
Lecture 16:
Tokenization and Language Generation

Instructor: Swabha Swayamdipta
USC CSCI 544 Applied NLP

Oct 22, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2024 CSCI 544: Applied NLP

Announcements
• Today, 10/22 - HW3
• Fri, 10/25 - Project Progress Report

• What are we expecting? See class website: https://swabhs.com/f24-csci544-
appliednlp/details/project/
• once again describe the project’s goals
• contain all details on the dataset (your dataset should mostly be collected by this

time),
• contain some initial results (think of this as a motivating results), and
• must outline a concrete plan of what will be done before the final report.

• Tue, 10/29 - Quiz 4
• Thu, 10/31 onwards: Paper presentations and project presentations

• Also two remaining lectures on 10/31 and 11/5
• Guest lecture by Prof. Willie Neiswanger on 11/14

2

https://swabhs.com/f24-csci544-appliednlp/details/project/
https://swabhs.com/f24-csci544-appliednlp/details/project/

Fall 2024 CSCI 544: Applied NLP

Announcements: Paper Presentations

• Paper Presentations Format:
• Every team has been assigned a paper by their TA
• See your presentation schedule: https://docs.google.com/spreadsheets/d/

13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?
gid=1378308384#gid=1378308384

• All teammates prepare to present—on their own—the assigned paper
• We will announce the actual presenter a couple of hours before class
• All teammates should be prepared to answer questions from the audience about the

paper
• Total time for presentation + questions: 5 mins / team

• Remaining time: lecture
• Slides encouraged - we will ask you to send us your Google slides in advance

3

https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384

Fall 2024 CSCI 544: Applied NLP

HW1 Grades

4

Fall 2024 CSCI 544: Applied NLP

Class Grades

5

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Announcements
• Recap: The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models

• Pre-training Encoder-Decoder Models
• Tokenization
• Natural Language Generation

6

Fall 2024 CSCI 544: Applied NLP

Recap:
Pre-training and Fine-tuning

7

Fall 2024 CSCI 544: Applied NLP

The Pretraining / Finetuning Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.

8

Step 1: Pretrain (on language corpora)
Lots of text; learn general things!

Step 2: Finetune (on your task data)
Not many labels; adapt to the task!

Key idea: “Pretrain once, finetune many times.”

Fall 2024 CSCI 544: Applied NLP

Pretraining Entire Models

• In modern NLP:
• All (or almost all) parameters in NLP networks

are initialized via pretraining.
• This has been exceptionally effective at

building strong:
• representations of language
• parameter initializations for strong NLP

models.
• probability distributions over language

that we can sample from

9

[This model has learned how to represent
entire sentences through pretraining]

Fall 2024 CSCI 544: Applied NLP

Pretraining: Language Models

• Recall the language modeling task:

• Model , the probability
distribution over words given their
past contexts.

• There’s lots of data for this! (In
English.)

• Pretraining through language modeling:
• Train a neural network to perform

language modeling on a large
amount of text.

• Save the network parameters.

pθ(wt |w1:t−1)

10

Fall 2024 CSCI 544: Applied NLP

Pretraining Decoders: Classifiers

• When using language model pretrained decoders, we
can ignore that they were trained to model

• We can finetune them by training a classifier on the
last word’s hidden state

•

•

• Where and are randomly initialized and
specified by the downstream task.

• Gradients backpropagate through the whole network.

pθ(wt |w1:t−1)

h1, …, hT = Decoder(w1, …, wT)
y ≈ AhT + b

A b

11

The linear layer hasn’t been
pretrained and must be learned

from scratch.

Fall 2024 CSCI 544: Applied NLP

Pretraining Decoders: Generators

• More natural: pretrain decoders as language models and then use them as generators,
finetuning their

•

•

• Where 𝐴, 𝑏 were pretrained in the language model!

pθ(wt |w1:t−1)
h1, …, hT = Decoder(w1, …, wT)

wt ≈ Aht−1 + b

12

The linear layer has been pretrained

• This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!
• Dialogue (context=dialogue history)
• Summarization (context=document)

Fall 2024 CSCI 544: Applied NLP

Pretraining Encoders: Bidirectional Context

13

Universal Studios Theme Park is located in ______________, California

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

‘Cause darling i'm a _______ dressed like a daydream

Bidirectional context is important to reconstruct the input!

Problem: Input
Reconstruction

Fall 2024 CSCI 544: Applied NLP

Pretraining Encoders: Objective

• Encoders get bidirectional context, so we can’t do language modeling!
• Idea: replace some fraction of words in the input with a special [MASK] token; predict

these words.

•

•
h1, …, hT = Encoder(w1, …, wT)
yi ≈ Ahi + b

14

• Only add loss terms from words that are “masked out.”

• If is the masked version of 𝑥, we’re learning .

• Called Masked LM
• Special type of language modeling

x̃ pθ(x̃ |x)

Fall 2024 CSCI 544: Applied NLP

BERT: Bidirectional Encoder Representations from Transformers

15

• 15% of the input tokens in a training sequence are
sampled for learning, these are to be predicted by the
model

• Of these
• 80% are replaced with [MASK]
• 10% are replaced with randomly selected tokens,
• Remaining 10% are left unchanged

Devlin et al., 2018 proposed the “Masked LM” objective and released BERT, a Transformer,
pretrained to:

Doesn’t let the model get complacent and not build strong representations of
non-masked words. (No masks are seen at fine-tuning time!)

Why?

Fall 2024 CSCI 544: Applied NLP

BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:

16

• BERT was trained to predict whether one chunk follows the other or is randomly sampled.
• [CLS] and [SEP] tokens
• [SEP] is used for next sentence prediction - do these sentences follow each other?
• [CLS] for text classification / connection to fine-tuning

Fall 2024 CSCI 544: Applied NLP

BERT: Extensions

• Some generally accepted improvements to the BERT pretraining formula:
• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!
• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining

task
• A lot of BERT variants that used the BERT formula

• ALBERT: BERT with parameter-reduction techniques
• DistilBERT:
• DeBERTa: Decoding-enhanced BERT with disentangled attention
• FlauBERT: BERT for French
• XLNet: Multilingual BERT
• Etc.

• BERTology: How and why BERT worked so well

17

Fall 2024 CSCI 544: Applied NLP

BERT: Overview

• [SEP]: Later work has argued this “next sentence prediction” is
not necessary

• In general, more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder

• Results in contextual embeddings
• Key Limitation:

• Cannot be used for generation
• No pretraining encoders can be used for autoregressive

generation very naturally
• There are clunky ways in which you could try…but not a

natural fit
• For this, we need to have a decoder!

18

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Announcements
• Recap: The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models

• Pre-training Encoder-Decoder Models
• Tokenization
• Natural Language Generation

19

Fall 2024 CSCI 544: Applied NLP

Pre-training
Encoder-Decoder Models

20

Fall 2024 CSCI 544: Applied NLP

Pretraining for three types of architectures

21

Bidirectional Context

Sequence-to-sequence

Language Models

Fall 2024 CSCI 544: Applied NLP

Pretraining Encoder-Decoder Models

• For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

22

The encoder portion benefits from
bidirectional context; the decoder
portion is used to train the whole
model through language modeling.

Fall 2024 CSCI 544: Applied NLP

T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

23

Replace different-length spans from the
input with unique placeholders; decode out
the spans that were removed!

This is implemented in text
preprocessing: it’s still an objective that
looks like language modeling at the
decoder side.

Fall 2024 CSCI 544: Applied NLP

T5: Task Preparation

24

A fascinating property of
T5: it can be finetuned to
answer a wide range of
questions, retrieving
knowledge from its
parameters.

Fall 2024 CSCI 544: Applied NLP

T5 Results

• Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,
and span corruption (denoising) to work better than language modeling.

25

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Announcements
• Recap: The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models

• Pre-training Encoder-Decoder Models
• Tokenization
• Natural Language Generation

26

Fall 2024 CSCI 544: Applied NLP

Tokenization in
Transformers

27

Fall 2024 CSCI 544: Applied NLP

The Input Layer

• So far, we have made some assumptions about a
language’s vocabulary

• Our approach so far: use a known, fixed vocabulary
• Built from training data, with tens of thousands of

components
• However, even with the largest vocabulary, we may

encounter out-of-vocabulary words at test time
• Our approach so far: map novel words seen at test

time (OOV) to a single UNK

28

Re
pe

at
 fo

r L
 e

nc
od

er
 b

lo
ck

s Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Encoder Inputs

Block

+

D

DMulti-headed Self-

Attention

Probabilities
Softmax

Linear

Fall 2024 CSCI 544: Applied NLP

How to get the words?

• Problem: break the text into a sequence of discrete tokens
• For alphabetic languages such as English, deterministic scripts usually suffice to achieve

accurate tokenization
• However, in languages such as Chinese and Swahili, words are typically composed of a

small number of characters, without intervening whitespace

29

Or, more accurately, the tokens?

Fall 2024 CSCI 544: Applied NLP

Word Structure in Language
• Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.
• The effect is more word types, each occurring fewer times.

30

Source: Wiktionary

Example: Swahili verbs
can have hundreds of
conjugations, each
encoding a wide variety
of information. (Tense,
mood, definiteness,
negation, information
about the object, ++)

-ambia = to tell

Fall 2024 CSCI 544: Applied NLP

Subword Modeling

• Solution: look at subwords!
• Subword modeling encompasses a wide range of methods for

reasoning about structure below the word level
• Subwords may be words, parts of words, characters, bytes

• The dominant modern paradigm is to learn a vocabulary of parts of
words (subword tokens)

• At training and testing time, each word is split into a sequence of
known subwords

• Different algorithms:
• Byte-Pair Encoding
• WordPiece Modeling
• Follow different strategies. Often contain prepending / appending

special tokens (##, </w>)

31

Fall 2024 CSCI 544: Applied NLP

 Word structure and subword models

• Common words end up being a part of the subword vocabulary, while rarer words are
split into (sometimes intuitive, sometimes not) components.

• In the worst case, words are split into as many subwords as they have characters.
• Llama 3 uses a tokenizer with a vocabulary of 128K tokens

32

Fall 2024 CSCI 544: Applied NLP

Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary
• Adapted for word segmentation from data compression technique (Gage, 1994)

• Instead of merging frequent pairs of bytes, we merge characters or character sequences
• Algorithm:

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword

• This is a learned operation! However, not a parametric function
• Only combine pairs (hence the name!)

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.
• At test time, first split words into sequences of characters, then apply the learned operations to merge

the characters into larger, known symbols
• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained

models.

33

Fall 2024 CSCI 544: Applied NLP

BPE in action

34
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP

BPE in action

35
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP

BPE in action

36
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP

WordPiece Modeling

• Algorithm from Google, similar to BPE
• Identifies subwords by adding a prefix (##)

• Each word is initially split by adding ## to all the characters inside a word
• So, for instance, “word” gets split like this: w ##o ##r ##d
• For this vocabulary:

• ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
• Splits may look like:

• ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u"
"##n", 4), ("h" "##u" "##g" "##s", 5)

• On merging, ## between the two tokens is removed
• This explains the presence of the token “##ing”

37

Fall 2024 CSCI 544: Applied NLP

WordPiece Modeling Outcome

• Different stopping criteria: number of merges or size of resulting vocabulary
• In the worst case, at test time, words are split into as many subwords as they have characters
• Common words end up being a part of the subword vocabulary, while rarer words are split

into (sometimes intuitive, sometimes not) components

38

WordPiece Outcome

Fall 2024 CSCI 544: Applied NLP

Tokenization: Frequently Asked Questions

• Where does the token “##ing” come from?
• In WordPiece tokenization, all non-starting characters are initialized as ##x.

• Like: h, ##e, ##l, ##l, ##o.
• Upon merging, only the first segment keeps its ##.

• How is tokenization done in Chinese?
• Follows the same broad overall algorithm, but the initial split into characters involve

language-specific rules
• e.g. stroke-level tokenization [Si et al., 2023]

39

Source: https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00560/116047/Sub-Character-Tokenization-for-Chinese-Pretrained
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Announcements
• Recap: The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models

• Pre-training Encoder-Decoder Models
• Tokenization
• Natural Language Generation

• Classic Inference Algorithms: Greedy and Beam Search

40

Fall 2024 CSCI 544: Applied NLP

Natural Language
Generation

41

Fall 2024 CSCI 544: Applied NLP

Natural Language Generation

• Natural language understanding and natural language generation are
two sides of the same coin
• Natural language understanding: Learning representations that

perform well on downstream tasks
• To generate good language, one needs to understand language
• If you understand language, you should be able to generate it (with

some effort)
• NLG is the workhorse of many classic and novel applications

• AI Assistants
• Translators
• Search summarizers

42

Fall 2024 CSCI 544: Applied NLP

NLG Use Cases

43

Summarization

Task-driven
Dialog

Chitchat
Dialog

Fall 2024 CSCI 544: Applied NLP

More Interesting NLG Uses

44

Rashkin et al., 2020 Parikh et al., 2020

Krause et al., 2017

Fall 2024 CSCI 544: Applied NLP

Broad Spectrum of NLG Tasks

45

Open-ended generation: the output distribution still has high freedom.

Non-open-ended generation: the input mostly determines the output generation.

Machine
Translation

Less Open-Ended More Open-Ended

Summarization Task-driven
Dialog

Chitchat
Dialog

Story
Generation

Fall 2024 CSCI 544: Applied NLP

Broad Spectrum of NLG Tasks

46

Machine
Translation

Less Open-Ended More Open-Ended

Summarization Task-driven
Dialog

Chitchat
Dialog

Story
Generation

Fall 2024 CSCI 544: Applied NLP

Language Generation: Fundamentals

In autoregressive text generation models, at each time step , our model takes in a sequence of tokens as input
 and outputs a new token,

For model and vocabulary , we get scores

t
S = fθ(y<t) ∈ ℝV ̂yt

fθ(⋅) V S = fθ(y<t) ∈ ℝV

47

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

P(w |y<t) =
exp(Sw)

∑v∈V exp(Sv)

Fall 2024 CSCI 544: Applied NLP

Language Generation: Training

• Trained one token at a time to maximize the probability of the next token given preceding
words

y*t
y*<t

48

Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word in the training data

• “Teacher forcing” (reset at each time step to the ground truth)
y*t

y*ty*0
y*t+1

Fall 2024 CSCI 544: Applied NLP

Teacher Forcing

• Strategy for training decoders / language models

• At each time step in decoding we force the system to use the gold target token from
training as the next input , rather than allowing it to rely on the (possibly erroneous)
decoder output

• Runs the risk of exposure bias!
• During training, our model’s inputs are gold context tokens from real, human-

generated texts
• At generation time, our model’s inputs are previously–decoded tokens

t
xt+1

̂yt

49

Fall 2024 CSCI 544: Applied NLP

Language Generation: Inference

• The “obvious” decoding algorithm is to greedily choose the highest probability next
token according to the model at each time step

50

• At inference time, our decoding algorithm defines a function to select a token from this
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))

Fall 2024 CSCI 544: Applied NLP

Classic Inference Algorithms:
Greedy and Beam Search

51

Fall 2024 CSCI 544: Applied NLP

Decoding

• Generation from a language model is also called decoding
• Think encoder-decoder
• Also called inference

• Strategy so far: Take on each step of the decoder to produce the most probable
word on each step

• This is called greedy decoding
• Greedy Strategy: we are not looking ahead, we are making the hastiest decision

given all the information we have

arg max

52

Fall 2024 CSCI 544: Applied NLP

Greedy Decoding: Issues

• Greedy decoding has no wiggle room for errors!
• Input: the green witch arrived
• Output: Ilego
• Output: Ilego la
• Output: llego la verde

• How to fix this?
• Need a lookahead strategy / longer-term planning

53

Fall 2024 CSCI 544: Applied NLP

Exhaustive Search Decoding

• We could try computing all possible sequences

• This means that on each step t of the decoder, we’re tracking possible partial
translations, where is vocab size

• This complexity is far too expensive!

y
Vt

V
O(VT)

54

• Ideally, we want to find a (length) translation that maximizesT y

Fall 2024 CSCI 544: Applied NLP

Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)
• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better
• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution
• But much more efficient than exhaustive search!

55

