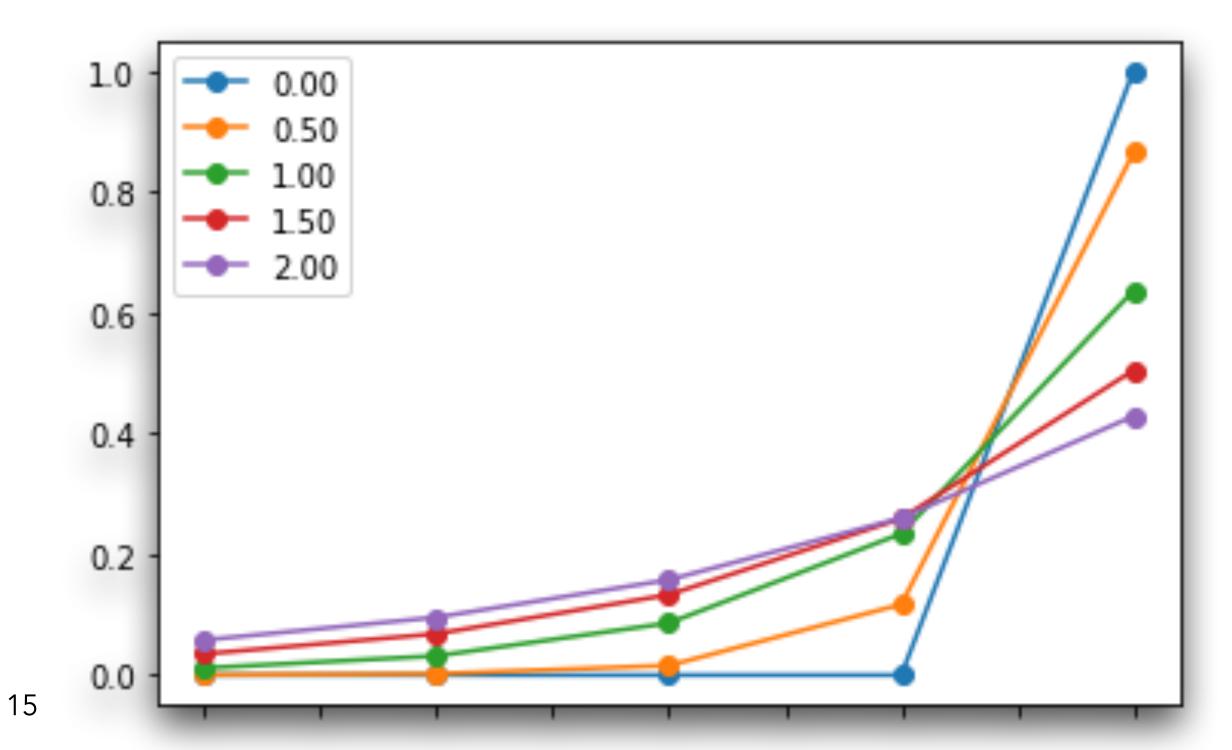
 $P_t^1(y_t = w | \{y\}_{\leq t})$

 $P_t^3(y_t = w | \{y\}_{< t})$ $P_t^2(y_t = w | \{y\}_{\leq t})$



Temperature Scaling

- We can apply a temperature hyperparameter τ to the softmax to rebalance P_t



 Unlike truncation-based sampling, temperature reshapes the probability distribution • Most current approaches use this decoding: Ancestral sampling with temperature scaling

$$P(y_t = w) = \frac{\exp(S_w/\tau)}{\sum_{v \in V} \exp(S_v/\tau)}$$

Temperature is a hyperparameter for decoding: It can be tuned for both beam search and ancestral sampling.

Lecture Outline

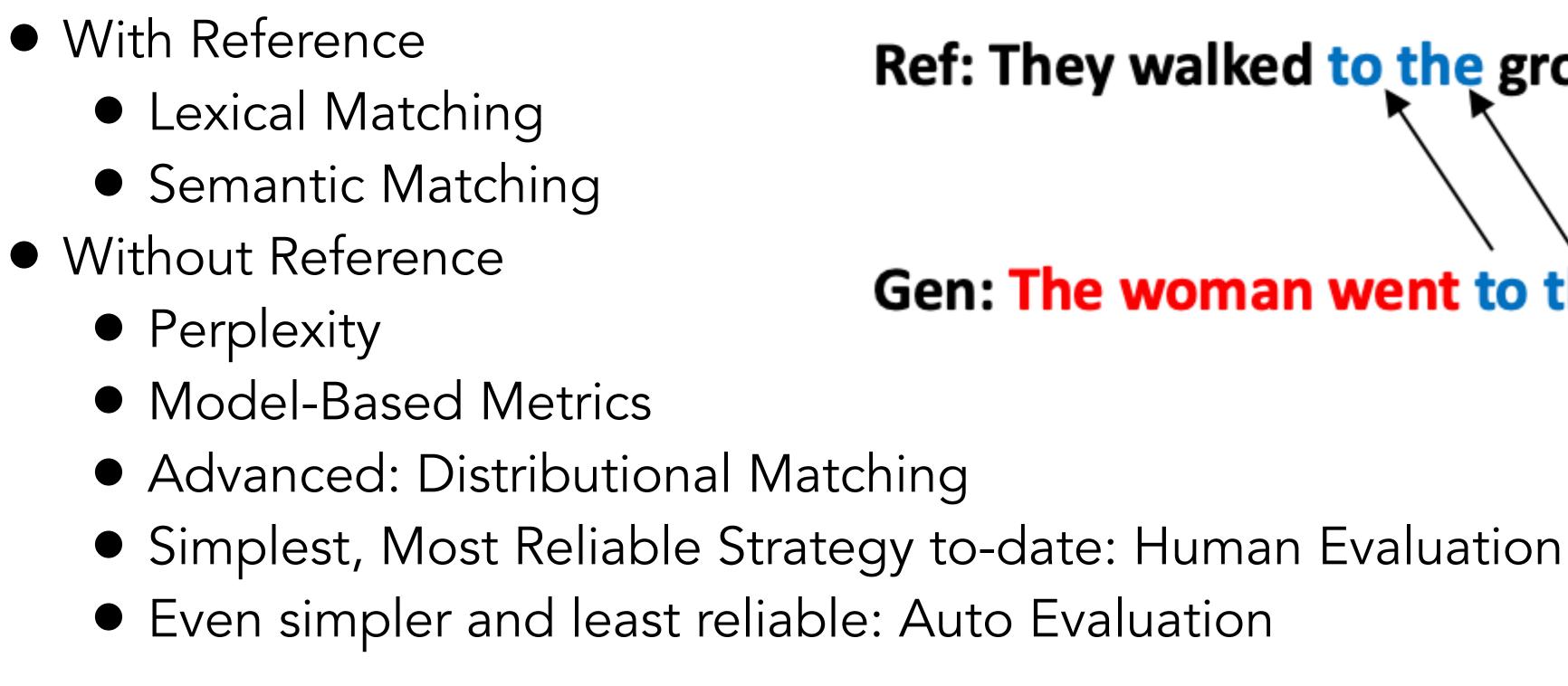
Announcements

- Recap: Decoding Algorithms
- Evaluating Generated Language
- LLMs
 - Pretraining
 - Post-training with Supervised Finetuning:
 - Instruction Tuning
 - Interacting with LLMs: Prompting
 - Post-training with Alignment with Human Feedback:
 - Preference Tuning: RLHF [Next Class]

Evaluating Generations

USCViterbi

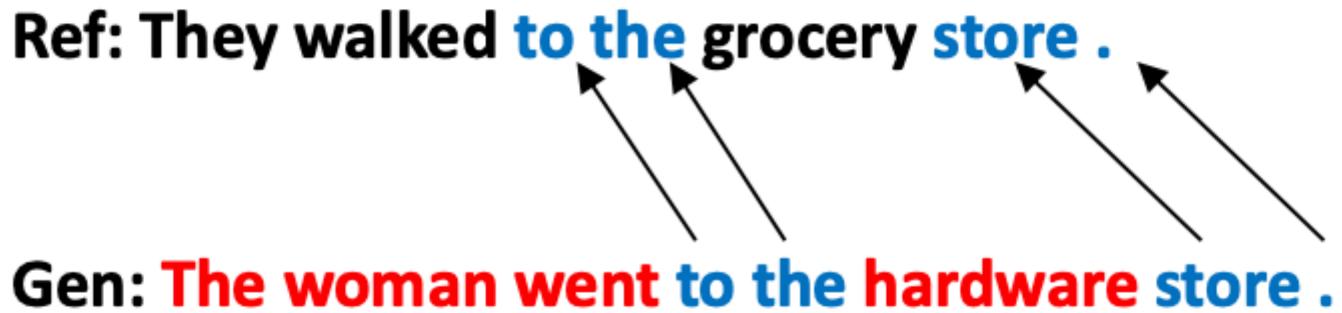
Evaluation Strategies



Ref: They walked to the grocery store. Gen: The woman went to the hardware store.

Reference-Based Metrics

- Only possible for close-ended generation tasks
- Compute a score that indicates the lexical similarity between generated and goldstandard (human-written) text
- Fast and efficient and widely used
- *n*-gram overlap metrics (e.g., BLEU, ROUGE, etc.)



- Stands for Bilingual Evaluation Understudy
- BLEU compares the machine-written translation to one or several human-written translation(s), and computes a similarity score based on:

 - Geometric mean of n-gram precision (usually for 1, 2, 3 and 4-grams) Plus a penalty for too-short system translations
- BLEU is useful but imperfect
 - There are many valid ways to translate a sentence
 - So a good translation can get a poor BLEU score because it has low n-gram overlap with the human translation
- Precision-based metric

BIHJ

Papineni et al., 2002

Precision, Recall and F-1

True Positives, True Negatives, False Positives and False Negatives

 $\frac{P}{TP} = \frac{TP}{TP + FP}$

$$\mathbf{Recall} = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2*PR}{P+R}$$

Of all the items in the prediction, how many match the ground truth

Of all the items in the ground truth, how many are correctly predicted

Harmonic Mean of Precision and Recall

Different value for different classes!

BLEU: Details

- Purely **precision-based** rather than combining precision and recall.
- BLEU score for a corpus of candidate translation sentences is a function of
 - the n-gram word precision over all the sentences
 - combined with a brevity penalty computed over the corpus as a whole.
- Consider a corpus composed of a single sentence
 - The unigram precision for this corpus is the percentage of unigram tokens in the candidate translation that also occur in the reference translation, and ditto for bigrams and so on, up to 4-grams
 - It computes this n-gram precision for unigrams, bigrams, trigrams, and 4-grams and takes the geometric mean
- Because BLEU is a word-based metric, it is very sensitive to word tokenization, making it impossible to compare different systems if they rely on different tokenization

$$p_n = \sum_{\substack{C \in \{Candidates\} \ n-gram \in C}} \sum_{\substack{n-gram \in C}} Count_{clip}(n-gram)} \sum_{\substack{C' \in \{Candidates\} \ n-gram' \in C'}} \sum_{\substack{n-gram' \in C'}} Count(n-gram')}$$

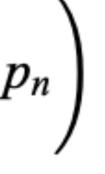
Papineni et al., 2002

$$\mathrm{BP} = \left\{ egin{array}{ccc} 1 & \mathrm{if} \ c > \ e^{(1-r/c)} & \mathrm{if} \ c \le \end{array}
ight.$$

Then,

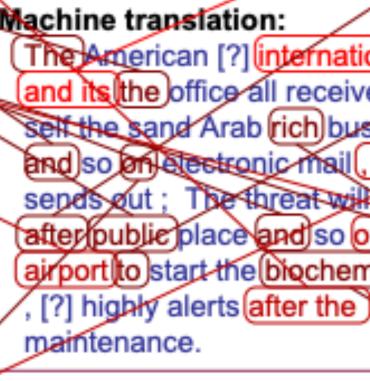
$$BLEU = BP \cdot \exp\left(\sum_{n=1}^{N} w_n \log p\right)$$

n)



Reference translation 1:

The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as (the airport)



Reference translation 3:

The US International Airport of Ouam and its office has received an email from a self-claimed Arabian millionaire named Laden (, which threatens to launch a biochemical attack on such public places as airport. Guam authority has been on alert.

23

BLEU: Example

Reference translation 2:

Guam International Airport and its) offices are maintaining a high state of alert after receiving an e-mail that was from a person claiming to be the wealthy Saudi Arabian businessman Bin Laden and that threatened to launch a biological and chemical attack on the airport and other public places .

The American [?] international airport and its the office all receives one calls self the sand Arab rich business [2] and so on electronic mail, which sends out ; The threat will be able after public place and so on the

airport to start the biochemistry attack)

Reference translation 4:

US Guam International Airport and its office received an email from Mr. Bin Laden and other rich businessman from Saudi Arabia . They said there would be biochemistry air raid to Guam Airport and other public places . Guam needs to be in high precaution about this matter.

Papineni et al., 2002

ROUGE

- Stands for "Recall-Oriented Understudy for Gisting Evaluation"
- summaries (typically human-produced)
- Four variants:
 - ROUGE-N
 - ROUGE-L
 - ROUGE-S
 - ROUGE-W

• Originally created for evaluating automatic summarization as well as machine translation • Comparing an automatically produced summary or translation against a set of reference

ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)

ROUGE: Details

- **ROUGE-N**: measures **unigram**, **bigram**, **trigram** and higher order n-gram overlap • n-gram recall between a candidate summary and a set of reference summaries • ROUGE-L: measures longest matching sequence of words using LCS.
- - Does not require consecutive matches but in-sequence matches that reflect sentence level word order.
 - Since it automatically includes longest in-sequence common n-grams, you don't need a predefined n-gram length.
- **ROUGE-S**: Is any pair of words in a sentence in order, allowing for arbitrary gaps.
 - Also be called skip-gram concurrence.
 - For example, skip-bigram measures the overlap of word pairs that can have a maximum of two gaps in between words. As an example, for the phrase "cat in the hat" the skipbigrams would be "cat in, cat the, cat hat, in the, in hat, the hat".
- **ROUGE-W**: Weighted Longest Common Subsequence

ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)

Evaluating Generation: Other Options

• Perplexity!

- Model-based Metrics (BERTScore, BARTScore, Word Mover's Distance, BLEURT) • Use learned representations of words and sentences to compute semantic similarity between generated and reference texts
 - No more n-gram bottleneck because text units are represented as embeddings! • The embeddings are pretrained, distance metrics used to measure the similarity can
 - be fixed
- Automatic metrics fall short of matching human decisions
- So, Human Evaluation!

- Ask humans to evaluate the quality of generated text
 - commonsense, etc.
 - Mostly done via crowdsourcing
- Human judgments are regarded as the gold standard
- Of course, we know that human eval is slow and expensive
- Beyond the cost of human eval, it's still far from perfect:
 - Humans Evaluation is hard:
 - Results are inconsistent / not reproducible
 - Can be subjective!
 - Misinterpret your question
 - Precision not recall

Human Evaluation

• Along specific axes: fluency, coherence / consistency, factuality and correctness,

Rising Popularity: Automatic Evaluation

AlpacaFarm: A Simulation Framework for Methods that Learn from Human Feedback

Yann Dubois* Stanford

Xuechen Li* Stanford

Rohan Taori* Stanford

Tianyi Zhang* Stanford

Ishaan Gulrajani Stanford

Jimmy Ba University of Toronto Carlos Guestrin Stanford Percy Liang Stanford Tatsunori B. Hashimoto Stanford

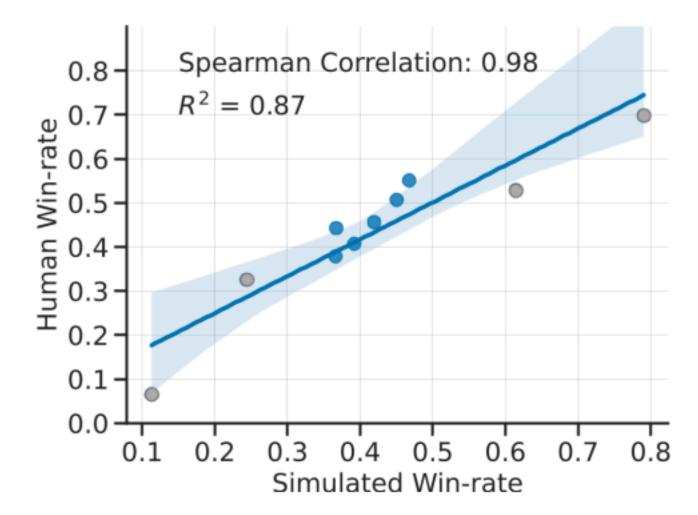


Figure 3: The ranking of methods trained and evaluated in AlpacaFarm matches that of methods trained and evaluated in the human-based pipeline. Each point represents one method M(e.g. PPO). The x-axis shows the simulated evaluation (win-rates measured by $p_{\rm sim}^{\rm eval}$) on methods trained in simulation $M_{\rm sim}$. The y-axis shows human evaluation (win-rates measured by $p_{\rm human}$) on methods trained with human feedback $M_{\rm human}$. Gray points show models that we did not train, so their x and y values only differ in the evaluation (simulated vs human). Without those points, we have $R^2 = 0.83$ and a Spearman Correlation of 0.94.

USCViterbi

Cheap and theoretically consistent with human evaluation. BUT... reliability? Models evaluating their own generations may lead to weird mode collapsing effect

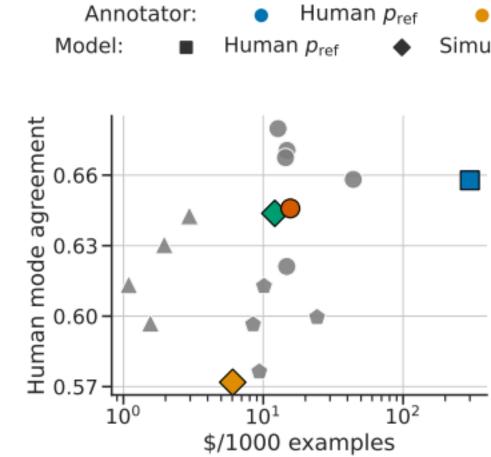


Figure 4: Our simulated annotators are cheap and have a high agreement with human annotators. We show price (x-axis) vs agreement (y-axis) as measured by each annotator's agreement with the majority vote among 3 human annotations. Grey points are all simulated annotators in the pool, the green \checkmark shows the resulting pool of annotators (used for evaluation), the orange \checkmark shows the same pool with random noise added during training. This does not change the implied reward function from \diamondsuit , but makes the learning problem more challenging. The blue \blacksquare shows the average of human annotators, and the red \bigcirc shows a single low variance GPT-4 annotator analyzed below.

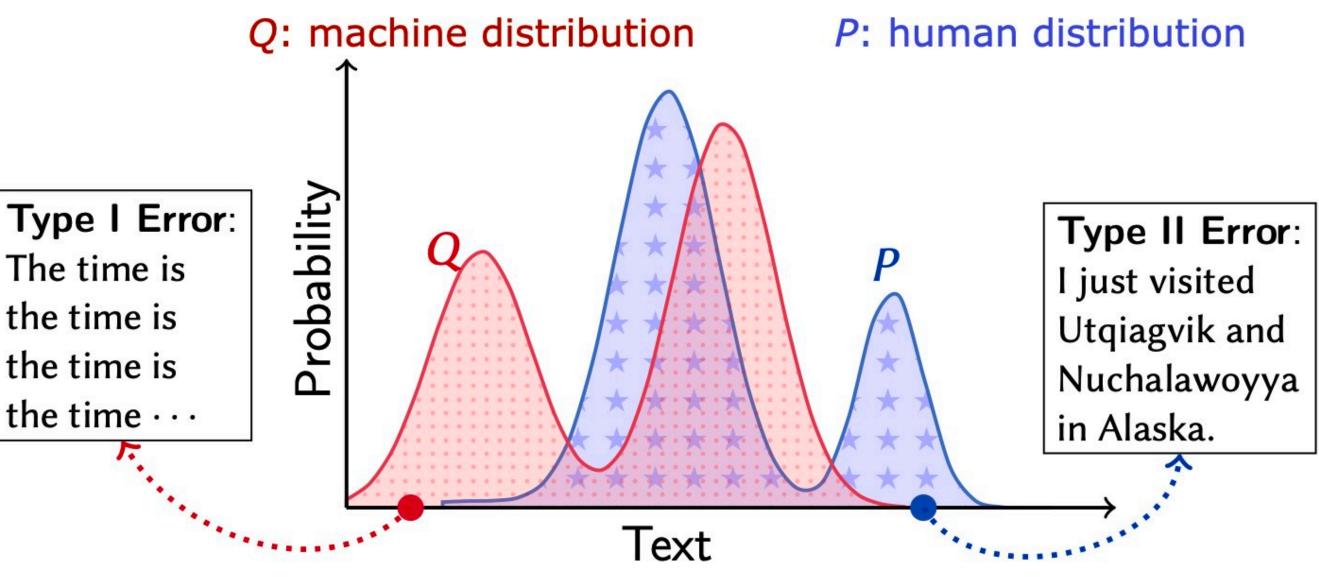
Evaluating Systems without References

- Compare human / natural language distributions to model-generated language distributions
- Divergence between these two distributions can be measured by MAUVE

MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers

Krishna Pillutla¹ Swabha Swayamdipta² Rowan Zellers¹ John Thickstun³ Sean Welleck^{1,2} Yejin Choi^{1,2} Zaid Harchaoui⁴

¹Paul G. Allen School of Computer Science & Engineering, University of Washington ²Allen Institute for Artificial Intelligence ³Department of Computer Science, Stanford University ⁴Department of Statistics, University of Washington



Natural Language Generation: Parting Thoughts

- Once trained, language models can be very powerful • The power only increases with scale
- tasks
 - Decoding Algorithms thus play a critical role
- Tuning
- Prompting (or In-Context / Few-Shot Learning): the ability to do many tasks with no gradient updates and no / a few examples, by simply:
 - Specifying the right sequence prediction problem
 - your task!

• So much so that most of our tasks in natural language can be seen as sequence completion

• How can you make LLMs do tasks (follow instructions)? Instruction-Tuning and Preference-

• You can get interesting zero-shot behavior if you're creative enough with how you specify

Lecture Outline

Announcements

- Recap: Decoding Algorithms
- Evaluating Generated Language
- LLMs
 - Pretraining
 - Post-training with Supervised Finetuning:
 - Instruction Tuning
 - Interacting with LLMs: Prompting
 - Post-training with Alignment with Human Feedback:
 - Preference Tuning: RLHF [Next Class]

Large Language Models

Models with many, many, parameters

- Deeper layers. The largest T5 model had 11B parameters. GPT-3 has 175B parameters.
- More context. GPT-2 has a context length of 1024 tokens, GPT-4 and Llama have 8192!
- LLM are generally trained by filling the full context window with text. If documents are shorter than this, multiple documents are packed into the window with a special endof-text token between them.
- Models trained on many, many tokens
 - Training data size is measured in # tokens
 - Batch size of the largest GPT-3 model is 3.2M tokens

USC Viterbi

What are Large Language Models?

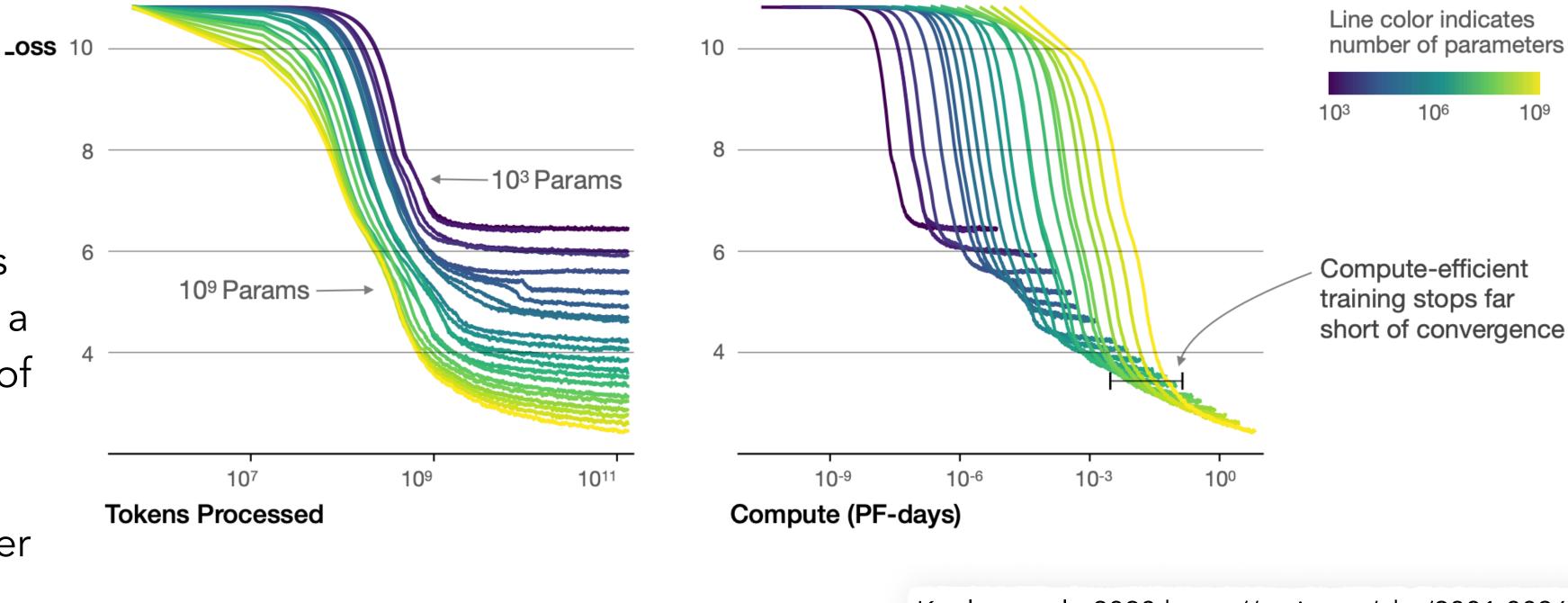
OpenAl model's version	GPT-3 (ada, babbage, curie, davinci)	GPT-3.5 (gpt-3.5- turbo, gpt- 3.5-turbo- 0301,text- davinci-003, text- davinci- 002)*	GPT-4-8K
Context length (max request)	2,049	4,096	8,192
Number of English words	~1,500	~3,000	~6,000
Number of single-spaced pages of English text	3	6	12 Source: I

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion
Chinchilla	70 Billion	1.4 Trillion

The Scaling "Laws" of LLMs

- Predictive rules of model performance, given parameter size, data size, computation
- The loss of an LLM scales as a power-law with each of these three properties of model training
- Other architectural details such as network width or depth have minimal effects within a wide range
- Determines the optimal allocation of a fixed compute budget
 - For instance, it can help us train very large models on a relatively modest amount of data and stop significantly before convergence
 - Or smaller models on larger data (e.g. Chinchilla LM)

Larger models require **fewer samples** to reach the same performance



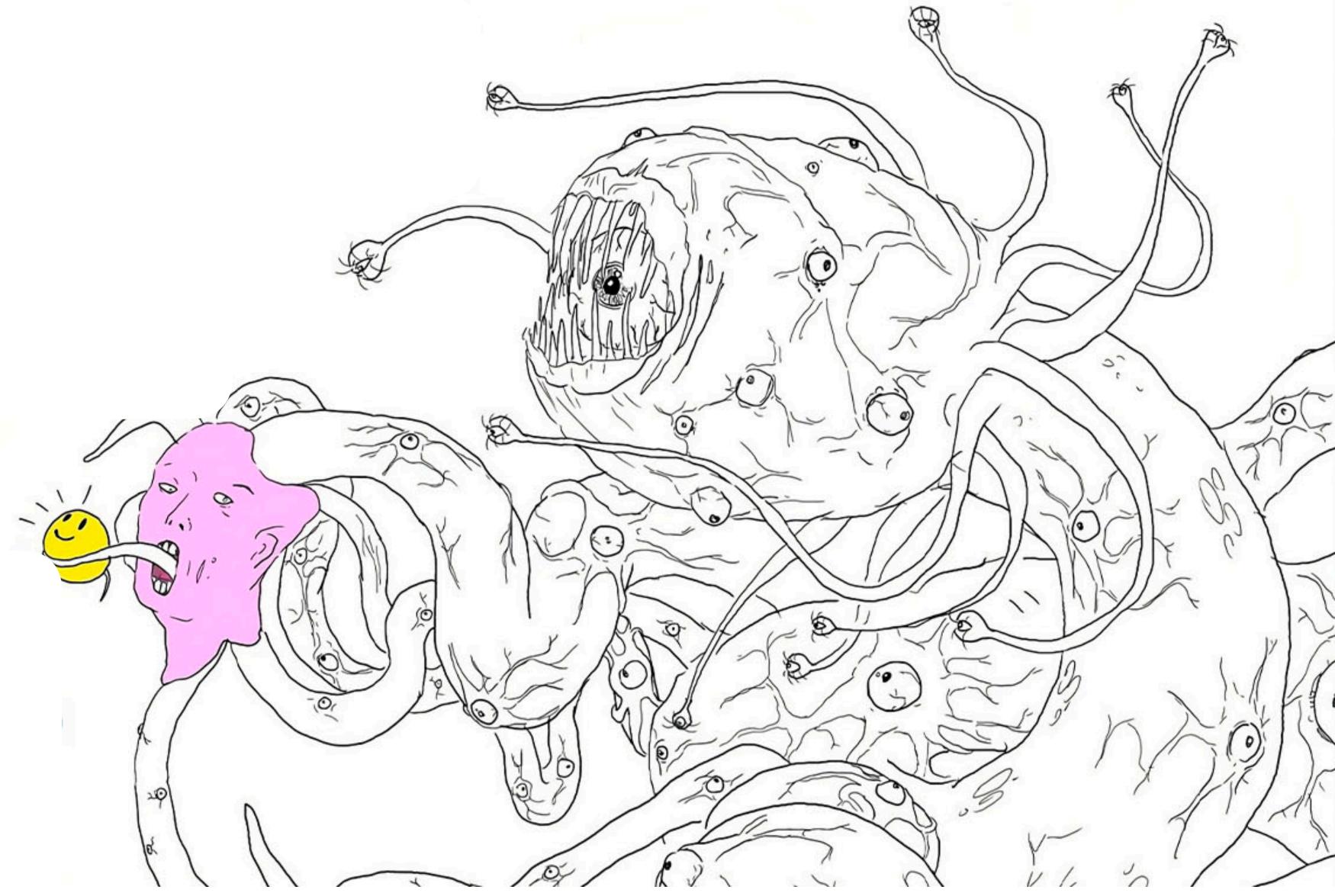
The optimal model size grows smoothly with the loss target and compute budget

Kaplan et al., 2020 https://arxiv.org/abs/2001.08361

Training LLMs

A significant, yet small part of the LM training phase (Next Class)

Shoggoth; slide credit: Justin Cho



USCViterbi

LLMs: Modern Training + Inference Recipe

• Training Recipe:

- Stage 1: Pre-training on large corpus of text
 - This is called the base language model
 - Continued Pre-training for domain adaptation (optional)
- Stage 2: Post-training
 - Instruction Tuning (Supervised Finetuning)
- Stage 3: Post-training and Alignment
 - Reinforcement Learning with Human Feedback
 - LM
 - reward model
- Inference: Prompting with Instructions and Demonstrations (also called examples, shots)

• Train a supervised classifier (reward model) on human demonstrations to provide feedback to

• Supervised fine-tuning the LM with reinforcement learning to maximize rewards given by

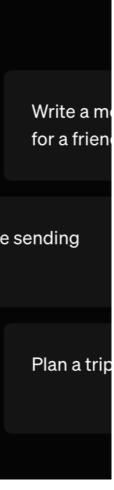
Pre-training and Fine-tuning (Post-training)

- Slightly different meaning than before
- Pre-training: Decoder-only models, standard next token prediction
- Fine-tuning: Supervised
 - Instruction-Tuning: Supervision is not necessarily via labels, but sequence pairs. Labels in standard NLP benchmarks can be converted into sequence pairs
 - Preference-Tuning: Collects human judgments / preferences as rewards
 - These steps are often called **post-training**

Post-training converts next-word	nan Empire ⊅	Write a text inv barbecue ⊅	viting my neighbors to a	Give me idea art ⊅	as for what to do with my kids'	Help me stud entrance exa	dy vocabulary for a college $am \ge 1$
completion models into world	an outfit that will look good on		Write an email to request a quote	e from local	from local Create a charter to start a film clu		
models (agents, assistants) with			plumbers 7			daily email reports 7	
many capabilities!	hance my	Design a prog a fun way ⊅	ramming game teach basics in		ory about Sharky, a tooth- ark superhero ㅋ	Explain nosta	algia to a kindergartener 🤊

USCViterbi

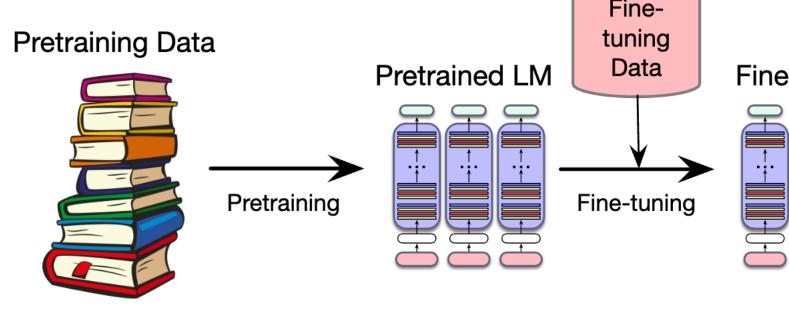
The sky is so blue and bright today, it feels like a perfect day to
enjoy outdoor activities such as hiking, picnicking, or just relaxing in a park. Make sure to wear sunscreen and stay hydrated!

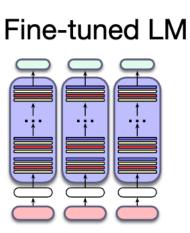


Training Data for LLMs

- Pre- and post-training requires different kinds of data
- Pre-training needs a lot of raw text
 - Crawled from the Web: Natural Solution
 - But not all data crawled from the web is good for LM training
 - Needs to be filtered in various ways (deduplicated, removing non-natural language like code, sentences with offensive words from a blocklist).
 - Quality Filters! (Later lecture)
- Post-training / Fine-tuning

 - Instruction Tuning Data: Repurposed NLP / ML benchmarks • Preference Data for RLHF: Often human labels
 - Not easy to produce...





Pre-training Data

- Language models are trained on "raw text"
- To be highly capable (e.g., have linguistic and world knowledge), this text should span a **broad** range of domains, genres, languages, etc.
- A natural place (but not the only place) to look for such text is the **web**
 - Google search index is 100 petabytes; the actual web is likely even larger
 - Private datasets owned by big companies are even larger! WalMart generates 2.5 petabytes of data each hour!
- Common Crawl is a nonprofit organization that crawls the web and provides snapshots that are free to the public
 - Standard source of data to train many models such as T5, GPT-3, etc.
 - The April 2021 snapshot of Common Crawl has 320 TB
- The Colossal Clean Crawled Corpus (C4) is a larger was created to train the T5 model — 806 GB / 156 billion tokens

The Pile and DOLMA

BC2

Subtitles

RC

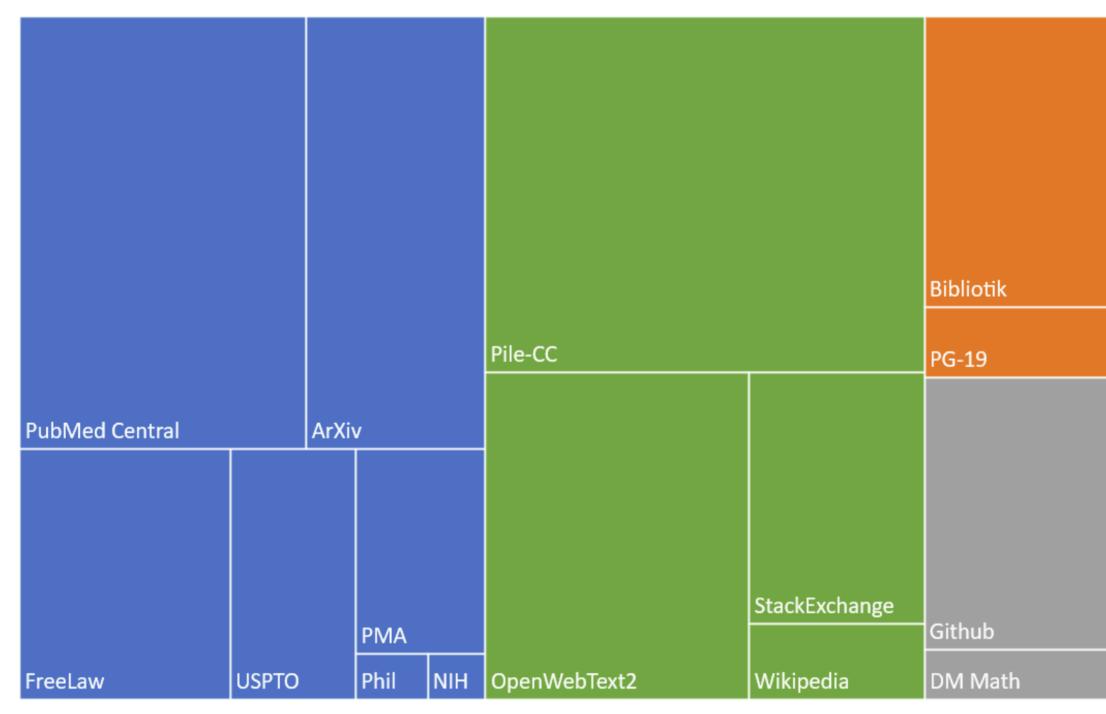


Figure 10.5 The Pile corpus, showing the size of different components, color coded as academic (articles from PubMed and ArXiv, patents from the USPTA; internet (webtext including a subset of the common crawl as well as Wikipedia), prose (a large corpus of books), dialogue (including movie subtitles and chat data), and misc.. Figure from Gao et al. (2020).

The Pile: 825 GB English text corpus containing a large amount of text scraped from the web, books and Wikipedia

USC Viterbi

☆Ai2 Dolma

Source	Doc Туре	UTF-8 bytes (GB)	Documents (millions)	Unicode words (billions)
Common Crawl	🌐 web pages	9,812	3,734	1,928
GitHub	> code	1,043	210	260
Reddit	ᆋ social media	339	377	72
Semantic Scholar	🞓 papers	268	38.8	50
Project Gutenberg	📃 books	20.4	0.056	4.0
Wikipedia, Wikibooks	encyclopedic	16.2	6.2	3.7
Total		11,519	4,367	2,318

Dolma is a larger open corpus of English, created with public tools, containing three trillion tokens, which similarly consists of web text, academic papers, code, books, encyclopedic materials, and social media (Soldaini et al., 2024)

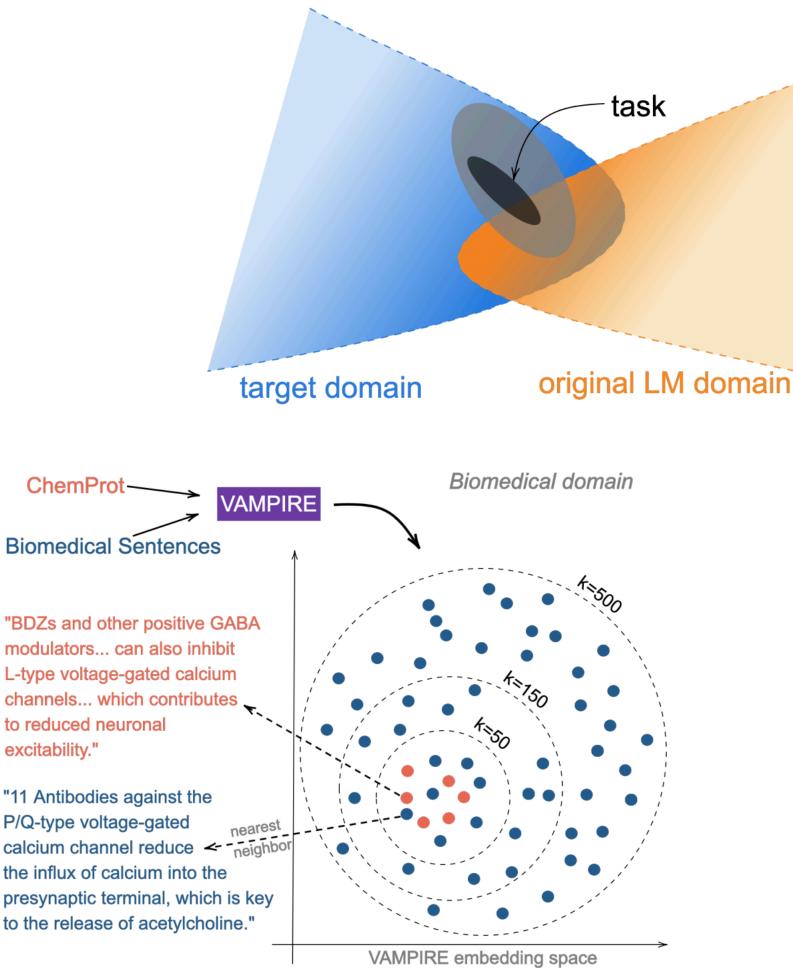
3,059

Continued Pre-training

- LLMs are general domain. But we may need domain-specific LLMs...
 - For example, we might want a language model that's specialized to legal or medical text
- In such cases, we can simply continue training the model on relevant data from the new domain or language (Gururangan et al., 2020)

Next word prediction objective

- Works better when starting from a pretrained generaldomain language model, as opposed to training from scratch
- It is even possible to do targeted data selection for obtaining domain-specific pretraining data (e.g. using k-means)



Gururangan, Marasović, Swayamdipta et al., 2020

LLMs as Mixtures of Experts

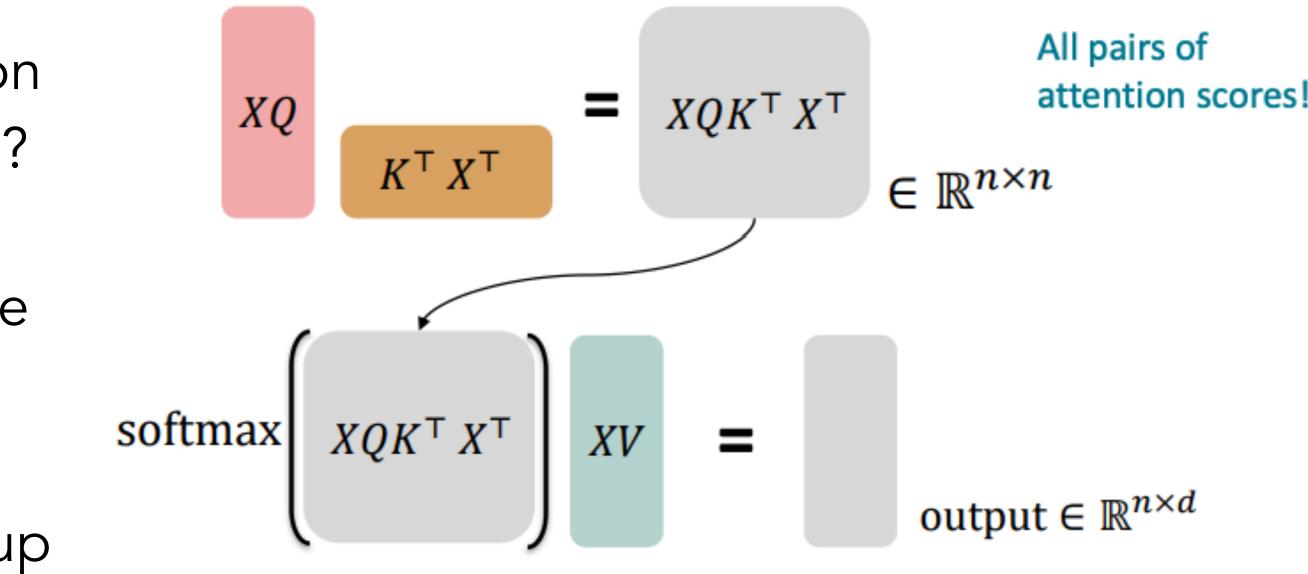


USC Viterbi

multiplied by the router gate value (dotted-line).

LLM Inference: KV Cache

- Matrices / tensors for efficient computation cannot be applied during inference? Why?
 - At inference time, we iteratively generate the next tokens one at a time
 - Hence, we use key and value (and query) vectors
- KV Cache achieves inference-time speedup
- Instead of recomputing the key and value vectors for all the prior tokens $x_{< i}$, cache, and then we can retrieve them from the cache as needed



whenever we compute the key and value vectors we store them in memory in the KV