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Announcements
• Today, 10/22 - HW3 
• Fri, 10/25 - Project Progress Report 

• What are we expecting? See class website: https://swabhs.com/f24-csci544-
appliednlp/details/project/  
• once again describe the project’s goals  
• contain all details on the dataset (your dataset should mostly be collected by this 

time), 
• contain some initial results (think of this as a motivating results), and 
• must outline a concrete plan of what will be done before the final report. 

• Tue, 10/29 - Quiz 4 
• Thu, 10/31 onwards: Paper presentations and project presentations 

• Also two remaining lectures on 10/31 and 11/5 
• Guest lecture by Prof. Willie Neiswanger on 11/14
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https://swabhs.com/f24-csci544-appliednlp/details/project/
https://swabhs.com/f24-csci544-appliednlp/details/project/
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Announcements: Paper Presentations

• Paper Presentations Format: 
• Every team has been assigned a paper by their TA 
• See your presentation schedule: https://docs.google.com/spreadsheets/d/

13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?
gid=1378308384#gid=1378308384   

• All teammates prepare to present—on their own—the assigned paper 
• We will announce the actual presenter a couple of hours before class 
• All teammates should be prepared to answer questions from the audience about the 

paper 
• Total time for presentation + questions: 5 mins / team  

• Remaining time: lecture 
• Slides encouraged - we will ask you to send us your Google slides in advance
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https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
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HW1 Grades

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Class Grades
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Lecture Outline

• Announcements 
• Recap: The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 

• Pre-training Encoder-Decoder Models 
• Tokenization  
• Natural Language Generation
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Recap:  
Pre-training and Fine-tuning

7
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The Pretraining / Finetuning Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.
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Step 1: Pretrain (on language corpora) 
Lots of text; learn general things!

Step 2: Finetune (on your task data) 
Not many labels; adapt to the task!

Key idea: “Pretrain once, finetune many times.” 
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Pretraining Entire Models

• In modern NLP:  
• All (or almost all) parameters in NLP networks 

are initialized via pretraining.  
• This has been exceptionally effective at 

building strong:  
• representations of language  
• parameter initializations for strong NLP 

models.  
• probability distributions over language 

that we can sample from
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[This model has learned how to represent 
entire sentences through pretraining]
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Pretraining: Language Models

• Recall the language modeling task:  

• Model , the probability 
distribution over words given their 
past contexts.  

• There’s lots of data for this! (In 
English.)  

• Pretraining through language modeling: 
• Train a neural network to perform 

language modeling on a large 
amount of text.  

• Save the network parameters.

pθ(wt |w1:t−1)

10
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Pretraining Decoders: Classifiers

• When using language model pretrained decoders, we 
can ignore that they were trained to model 

  

• We can finetune them by training a classifier on the 
last word’s hidden state 

•  

•  

• Where  and  are randomly initialized and 
specified by the downstream task.  

• Gradients backpropagate through the whole network.

pθ(wt |w1:t−1)

h1, …, hT = Decoder(w1, …, wT)
y ≈ AhT + b

A b

11

The linear layer hasn’t been 
pretrained and must be learned 

from scratch.
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Pretraining Decoders: Generators

• More natural: pretrain decoders as language models and then use them as generators, 
finetuning their  

•  

•  

• Where 𝐴, 𝑏 were pretrained in the language model!

pθ(wt |w1:t−1)
h1, …, hT = Decoder(w1, …, wT)

wt ≈ Aht−1 + b
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The linear layer has been pretrained

• This is helpful in tasks where the output is a 
sequence with a vocabulary like that at 
pretraining time!  
• Dialogue (context=dialogue history)  
• Summarization (context=document) 
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Pretraining Encoders: Bidirectional Context
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Universal Studios Theme Park is located in ______________, California

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

‘Cause darling i'm a _______ dressed like a daydream

Bidirectional context is important to reconstruct the input!

Problem: Input 
Reconstruction



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Pretraining Encoders: Objective

• Encoders get bidirectional context, so we can’t do language modeling!  
• Idea: replace some fraction of words in the input with a special [MASK] token; predict 

these words.  

•  

•  
h1, …, hT = Encoder(w1, …, wT)
yi ≈ Ahi + b

14

• Only add loss terms from words that are “masked out.”  

• If  is the masked version of 𝑥, we’re learning .  

• Called Masked LM 
• Special type of language modeling

x̃ pθ(x̃ |x)
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BERT: Bidirectional Encoder Representations from Transformers

15

• 15% of the input tokens in a training sequence are 
sampled for learning, these are to be predicted by the 
model 

• Of these 
• 80% are replaced with [MASK]  
• 10% are replaced with randomly selected tokens,  
• Remaining 10% are left unchanged 

Devlin et al., 2018 proposed the “Masked LM” objective and released BERT, a Transformer, 
pretrained to:

Doesn’t let the model get complacent and not build strong representations of 
non-masked words. (No masks are seen at fine-tuning time!)

Why?
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BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:

16

• BERT was trained to predict whether one chunk follows the other or is randomly sampled.  
• [CLS] and [SEP] tokens 
• [SEP] is used for next sentence prediction - do these sentences follow each other? 
• [CLS] for text classification / connection to fine-tuning
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BERT: Extensions

• Some generally accepted improvements to the BERT pretraining formula:  
• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!  
• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining 

task  
• A lot of BERT variants that used the BERT formula  

• ALBERT: BERT with parameter-reduction techniques 
• DistilBERT:  
• DeBERTa: Decoding-enhanced BERT with disentangled attention 
• FlauBERT: BERT for French 
• XLNet: Multilingual BERT 
• Etc. 

• BERTology: How and why BERT worked so well

17
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BERT: Overview

• [SEP]: Later work has argued this “next sentence prediction” is 
not necessary  

• In general, more compute, more data can improve pretraining 
even when not changing the underlying Transformer encoder 

• Results in contextual embeddings  
• Key Limitation: 

• Cannot be used for generation 
• No pretraining encoders can be used for autoregressive 

generation very naturally 
• There are clunky ways in which you could try…but not a 

natural fit 
• For this, we need to have a decoder!

18
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Lecture Outline

• Announcements 
• Recap: The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 

• Pre-training Encoder-Decoder Models 
• Tokenization  
• Natural Language Generation
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Pre-training  
Encoder-Decoder Models

20
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Pretraining for three types of architectures

21

Bidirectional Context

Sequence-to-sequence

Language Models
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Pretraining Encoder-Decoder Models

• For encoder-decoders, we could do something like language modeling, but where a 
prefix of every input is provided to the encoder and is not predicted.

22

The encoder portion benefits from 
bidirectional context; the decoder 
portion is used to train the whole 
model through language modeling.
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T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

23

Replace different-length spans from the 
input with unique placeholders; decode out 
the spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective that 
looks like language modeling at the 
decoder side.
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T5: Task Preparation

24

A fascinating property of 
T5: it can be finetuned to 
answer a wide range of 
questions, retrieving 
knowledge from its 
parameters.
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T5 Results

• Raffel et al., 2018 found encoder-decoders to work better than decoders for their tasks, 
and span corruption (denoising) to work better than language modeling.

25
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Lecture Outline

• Announcements 
• Recap: The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 

• Pre-training Encoder-Decoder Models 
• Tokenization  
• Natural Language Generation
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Tokenization in 
Transformers

27
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The Input Layer

• So far, we have made some assumptions about a 
language’s vocabulary 

• Our approach so far: use a known, fixed vocabulary  
• Built from training data, with tens of thousands of 

components 
• However, even with the largest vocabulary, we may 

encounter out-of-vocabulary words at test time 
• Our approach so far: map novel words seen at test 

time (OOV) to a single UNK

28

Re
pe

at
 fo

r L
 e

nc
od

er
 b

lo
ck

s Add & Norm

Add & Norm

Feed-forward

Position 
Embeddings

Lookup 
Embeddings

Encoder Inputs

Block

+

                                             
D

                                             
DMulti-headed Self-

Attention

Probabilities
Softmax

Linear



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

How to get the words?

• Problem: break the text into a sequence of discrete tokens 
• For alphabetic languages such as English, deterministic scripts usually suffice to achieve 

accurate tokenization 
• However, in languages such as Chinese and Swahili, words are typically composed of a 

small number of characters, without intervening whitespace 

29

Or, more accurately, the tokens?
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Word Structure in Language
• Finite vocabulary assumptions make even less sense in many languages.  

• Many languages exhibit complex morphology, or word structure.  
• The effect is more word types, each occurring fewer times.

30

Source: Wiktionary

Example: Swahili verbs 
can have hundreds of 
conjugations, each 
encoding a wide variety 
of information. (Tense, 
mood, definiteness, 
negation, information 
about the object, ++)

-ambia = to tell
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Subword Modeling

• Solution: look at subwords! 
• Subword modeling encompasses a wide range of methods for 

reasoning about structure below the word level 
• Subwords may be words, parts of words, characters, bytes 

• The dominant modern paradigm is to learn a vocabulary of parts of 
words (subword tokens)  

• At training and testing time, each word is split into a sequence of 
known subwords 

• Different algorithms: 
• Byte-Pair Encoding 
• WordPiece Modeling 
• Follow different strategies. Often contain prepending / appending 

special tokens (##, </w>)

31
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 Word structure and subword models

• Common words end up being a part of the subword vocabulary, while rarer words are 
split into (sometimes intuitive, sometimes not) components.  

• In the worst case, words are split into as many subwords as they have characters. 
• Llama 3 uses a tokenizer with a vocabulary of 128K tokens

32
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Byte-pair encoding

• Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary 
• Adapted for word segmentation from data compression technique (Gage, 1994) 

• Instead of merging frequent pairs of bytes, we merge characters or character sequences 
• Algorithm: 

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.  
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword  

• This is a learned operation! However, not a parametric function 
• Only combine pairs (hence the name!) 

3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.  
• At test time, first split words into sequences of characters, then apply the learned operations to merge 

the characters into larger, known symbols 
• Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained 

models.

33
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BPE in action

34
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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BPE in action

35
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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BPE in action

36
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/ 

After 10 merges

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/
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WordPiece Modeling

• Algorithm from Google, similar to BPE 
• Identifies subwords by adding a prefix (##) 

• Each word is initially split by adding ## to all the characters inside a word 
• So, for instance, “word” gets split like this: w ##o ##r ##d 
• For this vocabulary:  

• ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5) 
• Splits may look like:  

• ("h" "##u" "##g", 10), ("p" "##u" "##g", 5), ("p" "##u" "##n", 12), ("b" "##u" 
"##n", 4), ("h" "##u" "##g" "##s", 5) 

• On merging, ## between the two tokens is removed 
• This explains the presence of the token “##ing”

37
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WordPiece Modeling Outcome

• Different stopping criteria: number of merges or size of resulting vocabulary 
• In the worst case, at test time, words are split into as many subwords as they have characters 
• Common words end up being a part of the subword vocabulary, while rarer words are split 

into (sometimes intuitive, sometimes not) components

38

WordPiece Outcome
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Tokenization: Frequently Asked Questions

• Where does the token “##ing” come from? 
• In WordPiece tokenization, all non-starting characters are initialized as ##x.  

• Like: h, ##e, ##l, ##l, ##o.  
• Upon merging, only the first segment keeps its ##. 

• How is tokenization done in Chinese? 
• Follows the same broad overall algorithm, but the initial split into characters involve 

language-specific rules 
• e.g. stroke-level tokenization [Si et al., 2023]

39

Source: https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00560/116047/Sub-Character-Tokenization-for-Chinese-Pretrained
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt
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Lecture Outline

• Announcements 
• Recap: The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 

• Pre-training Encoder-Decoder Models 
• Tokenization  
• Natural Language Generation 

• Classic Inference Algorithms: Greedy and Beam Search
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Natural Language 
Generation

41
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Natural Language Generation

• Natural language understanding and natural language generation are 
two sides of the same coin 
• Natural language understanding: Learning representations that 

perform well on downstream tasks 
• To generate good language, one needs to understand language 
• If you understand language, you should be able to generate it (with 

some effort) 
• NLG is the workhorse of many classic and novel applications 

• AI Assistants 
• Translators 
• Search summarizers

42
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NLG Use Cases

43

Summarization

Task-driven 
Dialog

Chitchat 
Dialog
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More Interesting NLG Uses

44

Rashkin et al., 2020 Parikh et al., 2020

Krause et al., 2017
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Broad Spectrum of NLG Tasks

45

Open-ended generation: the output distribution still has high freedom.  

Non-open-ended generation: the input mostly determines the output generation.

Machine 
Translation

Less Open-Ended More Open-Ended

Summarization Task-driven 
Dialog

Chitchat 
Dialog

Story 
Generation
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Broad Spectrum of NLG Tasks

46

Machine 
Translation

Less Open-Ended More Open-Ended

Summarization Task-driven 
Dialog

Chitchat 
Dialog

Story 
Generation
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Language Generation: Fundamentals

In autoregressive text generation models, at each time step , our model takes in a sequence of tokens as input  
 and outputs a new token,  

For model  and vocabulary , we get scores 

t
S = fθ(y<t) ∈ ℝV ̂yt

fθ( ⋅ ) V S = fθ(y<t) ∈ ℝV

47

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

P(w |y<t) =
exp(Sw)

∑v∈V exp(Sv)
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Language Generation: Training

• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t

48

Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word  in the training data  

• “Teacher forcing” (reset at each time step to the ground truth)
y*t

y*ty*0
y*t+1
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Teacher Forcing

• Strategy for training decoders / language models 

• At each time step  in decoding we force the system to use the gold target token from 
training as the next input , rather than allowing it to rely on the (possibly erroneous) 
decoder output  

• Runs the risk of exposure bias! 
• During training, our model’s inputs are gold context tokens from real, human-

generated texts 
• At generation time, our model’s inputs are previously–decoded tokens

t
xt+1

̂yt

49
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Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step

50

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))
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Classic Inference Algorithms: 
Greedy and Beam Search

51
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Decoding

• Generation from a language model is also called decoding 
• Think encoder-decoder 
• Also called inference 

• Strategy so far: Take  on each step of the decoder to produce the most probable 
word on each step 

• This is called greedy decoding 
• Greedy Strategy: we are not looking ahead, we are making the hastiest decision 

given all the information we have

arg max

52
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Greedy Decoding: Issues

• Greedy decoding has no wiggle room for errors! 
• Input: the green witch arrived 
• Output: Ilego 
• Output: Ilego la  
• Output: llego la verde  

• How to fix this? 
• Need a lookahead strategy / longer-term planning

53
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Exhaustive Search Decoding

• We could try computing all possible sequences  

• This means that on each step t of the decoder, we’re tracking possible partial 
translations, where is vocab size  

• This complexity is far too expensive!

y
Vt

V
O(VT)

54

• Ideally, we want to find a (length ) translation  that maximizesT y
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)  
• k is the beam size (in practice around 5 to 10, in NMT) 

• A hypothesis has a score which is its log probability: 

• Scores are all negative, and higher score is better  
• We search for high-scoring hypotheses, tracking top k on each step 

• Beam search is not guaranteed to find optimal solution  
• But much more efficient than exhaustive search!

55


