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Announcements
• Tue, 10/29 - Project proposal 
• Thu, 11/7 - Quiz 4 
• Tue, 11/12 Quiz 5 
• Quizzes 4 and 5 - all topics after the 

midterms 
• Consider these as practice tests for 

final exams 
• Thu, 11/14 Guest lecture by Prof. Willie 

Neiswanger on 11/14  + HW4 due 
• Thu, 10/31 onwards: Paper presentations 

and project presentations 
• Also two remaining lectures on 

10/31 and 11/5
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Lecture Outline

• Announcements 
• Recap: The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 

• Pre-training Encoder-Decoder Models 
• Tokenization  
• Natural Language Generation

3
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Recap: Pre-training  
Encoder-Decoder Models

4
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Pretraining Encoder-Decoder Models

• For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

5

The encoder portion benefits from 
bidirectional context; the decoder 
portion is used to train the whole 
model through language modeling.
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T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

6

Replace different-length spans from the 
input with unique placeholders; decode out 
the spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective that 
looks like language modeling at the 
decoder side.
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T5: Task Preparation

7

Pre-training task 
objective is very 
different from fine-
tuning task objectives! 

A fascinating property 
of T5: it can be 
finetuned to answer a 
wide range of 
questions, retrieving 
knowledge from its 
parameters.
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Recap: Tokenization in 
Transformers

8
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Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary 
• Adapted for word segmentation from data compression technique (Gage, 1994) 

• Instead of merging frequent pairs of bytes, we merge characters or character sequences 
• Algorithm: 

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.  
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword  

• This is a learned operation! However, not a parametric function 
• Only combine pairs (hence the name!) 

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.  
• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols 
• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 

models.

9
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BPE in action

10
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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BPE in action

11
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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BPE in action

12
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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Natural Language 
Generation

13
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Language Generation: Training

• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t

14

Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word  in the training data  

• “Teacher forcing” (reset at each time step to the ground truth)
y*t

y*ty*0
y*t+1
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Teacher Forcing

• Strategy for training decoders / language models 

• At each time step  in decoding we force the system to use the gold target token from 
training as the next input , rather than allowing it to rely on the (possibly erroneous) 
decoder output  

• Runs the risk of exposure bias! 
• During training, our model’s inputs are gold context tokens from real, human-

generated texts 
• At generation time, our model’s inputs are previously–decoded tokens 

• To avoid: 
• Allow the decoder at training times to occasionally condition on its own outputs

t
xt+1

̂yt

15
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Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step

16

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))
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Classic Inference Algorithms: 
Greedy and Beam Search

17
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Greedy Decoding: Issues

• Greedy decoding has no wiggle room for errors! 
• Input: the green witch arrived 
• Output: Ilego 
• Output: Ilego la  
• Output: llego la verde  

• How to fix this? 
• Need a lookahead strategy / longer-term planning

18
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Exhaustive Search Decoding

• We could try computing all possible sequences  

• This means that on each step t of the decoder, we’re tracking possible partial 
translations, where is vocab size  

• This complexity is far too expensive!

y
Vt

V
O(VT)

19

• Ideally, we want to find a (length ) translation  that maximizesT y
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)  
• k is the beam size (in practice around 5 to 10, in NMT) 

• A hypothesis has a score which is its log probability: 

• Scores are all negative, and higher score is better  
• We search for high-scoring hypotheses, tracking top k on each step 

• Beam search is not guaranteed to find optimal solution  
• But much more efficient than exhaustive search!

20
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Beam Search Decoding: Example

21 Slide credit: Chris Manning
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Beam Search Decoding: Example

22 Slide credit: Chris Manning



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Beam Search Decoding: Example

23 Slide credit: Chris Manning
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Beam Search Decoding: Example

24 Slide credit: Chris Manning
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Beam Search Decoding: Example

25 Slide credit: Chris Manning
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Beam Search Decoding: Example

26 Slide credit: Chris Manning
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Beam Search Decoding: Example

27 Slide credit: Chris Manning
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Beam Search Decoding: Example

28 Slide credit: Chris Manning
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Beam Search Decoding: Example

29 Slide credit: Chris Manning
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Beam Search Decoding: Example

30 Slide credit: Chris Manning
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Beam Search Decoding: Example

31 Slide credit: Chris Manning
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Beam Search Decoding: Example

32 Slide credit: Chris Manning
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Beam Search Decoding: Example

33 Slide credit: Chris Manning
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Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token 
• For e.g. <s> he hit me with a pie </s> 

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different 
time steps  
• When a hypothesis produces </s>, that hypothesis is complete.  
• Place it aside and continue exploring other hypotheses via beam search.  

• Usually we continue beam search until:  

• We reach time step  (where  is some pre-defined cutoff), or  

• We have at least  completed hypotheses (where n is pre-defined cutoff)
T T

n

34
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Beam Search Decoding: Parting Thoughts

• Problem with this: longer hypotheses have lower score 
• Fix: Normalize by length. Use this to select top one instead

35

• We have our list of completed hypotheses. Now how to select top one? 

• Each hypothesis  on our list has a scorey1, …, yt

But this is expensive!
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Maximization Based Decoding

• Either greedy or beam search 
• Beam search can be more effective with large beam width, but also more expensive 
• Another key issue: 

36

Generation can be bland or 
repetitive (also called degenerate)

Holtzmann et al., 2020
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Degenerate Outputs

37

However, the problem goes away under extreme-scale 
language models, such as GPT-4 and Llama-3

Holtzmann et al., 2020
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Why does repetition happen?

• Probability amplification due to maximization based decoding  
• Generation fails to match the uncertainty distribution for human written text

38
Holtzmann et al., 2020

Perhaps we should not really be maximizing! 
What else could we do?
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Solution: Don’t Maximize, Pick a Sample

39

• Sample a token from the distribution of tokens. 
• But this is not a random sample, it is a sample for the learned model distribution 

• Respects the probabilities, without going just for the maximum probability option 
• Or else, you would get something meaningless 
• Many good options which are not the maximum probability!
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Modern Generation: 
Sampling

40
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Pure / Ancestral Sampling

41

yt ∼ Pt(w) =
exp(Sw)

∑v∈V exp(Sv)• Sample directly from  

• Still has access to the entire 
vocabulary 

• But if the model distributions are 
of low quality, generations will be 
of low quality as well 

• Often results in ill-formed 
generations 
• No guarantee of fluency

Pt
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Top-  SamplingK
• Problem: Ancestral sampling makes every token in the vocabulary 

an option  
• Even if most of the probability mass in the distribution is over 

a limited set of options, the tail of the distribution could be 
very long and in aggregate have considerable mass 

• Many tokens are probably really wrong in the current context. 
Yet, we give them individually a tiny chance to be selected.  

• But because there are many of them, we still give them as a 
group a high chance to be selected.  

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability 
distribution

K
K

42 Fan et al., ACL 2018; Holtzman et al., ACL 2018

Heavy-tailed 
distributions

Image Source: Huggingface
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Top-  Sampling: Value of K K

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability distribution  

• Common values are  = 50 

K
K

K

43

• Increase  yields more diverse, but risky outputs  

• Decrease  yields more safe but generic outputs
K
K
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Top-  Sampling: IssuesK

44
Image Source: Holtzmann et al., 2019

Top-  sampling can cut off too quicklyK

Top-  sampling can also cut off too slowly!K

We can do better than having one-size-fits-all: a 
fixed  for all contexts K
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Modern Decoding: Nucleus Sampling

• Problem: The probability distributions we sample from are dynamic  

• When the distribution  is flatter, a limited  removes many viable options  

• When the distribution  is peakier, a high  allows for too many options to have a 
chance of being selected  

• Solution: Nucleus Sampling / Top-  sampling  

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is 
concentrated)  

• Varies  depending on the uniformity of 

Pt K
Pt K

P
P

K Pt

45 Holtzman et al., ICLR 2020



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Nucleus (Top- ) SamplingP
• Solution: Top-  sampling 

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is concentrated)  

• Varies  depending on the uniformity of 

P
P

K Pt

46 Holtzman et al., ICLR 2020
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Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  by applying the softmax 
function to a vector of scores  

• We can apply a temperature hyperparameter  to the softmax to rebalance 

t Pt
s ∈ ℝ|V|

τ Pt

47

Temperature is a hyperparameter for 
decoding: It can be tuned for both beam 

search and sampling.

Originally, P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)
• Let’s say initial scores, : (remember these are real-valued) 

• 0.1912, 0.7492, 0.5966, 0.5528, 0.8324, 0.9409 

• After softmax, :  

• 0.1031, 0.1802, 0.1547, 0.1480, 0.1958, 0.2182 

•  when :  

• 19.12, 74.92, 59.66, 55.28, 83.24, 94.09 
• After softmax,  

• 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000

Sw

p

Sw/τ τ = 0.01

p



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Sampling after Temperature Scaling

48

• Raise the temperature  > 1:  
becomes more uniform  
• More diverse output 

(probability is spread around 
vocab)  

• Lower the temperature  < 1:  
becomes more spiky  
• Less diverse output 

(probability is concentrated 
on top words)

τ Pt

τ Pt
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Comparing different 
decoding algorithms

• Generate text to continue a 
given context 
• Open-ended generation 

• Same decoding algorithms are 
also useful for close-ended 
generation tasks

49
Holtzman et al., ICLR 2020
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Truncation-based Sampling

• Nucleus Sampling is an example of truncation sampling 
• Certain properties of language models (mismatch 

between vocabulary size and hidden dimensionality) 
make threshold sampling a great choice! 

• [Finlayson et al., 2024] 
• Locally-Typical Sampling: Similar to Nucleus Sampling, but 

based on conditional entropy (entropy of a distribution 
determines its randomness) [Meister et al., 2022] 

• -Sampling: Entropy dependent threshold that also takes 
into account absolute probabilities [Hewitt et al., 2022] 

• BAT Sampling: More flexible than truncation [Finlayson et 
al., 2024]

η

50
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Modern Decoding: Takeaways

• Natural language distributions are very peaky but the 
softmax function assigns probabilities to all tokens in 
the vocabulary 

• Hence we need approaches to truncate / modify the 
softmax distribution 

• Ancestral, Top- , Top-  (Nucleus), Temperature 

• Some properties of the softmax function make 
truncation based decoding necessary

k p

51
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Evaluating 
Generations

52
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Evaluation Strategies

• With Reference 
• Lexical Matching 
• Semantic Matching 

• Without Reference 
• Perplexity 
• Model-Based Metrics 
• Advanced: Distributional Matching 
• Simplest, Most Reliable Strategy to-date: Human Evaluation 
• Even simpler and least reliable: Auto Evaluation

53
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Reference-Based Metrics

• Only possible for close-ended generation tasks 
• Compute a score that indicates the lexical similarity between generated and gold-

standard (human-written) text  
• Fast and efficient and widely used  

• -gram overlap metrics (e.g., BLEU, ROUGE, etc.)n

54


