

Instructor: Swabha Swayamdipta USC CSCI 544 Applied NLP Oct 22, Fall 2024

Lecture 16: **Tokenization and Language Generation**

Some slides adapted from Dan Jurafsky and Chris Manning

Announcements

- Today, 10/22 HW3
- Fri, 10/25 Project Progress Report
 - <u>appliednlp/details/project/</u>
 - once again describe the project's goals
 - contain all details on the dataset (your dataset should mostly be collected by this time),

 - contain some initial results (think of this as a motivating results), and • must outline a concrete plan of what will be done before the final report.
- Tue, 10/29 Quiz 4
- Thu, 10/31 onwards: Paper presentations and project presentations Also two remaining lectures on 10/31 and 11/5 • Guest lecture by Prof. Willie Neiswanger on 11/14

What are we expecting? See class website: <u>https://swabhs.com/f24-csci544-</u>

Announcements: Paper Presentations

Paper Presentations Format:

- Every team has been assigned a paper by their TA
- See your presentation schedule: <u>https://docs.google.com/spreadsheets/d/</u> <u>13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLl/edit?</u> gid = 1378308384 # gid = 1378308384
- All teammates prepare to present—on their own—the assigned paper
- We will announce the actual presenter a couple of hours before class
- paper
- Total time for presentation + questions: 5 mins / team • Remaining time: lecture

• All teammates should be prepared to answer questions from the audience about the

Slides encouraged - we will ask you to send us your Google slides in advance

Histogram of HW 1

150

HW1 Grades

Histogram of Midterm

Midterm

USCViterbi

Class Grades

Quiz 3

Project Proposal Grades

Quiz 2

Lecture Outline

- Announcements
- Recap: The pre-training and fine-tuning paradigm
 - Pre-training Decoder-Only Models
 - Pre-training Encoder-Only Models
- Pre-training Encoder-Decoder Models
- Tokenization
- Natural Language Generation

Recap: Pre-training and Fine-tuning

USCViterbi

The Pretraining / Finetuning Paradigm

• Pretraining can improve NLP applications by serving as parameter initialization.

Key idea: "Pretrain once, finetune many times."

Step 1: Pretrain (on language corpora) Lots of text; learn general things!

In modern NLP:

- All (or almost all) parameters in NLP networks are initialized via pretraining.
- This has been exceptionally effective at building strong:
 - representations of language
 - parameter initializations for strong NLP models.
 - probability distributions over language that we can sample from

Pretraining Entire Models

[This model has learned how to represent entire sentences through pretraining]

Pretraining: Language Models

- Recall the language modeling task:
 - Model $p_{\theta}(w_t | w_{1:t-1})$, the probability distribution over words given their past contexts.
 - There's lots of data for this! (In English.)

• Pretraining through language modeling:

- Train a neural network to perform language modeling on a large amount of text.
- Save the network parameters.

Semi-supervised Sequence Learning

Andrew M. Dai Google Inc. adai@google.com

Quoc V. Le Google Inc. qvl@google.com

Pretraining Decoders: Classifiers

- When using language model pretrained decoders, we can ignore that they were trained to model $p_{\theta}(w_t | w_{1:t-1})$
- We can finetune them by training a classifier on the last word's hidden state

•
$$h_1, ..., h_T = Decoder(w_1, ..., w_T)$$

• $y \approx Ah_T + b$

- Where A and b are randomly initialized and specified by the downstream task.
- Gradients backpropagate through the whole network.

 $W_1, ..., W_T$

The linear layer hasn't been pretrained and must be learned from scratch.

Pretraining Decoders: Generators

- More natural: pretrain decoders as languation finetuning their $p_{\theta}(w_t | w_{1:t-1})$
 - $h_1, ..., h_T = Decoder(w_1, ..., w_T)$

•
$$w_t \approx Ah_{t-1} + b$$

- Where A, b were pretrained in the language model!
- This is helpful in tasks where the output is a sequence with a vocabulary like that at pretraining time!
 - Dialogue (context=dialogue history)
 - Summarization (context=document)

More natural: pretrain decoders as language models and then use them as generators,

Pretraining Encoders: Bidirectional Context

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, _____

Universal Studios Theme Park is located in , California

Problem: Input Reconstruction

Bidirectional context is important to reconstruct the input!

'Cause darling i'm a _____ dressed like a daydream

Pretraining Encoders: Objective

• Encoders get bidirectional context, so we can't do language modeling! these words.

•
$$h_1, ..., h_T = \text{Encoder}(w_1, ..., w_T)$$

•
$$y_i \approx Ah_i + b$$

- Only add loss terms from words that are "masked out."
- If \tilde{x} is the masked version of x, we're learning $p_{\theta}(\tilde{x} \mid x)$.
- Called Masked LM
- Special type of language modeling

• Idea: replace some fraction of words in the input with a special [MASK] token; predict

BERT: Bidirectional Encoder Representations from Transformers

pretrained to:

- 15% of the input tokens in a training sequence are sampled for learning, these are to be predicted by the model
- Of these
 - 80% are replaced with [MASK]
 - 10% are replaced with randomly selected tokens,
 - Remaining 10% are left unchanged

Why?

Devlin et al., 2018 proposed the "Masked LM" objective and released BERT, a Transformer,

Doesn't let the model get complacent and not build strong representations of non-masked words. (No masks are seen at fine-tuning time!)

BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:

- BERT was trained to predict whether one chunk follows the other or is randomly sampled.
 - [CLS] and [SEP] tokens

 - [SEP] is used for next sentence prediction do these sentences follow each other? [CLS] for text classification / connection to fine-tuning

BERT: Extensions

- Some generally accepted improvements to the BERT pretraining formula:
 - **RoBERTa**: mainly just train BERT for longer and remove next sentence prediction!
 - SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

• A lot of BERT variants that used the BERT formula

- ALBERT: BERT with parameter-reduction techniques
- DistilBERT:
- DeBERTa: Decoding-enhanced BERT with disentangled attention
- FlauBERT: BERT for French
- XLNet: Multilingual BERT
- Etc.
- **BERTology**: How and why BERT worked so well

BERT: Overview

- [SEP]: Later work has argued this "next sentence prediction" is not necessary
- In general, more compute, more data can improve pretraining even when not changing the underlying Transformer encoder
- Results in contextual embeddings
- Key Limitation:
 - Cannot be used for generation
 - No pretraining encoders can be used for autoregressive generation very naturally
 - There are clunky ways in which you could try...but not a natural fit
 - For this, we need to have a decoder!

Lecture Outline

- Announcements
- Recap: The pre-training and fine-tuning paradigm
 - Pre-training Decoder-Only Models
 - Pre-training Encoder-Only Models
- Pre-training Encoder-Decoder Models
- Tokenization
- Natural Language Generation

Pre-training Encoder-Decoder Models

Pretraining for three types of architectures

Encoders

Bidirectional Context

Decoders

Language Models

Sequence-to-sequence

Pretraining Encoder-Decoder Models

prefix of every input is provided to the encoder and is not predicted.

$$\begin{aligned} h_1, \dots, h_T &= \text{Encoder}(w_1) \\ h_{T+1}, \dots, h_2 &= Decoder(w_1, \dots \\ y_i \sim Ah_i + b, i > \end{aligned}$$

The encoder portion benefits from bidirectional context; the decoder portion is used to train the whole model through language modeling.

For encoder-decoders, we could do something like language modeling, but where a

T5: A Pretrained Encoder-Decoder Model

• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

Replace different-length spans from the input with unique placeholders; decode out the spans that were removed!

Original text

Thank you for inviting me to your party last week.

This is implemented in text preprocessing: it's still an objective that looks like language modeling at the decoder side.

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."

> Pre-training Fine-tuning

A fascinating property of T5: it can be finetuned to answer a wide range of questions, retrieving knowledge from its parameters.

T5: Task Preparation

T5 Results

and span corruption (denoising) to work better than language modeling.

Architecture	Objective	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	\mathbf{EnFr}	EnRo
\star Encoder-decoder	Denoising	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	Denoising	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	Denoising	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	Denoising	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	Denoising	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39
Encoder-decoder	$_{\rm LM}$	2P	M	79.56	18.59	76.02	64.29	26.27	39.17	26.86
Enc-dec, shared	$\mathbf{L}\mathbf{M}$	P	M	79.60	18.13	76.35	63.50	26.62	39.17	27.05
Enc-dec, 6 layers	$\mathbf{L}\mathbf{M}$	P	M/2	78.67	18.26	75.32	64.06	26.13	38.42	26.89
Language model	$\mathbf{L}\mathbf{M}$	P	M	73.78	17.54	53.81	56.51	25.23	34.31	25.38
Prefix LM	$_{\rm LM}$	P	M	79.68	17.84	76.87	64.86	26.28	37.51	26.76

• Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks,

Lecture Outline

- Announcements
- Recap: The pre-training and fine-tuning paradigm
 - Pre-training Decoder-Only Models
 - Pre-training Encoder-Only Models
- Pre-training Encoder-Decoder Models
- Tokenization
- Natural Language Generation

Tokenization in Transformers

The Input Layer

- So far, we have made some assumptions about a language's vocabulary
- Our approach so far: use a known, fixed vocabulary
 - Built from training data, with tens of thousands of components
 - However, even with the largest vocabulary, we may encounter out-of-vocabulary words at test time • Our approach so far: map novel words seen at test
 - time (OOV) to a single UNK

Encoder Inputs

How to get the words?

Or, more accurately, the tokens?

- Problem: break the text into a sequence of discrete tokens
- accurate tokenization
- small number of characters, without intervening whitespace

• For alphabetic languages such as English, deterministic scripts usually suffice to achieve

• However, in languages such as Chinese and Swahili, words are typically composed of a

Word Structure in Language

- Finite vocabulary assumptions make even less sense in many languages. • Many languages exhibit complex morphology, or word structure.
 - The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have hundreds of conjugations, each encoding a wide variety of information. (Tense, mood, definiteness, negation, information about the object, ++)

Source: Wiktionary

Conjug	ation of ·	ambia															
		Form Infinitive	9					Nor Positive kuambia	n-finite fo	rms					Negative kutoambia	a	
	Po	ositive for mperativ Habitual	rm e					Simp Singular ambia	ole finite f	orms	hua	mhia			Plural ambieni		
		Por	cone		Pers	ons /		Comp	lex finite	forms	nua	Clar	2202				
Polarity	_ 1	st	2	nd	Clas 3rd /	sses M-wa	M-	mi	_ N	la	_ Ki	-vi	3303	N	Ų	Ku	Pa
	Sg.	PI.	Sg.	PI.	Sg. / 1	PI. / 2	3	4	5	6	7	8	9	10	11 / 14	15 / 17	16
Positive	niliambia naliambia	tuliambia twaliambia	uliambia waliambia	mliambia mwaliambia	aliambia	waliambia	uliambia	iliambia	liliambia	yaliambia	kiliambia	viliambia	iliambia	ziliambia	uliambia	kuliambia	paliambia
Negative	sikuambia	hatukuambia	hukuambia	hamkuambia	hakuambia	hawakuambi a	haukuambia	haikuambia	halikuambia	hayakuambi a	hakikuambia	havikuambia	haikuambia	hazikuambia	haukuambia	hakukuambi a	hapakuambi a
								Pr	esent								
Positive	ninaambia naambia	tunaambia	unaambia	mnaambia	anaambia	wanaambia	unaambia	inaambia	linaambia	yanaambia	kinaambia	vinaambia	inaambia	zinaambia	unaambia	kunaambia	panaambia
Negative	siambii	hatuambii	huambii	hamambii	haambii	hawaambii	hauambii	haiambii	haliambii	hayaambii	hakiambii	haviambii	haiambii	haziambii	hauambii	hakuambii	hapaambii
Desitives		to the second dis-	a de ser bis	and a secold for	a ta a sub la		a de ser la la	FI	uture	and a sector	Lite cost is	a dia amin'ny fisia	the end to	- the second line	a de sechie	In the second line	a de sechie
Positive	nitaambia	tutaambia	utaambia	mtaambia	ataambia	wataambia	utaambia	itaambia	litaambia	yataambia	Kitaambia	vitaambia	itaambia	zitaambia	utaambia	Kutaambia	pataambia
Negative	sitaambia	hatutaambia	hutaambia	hamtaambia	hataambia	a	hautaambia	haitaambia	halitaambia	hayataambia	hakitaambia	havitaambia	haitaambia	hazitaambia	hautaambia	hakutaambia	hapataambia
								Subj	unctive								
Positive	niambie	tuambie	uambie	mambie	aambie	waambie	uambie	iambie	liambie	yaambie	kiambie	viambie	iambie	ziambie	uambie	kuambie	paambie
Negative	nisiambie	tusiambie	usiambie	msiambie	asiambie	wasiambie	usiambie	isiambie	lisiambie	yasiambie	kisiambie	visiambie	isiambie	zisiambie	usiambie	kusiambie	pasiambie
Desitive	ningeomhia	tungamhia	ungaamhia	magaaphia	angaamhia	wangaamhia	ungaambia	Present	Conditio	nal	kingoomhio	vingeembie	ingeomhia	zingoomhio	ungoomhio	kungaamhia	nangaamhia
Positive	ningeambia	tusingeambia	ungeambia	msingeambia	angeambia	wangeambla	ungeambia	ingeambia	ingeambia	vasingeambia	kingeambla	visingeambia	ingeambia	zingeambia	ungeambia	kusingeambia	pangeambia
Negative	nisingeambi a singeambia	a hatungeamb ia	usingeambia hungeambia	hamngeambi hamngeambi a	asingeambia hangeambia	ia hawangeam bia	usingeambia haungeambi a	isingeambia haingeambia	lisingeambia halingeambi a	a hayangeamb ia	a hakingeambi a	a havingeambi a	isingeambia haingeambia	a hazingeambi a	usingeambia haungeambi a	a hakungeamb ia	a hapangeam bia
	Past Conditional																
Positive	ningaliambia	tungaliambia	ungaliambia	mngaliambia	angaliambia	wangaliambi a	ungaliambia	ingaliambia	lingaliambia	yangaliambi a	kingaliambia	vingaliambia	ingaliambia	zingaliambia	ungaliambia	kungaliambi a	pangaliambi a
Negative	nisingaliamb ia singaliambia	tusingaliamb ia hatungaliam bia	usingaliambi a hungaliambi a	i msingaliamb ia i hamngaliam bia	asingaliambi a hangaliambi a	wasingaliam bia hawangalia mbia	usingaliambi a haungaliamb ia	isingaliambia haingaliambi a	lisingaliambi a halingaliamb ia	yasingaliam bia hayangaliam bia	kisingaliambi a hakingaliam bia	visingaliambi a havingaliam bia	isingaliambia haingaliambi a	zisingaliambi a hazingaliam bia	usingaliambi a haungaliamb ia	kusingaliam bia hakungaliam bia	pasingaliam bia hapangaliam bia
							Cor	nditional (Contrary	to Fact							
Positive	ningeliambia	tungeliambia	ungeliambia	mngeliambia	angeliambia	wangeliambi a	ungeliambia	ingeliambia	lingeliambia	yangeliambi a	kingeliambia	vingeliambia	ingeliambia	zingeliambia	ungeliambia	kungeliambi a	pangeliambi a
								Gr	nomic								
Positive	naambia	twaambia	waambia	mwaambia	aambia	waambia	waambia	yaambia	laambia	yaambia	chaambia	vyaambia	yaambia	zaambia	waambia	kwaambia	paambia

[less]

Subword Modeling

- Solution: look at subwords!
- Subword modeling encompasses a wide range of methods for reasoning about structure below the word level
 - Subwords may be words, parts of words, characters, bytes
- The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens)
- At training and testing time, each word is split into a sequence of known subwords
- Different algorithms:
 - Byte-Pair Encoding
 - WordPiece Modeling
 - Follow different strategies. Often contain prepending / appending special tokens (##, </w>)

Word structure and subword models

- split into (sometimes intuitive, sometimes not) components.
- In the worst case, words are split into as many subwords as they have characters.
 - Llama 3 uses a tokenizer with a vocabulary of 128K tokens

• Common words end up being a part of the subword vocabulary, while rarer words are

Byte-pair encoding

- Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary Adapted for word segmentation from data compression technique (Gage, 1994) • Instead of merging frequent pairs of bytes, we merge characters or character sequences
- Algorithm:
 - Start with a vocabulary containing only characters and an "end-of-word" symbol. • This is a learned operation! However, not a parametric function
 - 2. Using a corpus of text, find the most common adjacent characters "a,b"; add "ab" as a subword
- Only combine pairs (hence the name!)
- 3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size. • At test time, first split words into sequences of characters, then apply the learned operations to merge the characters into larger, known symbols
- Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained models.

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

	Corpus			Corpus	
low	lower	newest	l o w	lower	newest
low	lower	newest	l o w	lower	newest
low	widest	newest	l o w	widest	newest
low	widest	newest	l o w	widest	newest
low	widest	newest	l o w	widest	newest

			Vocabul	lary			
d	е	i	n	0	S	t	W
es							

Frequency				
d-e (3)	I-o (7)	t- (8)		
e-r (2)	n-e (5)	w- (5)		
e-s (8)	o-w (7)	w-e (7)		
e-w (5)	r- (2)	w-i (3)		
i-d (3)	s-t (8)			

Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

lower	newest
lower	newest
widest	newest
widest	newest
widest	newest
	lower lower widest widest

				Vocabu	lary			
d	е	i	I	n	0	S	t	w
es	est							

Corpus					
low	lower	n e w <mark>es</mark> t			
low	lower	n e w <mark>es</mark> t			
low	w i d <mark>es</mark> t	n e w <mark>es</mark> t			
low	w i d <mark>es</mark> t	n e w <mark>es</mark> t			
low	w i d <mark>es</mark> t	n e w <mark>es</mark> t			

Frequency					
d-es (3)	I-o (7)	w- (5)			
e-r (2)	n-e (5)	w-es (5)			
e-w (5)	o-w (7)	w-e (2)			
es-t (8)	r- (2)	w-i (3)			
i-d (3)	t- (8)				

Source: <u>https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/</u>

BPE in action

Corpus

low	lower	newest
low	lower	newest
low	widest	newest
low	widest	newest
low	widest	newest

Corpus

low lower ne	W
low	W
low widest ne	W
low widest ne	w
low widest ne	w

Vocabulary

					v			
d	е	i	I	n	0	S	t	w
es	est	est	lo	low	low	ne	new	newest

After 10 merges

low	lower	n e w <mark>est</mark>
low	lower	n e w <mark>est</mark>
low	w i d <mark>est</mark>	n e w <mark>est</mark>
low	w i d <mark>est</mark>	n e w <mark>est</mark>
low	w i d <mark>est</mark>	n e w <mark>est</mark>

Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

WordPiece Modeling

- Algorithm from Google, similar to BPE
- Identifies subwords by adding a prefix (##)
 - Each word is initially split by adding ## to all the characters inside a word
 - So, for instance, "word" gets split like this: w ##o ##r ##d
 - For this vocabulary:
 - ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
 - Splits may look like:
 - "##n", 4), ("h" "##u" "##g" "##s", 5)
- On merging, ## **between** the two tokens is removed This explains the presence of the token "##ing"

● ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u"

WordPiece Modeling Outcome

- Different stopping criteria: number of merges or size of resulting vocabulary
- into (sometimes intuitive, sometimes not) components

• In the worst case, at test time, words are split into as many subwords as they have characters • Common words end up being a part of the subword vocabulary, while rarer words are split

Tokenization: Frequently Asked Questions

• Where does the token "##ing" come from? • In WordPiece tokenization, all non-starting characters are initialized as ##x. • Like: h, ##e, ##l, ##l, ##o. • Upon merging, only the first segment keeps its ##. • How is tokenization done in Chinese? • Follows the same broad overall algorithm, but the initial split into characters involve language-specific rules

• e.g. stroke-level tokenization [Si et al., 2023]

Source: https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

Lecture Outline

- Announcements
- Recap: The pre-training and fine-tuning paradigm
 - Pre-training Decoder-Only Models
 - Pre-training Encoder-Only Models
- Pre-training Encoder-Decoder Models
- Tokenization
- Natural Language Generation
 - Classic Inference Algorithms: Greedy and Beam Search

Natural Language Generation

Natural Language Generation

- Natural language understanding and natural language generation are two sides of the same coin
 - Natural language understanding: Learning representations that perform well on downstream tasks
 - To generate good language, one needs to understand language
 If you understand language, you should be able to generate it (with
 - If you understand language, you show some effort)
- NLG is the workhorse of many classic and novel applications
 - Al Assistants
 - Translators
 - Search summarizers

NLG Use Cases

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark, Matt Gardner · Computer Science · ACL · 29 October 2017

TLDR We propose a state-of-the-art pipelined method for training neural paragraph-level question answering models on document QA data. Expand

🔓 236) (PDF) · 📓 View PDF on arXiv 📕 Save 🌲 Alert 🔓 Cite 📫 Research Feed

Summarization

More Interesting NLG Uses

Creative stories

Table Title: Robert Craig (American football) Section Title: National Football League statistics

RUSHING							RECEIVING				
YEAR	TEAM	ATT	YDS	AVG	LNG	TD	NO.	YDS	AVG	LNG	TD
1983	SF	176	725	4.1	71	8	48	427	8.9	23	4
1984	SF	155	649	4.2	28	4	71	675	9.5	64	3
1985	SF	214	1050	4.9	62	9	92	1016	11	73	6
1986	SF	204	830	4.1	25	7	81	624	7.7	48	0
1987	SF	215	815	3.8	25	3	66	492	7.5	35	1
1988	SF	310	1502	4.8	46	9	76	534	7.0	22	1
1989	SF	271	1054	3.9	27	6	49	473	9.7	44	1
1990	SF	141	439	3.1	26	1	25	201	8.0	31	0
1991	RAI	162	590	3.6	15	1	17	136	8.0	20	0
1992	MIN	105	416	4.0	21	4	22	164	7.5	22	0
1993	MIN	38	119	3.1	11	1	19	169	8.9	31	1
Totals	-	1991	8189	4.1	71	56	566	4911	8.7	73	17

Rashkin et al., 2020

Data-to-text

Craig finished his eleven NFL seasons with 8,189 rushing yards and 566 receptions for 4,911 receiving yards.

Visual description

Two children are sitting at a table in a restaurant. The children are one little girl and one little boy. The little girl is eating a pink frosted donut with white icing lines on top of it. The girl has blonde hair and is wearing a green jacket with a black long sleeve shirt underneath. The little boy is wearing a black zip up jacket and is holding his finger to his lip but is not eating. A metal napkin dispenser is in between them at the table. The wall next to them is white brick. Two adults are on the other side of the short white brick wall. The room has white circular lights on the ceiling and a large window in the front of the restaurant. It is daylight outside.

Krause et al., 2017

Open-ended generation: the output distribution still has high freedom. Non-open-ended generation: the input mostly determines the output generation.

Broad Spectrum of NLG Tasks

Encoder-Decoders

More Open-Ended

Language Generation: Fundamentals

 $S = f_{\theta}(y_{< t}) \in \mathbb{R}^{V}$ and outputs a new token, \hat{y}_{t}

For model $f_{\theta}(\cdot)$ and vocabulary V, we get scores $S = f_{\theta}(y_{< t}) \in \mathbb{R}^{V}$

In autoregressive text generation models, at each time step t, our model takes in a sequence of tokens as input

Language Generation: Training

words $y_{<t}^*$

$$\mathscr{L} = -\sum_{t=1}^{T} \log P(y_t | y_{< t}) = -\sum_{t=1}^{T} \log \frac{\exp(S_{y_t | y_{< t}})}{\sum_{v \in V} \exp(S_{v | y_{< t}})}$$

• "Teacher forcing" (reset at each time step to the ground truth)

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding

• Classification task at each time step trying to predict the actual word y_t^* in the training data

Teacher Forcing

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t
- Runs the risk of **exposure bias**!
 - During training, our model's inputs are gold context tokens from real, humangenerated texts
 - At generation time, our model's inputs are previously-decoded tokens

Language Generation: Inference

- At inference time, our decoding algorithm defines a function to select a token from this distribution:
- The "obvious" decoding algorithm is to greedily choose the highest probability next token according to the model at each time step
 - $g = \arg \max$

Inference / Decoding Algorithm $\hat{y}_t = g(P(y_t | y_{< t}))$

 $\hat{y}_t = \arg \max(P(y_t = w \mid y_{< t}))$ $w \in V$

Classic Inference Algorithms: Greedy and Beam Search

Decoding

- Generation from a language model is also called decoding
 - Think encoder-decoder
 - Also called inference
- word on each step
- This is called greedy decoding
 - given all the information we have

• Strategy so far: Take arg max on each step of the decoder to produce the most probable

• Greedy Strategy: we are not looking ahead, we are making the hastiest decision

Greedy Decoding: Issues

Greedy decoding has no wiggle room for errors!

- Input: the green witch arrived
 - Output: llego
 - Output: llego la
 - Output: llego la verde
- How to fix this?
 - Need a lookahead strategy / longer-term planning

Exhaustive Search Decoding

• Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$
$$= \prod_{t=1}^T P(y_t|y_1, \dots, y_{t-1}, x)$$

- We could try computing all possible sequences y
 - translations, where V is vocab size
 - This $O(V^T)$ complexity is far too expensive!

• This means that on each step t of the decoder, we're tracking V^t possible partial

Beam Search Decoding

 Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT) • A hypothesis has a score which is its log probability: $score(y_1, ..., y_t) = \log P_{LM}(y_1, ..., y_t | x) = \sum \log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$

 Scores are all negative, and higher score is better • We search for high-scoring hypotheses, tracking top k on each step Beam search is not guaranteed to find optimal solution But much more efficient than exhaustive search!

