Lecture 16:
Tokenization and Language Generation

Instructor: Swabha Swayamdipta

USC CSCI 544 Applied NLP
Oct 22, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Announcements

® Today, 10/22 - HW3

® Fri, 10/25 - Project Progress Report
® \What are we expecting? See class website: https://swabhs.com/t24-csci544-

appliednlp/details/project/
® once again describe the project’s goals

® contain all details on the dataset (your dataset should mostly be collected by this
time),
® contain some initial results (think of this as a motivating results), and
® must outline a concrete plan of what will be done before the final report.
® Jue, 10/29 - Quiz 4
® Thu, 10/31 onwards: Paper presentations and project presentations
® Also two remaining lectures on 10/31 and 11/5
® Guest lecture by Prof. Willie Neiswanger on 11/14

https://swabhs.com/f24-csci544-appliednlp/details/project/
https://swabhs.com/f24-csci544-appliednlp/details/project/

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Announcements: Paper Presentations

® Paper Presentations Format:

® Every team has been assigned a paper by their TA

® See your presentation schedule: https://docs.google.com/spreadsheets/d/
13cgBXINa3679VCju9wmlLcES_pySP2HxpczNNjebxgll/edit?
gid=1378308384#9id=1378308384

® All teammates prepare to present—on their own—the assigned paper

® \We will announce the actual presenter a couple of hours before class

® All teammates should be prepared to answer questions from the audience about the
paper

® Total time for presentation + questions: 5 mins / team

® Remaining time: lecture
® Slides encouraged - we will ask you to send us your Google slides in advance

https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384
https://docs.google.com/spreadsheets/d/13cgBXINq3679VCju9wmLcE5_pySP2HxpczNNje6xqLI/edit?gid=1378308384#gid=1378308384

Fall 2024 CSCI 544: Applied NLP USC Viterbi

HW1 Grades

Histogram of HW 1

150

100

50

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Class Grades

Project Proposal Grades

30
30
20
20 v
g 10
10
0
0 2.00 242 2.83 3.25 3.67 4.08 4.50
15.00 17.33 1967 2200 2433 26.67 29.00 31.33 33.67 36.00 38.33 4067 43.00 4533 4767 50.00
Midterm
Histogram of Quiz 1 Histogram of Quiz 2 Histogram of Quiz 3
50 80 60

40

60
40
30
40
20
20
20
10
0 0 0
000 077 153 230 307 383 460 537 613 690 767 843 920 997 1073 1150 000 077 153 230 307 383 460 537 613 690 767 843 920 997 1073 1150 100 177 253 330 407 483 560 637 713 790 867 943 1020 1097 11.73 1250
Quizl Quiz 2 Quiz 3

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| ecture Outline

® Announcements

® Recap: The pre-training and fine-tuning paradigm
® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models

® Pre-training Encoder-Decoder Models

® [okenization

® Natural Language Generation

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Recap:
Pre-training and Fine-tuning

Fall 2024 CSCI 544: Applied NLP USC Viterbi

The Pretraining / Finetuning Paradigm

® Pretraining can improve NLP applications by serving as parameter initialization.

Key idea: “Pretrain once, finetune many times.”
S ——————————

Step 1: Pretrain (on language corpora) Step 2: Finetune (on your task data)
Lots of text; learn general things! Not many labels; adapt to the task!
©/B
8(;es tcT> maTke tas%ty teTa El\;D y y) \) /T
(Transformer, LSTM, ++) (Transformer, LSTM, ++)

Iroh goes make tasty tea ... the movie was ...

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Entire Models

® [n modern NLP:
® All (or almost all) parameters in NLP networks

are initialized via pretraining.
® This has been exceptionally effective at
bui\ding strong: — Pretrained jointly

y

® representations of language

® parameter initializations for strong NLP

P

*
models. ... the movie was ...

® probability distributions over language

that we can Samp‘e from [This model has learned how to represent
entire sentences through pretraining]

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining: Language Models

goes to make tasty tea END

® Recall the language modeling task: T T ? T T T
® Model py(w,|w;.,_;), the probability Decoder
distribution over words given their (Transformer, LSTM, ++)
past contexts.
® There's lots of data for this! (In i i i i i i
Eng\ish.) lroh goes make tasty tea

® Pretraining through language modeling:
® Train a neural network to perform
language modeling on a large
amount of text.
® Save the network parameters.

Semi-supervised Sequence Learning

Andrew M. Dai Quoc V. Le
Google Inc. Google Inc.
adai@google.com gqvl@google.com

10

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Decoders: Classitiers

® \When using language model pretrained decoders, we ©/6?
can ignore that they were trained to model Linear A,b
pﬁ(wt ‘ Wl:t—l) |

® \Ve can finetune them by training a classitier on the hy, .., hy

last word’s hidden state

® /i,....,hy = Decoder(wy,...,wy)
® \Where A and b are randomly initialized ana Wy, ..., Wr

specified by the downstream task.

| The linear layer hasn't been
® Gradients backpropagate through the whole network.

pretrained and must be learnea

from scratch.
11 S ——

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Decoders: Generators

® More natural: pretrain decoders as language models and then use them as generators,
finetuning their py(w, | wy.,_;)
® /i,....,hy = Decoder(wy,...,wy)
® w, ~ Ah,_; +b B2 43 A 4

® \Where A, b were pretrained in the language model! | i i I

A b

® This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

® Dialogue (context=dialogue history)
® Summarization (context=document)

Wi Wy W3 Wy Wg

The linear layer has been pretrained
e ——————————————————

12

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Encoders: Bidirectional Context

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,

Universal Studios Theme Park is located in - Calitornia

Problem: Input
Reconstruction '‘Cause darling i'm a dressed like a daydream

Bidirectional context is important to reconstruct the input!

13

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Encoaers: Objective

® Encoders get bidirectional context, so we can’t do language modeling!
® |dea: replace some fraction of words in the input with a special [MASK] token; predict
these words.

® /1,...,h; = Encoder(w,...,w;)

went st?re

® Only add loss terms from words that are “masked out.”
® |f X is the masked version of x, we're learning py(x | x).

® Called Masked LM
® Special type of language modeling

| [M] to the [M]

14

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BERT: Bidirectional Encoder Representations from Transtformers

Devlin et al., 2018 proposed the “Masked LM"” objective and released BERT, a Transtormer,
pretrained to:

® 15% of the input tokens in a training sequence are

sampled for learning, these are to be predicted by the Freduesell W™ RN
model Transformer
® Of these =ncoder
® 80% are replaced with [MASK] } pi‘zza t‘o tLe [N‘,]
® 10% are replaced with randomly selected tokens, / / I
® Remaining 10% are left unchanged

[Replaced] [Notreplaced] [Masked]

? , : :
Doesn't let the model get complacent and not build strong representations of

non-masked words. (No masks are seen at fine-tuning time!)
S —————————————

15

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BERT: Bidirectional Encoder Representations from Transtformers

® The pretraining input to BERT was two separate contiguous chunks of text:

/ /- N N N / N N / /- N
Input [CLS] 1 my dog 15 (cute W [SEP] he (likes W play W ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E*“rf"ing E[SEP]
o e e e e e L o e e e e
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
e e ES = E = - e e 3 e 3 = =
Position
Embeddings E0 E1 Ez E3 E4 ES E6 E7 E8 E9 E10

® BERT was trained to predict whether one chunk follows the other or is randomly sampled.

® [CLS] and [SEP] tokens
® [SEP] is used for next sentence prediction - do these sentences follow each other?

® [CLS] for text classitication / connection to fine-tuning

16

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BER|: Extensions

® Some generally accepted improvements to the BERT pretraining formula:
® RoBERTa: mainly just train BERT for longer and remove next sentence prediction!
® SpanBERT: masking contiguous spans of words makes a harder, more usetul pretraining
task
® A |ot of BERT variants that used the BERT formula
® ALBERT: BERT with parameter-reduction techniques
® DistilBERT:
® DeBERTa: Decoding-enhanced BERT with disentangled attention
® FauBERT: BERT for French
® XLNet: Multilingual BERT
® [tc.
® BERTology: How and why BERT worked so well

17

Fall 2024 CSCI 544: Applied NLP

BERT: Overview

® [SEP]: Later work has argued this “next sentence prediction” is
not necessary
® |n general, more compute, more data can improve pretraining
even when not changing the underlying Transtormer encoder
® Results in contextual embeddings
® Key Limitation:
® Cannot be used for generation
® No pretraining encoders can be used for autoregressive
generation very naturally

® There are clunky ways in which you could try...but not a
natural fit

® For this, we need to have a decoder!

18

USC Viterbi

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| ecture Outline

® Announcements

® Recap: The pre-training and fine-tuning paradigm
® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models

® Pre-training Encoder-Decoder Models

® [okenization

® Natural Language Generation

19

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pre-training
Encoder-Decoder Models

20

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining for three types of architectures

——= Encoder-
& Decoders

Sequence-to-sequence

21

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Pretraining Encoder-Decoder Models

® [For encoder-decoders, we could do something like language modeling, but where a
prefix of every input is provided to the encoder and is not predicted.

hq, ..., hy = Encoder(wy, ..., wr) Wrgo, e,
hT+11 cen) hz = DECOdeT(Wl, ey W, hl, cer) hT)

Vi NAhi‘l'b,i >T
The encoder portion benefits from

bidirectional context: the decoder @%
Wriq, .oy, Wor

portion is used to train the whole

model through language modeling.
W1, ..., W

22

Fall 2024 CSCI 544: Applied NLP USC Viterbi

T5: A Pretrained Encoder-Decoder Model

® Raffel et al., 2018 built TS, which uses as a span corruption pretraining objective

Targets

Replace ditterent-length spans from the <> for inviting <v> last <z~
input with unique placeholders; decode out
the spans that were removed!

Original text E E |

Hi rt K.
Thank you fef inviting me to your party IBS[wee

This is implemented in text @%

preprocessing: it's still an objective that

looks like language modeling atthe | ;s : .

decoder side. Thank you <X> me to your party <Y> week.

23

Fall 2024 CSCI 544: Applied NLP

T5: Task Preparation

24

A fascinating property of
T5: it can be finetuned to
answer a wide range of
questions, retrieving
knowledge from its
Parameters.

["translate English to German: That is good.”

"cola sentence:
course 1s jumping

The
well.”

s

.

"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

~\

J/

[

o

"summarize: state au

dispatched emergency crews tuesday to
survey the damage after an onslaught
of severe weather in mississippi..”

\
thorities

</

Pre-training

Fine-tuning

[

When was Franklin D.
Roosevelt born?

USC Viterbi

"Das ist gut."]

"not acceptable”

"3.8"]

"six people hospitalized after
a storm in attala county.”

President Franklin D.
Roosevelt was born
in January 1882.

Fall 2024 CSCI 544: Applied NLP

USC Viterbi

T5 Results

® Raffel et al., 2018 found encoder-decoders to work better than decoders tor their tasks,
and span corruption (denoising) to work better than language modeling.

25

Architecture Objective Params Cost GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo
% Encoder-decoder Denoising 2P M 83.28 19.24 80.88 71.36 2698 39.82 27.65
Enc-dec, shared Denoising P M 82.81 18.78 80.63 70.73 26.72 39.03 27.46
Enc-dec, 6 layers Denoising P M/2 80.88 18.97 77.59 68.42 26.38 38.40 26.95
Language model Denoising P M 74.70 17.93 61.14 55.02 25.09 35.28 25.86
Prefix LM Denoising P M 81.82 18.61 78.94 68.11 2643 3798 27.39
Encoder-decoder LM 2P M 79.56 18.59 76.02 64.29 26.27 39.17 26.86
Enc-dec, shared LM P M 79.60 18.13 76.35 63.50 26.62 39.17 27.05
Enc-dec, 6 layers LM P M/2 T78.67 18.26 75.32 64.06 26.13 38.42 26.89
Language model LM P M 73.78 17.54 53.81 56.51 25.23 3431 25.38
Prefix LM LM P M 79.68 17.84 76.87 64.86 26.28 37.51 26.76

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| ecture Outline

® Announcements

® Recap: The pre-training and fine-tuning paradigm
® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models

® Pre-training Encoder-Decoder Models

® [okenization

® Natural Language Generation

26

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Tokenization in
Transformers

USC Viterbi

Fall 2024 CSCI 544: Applied NLP

The Input Layer

® So far, we have made some assumptions about a

language’s vocabulary
® Our approach so far: use a known, fixed vocabulary
® Built from training data, with tens of thousands of
components
® However, even with the largest vocabulary, we may
encounter out-of-vocabulary words at test time
® Our approach so far: map novel words seen at test

time (OQV) to a single UNK

28

Multi-head_ed Self-
Attention

Lookup
Embeddings

Encoder Inputs

Fall 2024 CSCI 544: Applied NLP USC Viterbi

How to get the words?

Or, more accurately, the tokens?

29

® Problem: break the text into a sequence of discrete tokens
® For alphabetic languages such as English, deterministic scripts usually suffice to achieve

accurate tokenization
® However, in languages such as Chinese and Swahili, words are typically composed of a

small number of characters, without intervening whitespace

Fall 2024 CSCI 544: Applied NLP

® Finite vocabulary assumptions make even less sense in many languages.

® Many languages exhibit complex morphology, or word structure.

® The effect is more word types, each occurring fewer times.

Non-finite forms

USC Viterbi
Word Structure in Language

-ambia = to tell

Form Positive Negative
EX ‘ . S h . ‘ . r Infinitive kuarg_bla — kutoambia
arn e a e k)s » ~ Simple finite forms
p * W I I V Positive form Singular Plural
Imperative ambia . ambieni
Habitual) huambia
can have hundreds ot ——
, Persons rersons / Classes
Polarity 1st 2nd 3rd / M-wa M-mi Ma Ki-vi U Ku Pa Mu
. . Sg. Pl. Sg. Pl. Sg./1 PL/2 3 -) 6 7 8 9 10 11/14 15/17 16 18
conjugations, eac Y past foss &
! Positive :alallliz%%g t\tf?elall?:qmbtl)?a \:f;’ﬁ;’nﬁ'ﬁa mr?vlé?igwnalgia aliambia waliambia uliambia iliambia liliambia yaliambia kiliambia viliambia iliambia ziliambia uliambia kuliambia paliambia = muliambia
. . . Negative sikuambia hatukuambia hukuambia hamkuambia hakuambia hav.'al;uambl haukuambia haikuambia halikuambia hayakauambl hakikuambia havikuambia haikuambia hazikuambia haukuambia hakukauamb| hapakauambl hamul;uambl
enCOdlng d Wlde Va rlety - Present lless A]
Positive nr:r;%%ng?;a tunaambia unaambia mnaambia anaambia wanaambia unaambia inaambia linaambia yanaambia kinaambia vinaambia inaambia zinaambia wunaambia kunaambia panaambia munaambia
o o Negative siambii hatuambii huambii hamambii haambii hawaambii hauambii haiambii haliambii ~ hayaambii hakiambii haviambii haiambii haziambii hauambii hakuambii hapaambii hamuambii
of information. (Tense — —
] I Positive nitaambia tutaambia utaambia mtaambia ataambia wataambia utaambia itaambia litaambia yataambia kitaambia vitaambia itaambia zitaambia utaambia kutaambia pataambia mutaambia
Negative sitaambia hatutaambia hutaambia hamtaambia hataambia hawataaambl hautaambia haitaambia halitaambia hayataambia hakitaambia havitaambia haitaambia hazitaambia hautaambia hakutaambia hapataambia hamugaambl
P Subjunctive [less A]
I I loo e I n I e n eSS Positive niambie tuambie uambie mambie aambie waambie uambie iambie liambie yaambie kiambie viambie iambie ziambie uambie kuambie paambie muambie
/ / Negative nisiambie tusiambie usiambie msiambie asiambie wasiambie = usiambie isiambie lisiambie yasiambie kisiambie visiambie isiambie zisiambie usiambie kusiambie = pasiambie @ musiambie
Present Conditional [less A]
° ° f ° Positive ningeambia tungeambia ungeambia mngeambia angeambia wangeambia ungeambia ingeambia lingeambia yangeambia kingeambia vingeambia ingeambia zingeambia ungeambia kungeambia pangeambia mungeambia
' ' I e . tusingeambi msingeambi wasingeamb _ _. . o .. yasingeambi kisingeambi visingeambi zisingeambi _ _. .. kusingeambi pasingeambi musingeamb
n e g atl O n I I n O r atl O n e e nlsmgaeambl a usingeambia a asingeambia ia ﬁg'ﬂgegg;"?lﬁ isingeambia I}:se:ﬂge::ﬁgai a a a isingeambia a ?]salggeggmé? a ia
9 singeambia hatungeamb hungeambia hamngeambi hangeambia hawabrjgeam ga haingeambia ga hayangeamb hakingeambi havingeambi haingeambia hazingeambi ga hakungeamb hapabqgeam ham%r)geam
ia a ia ia a a a ia ia ia
. - Past Conditional - [less A]
a Out t e O JeCt’ I I Positive ningaliambia tungaliambia ungaliambia mngaliambia angaliambia wangzllambl ungaliambia ingaliambia lingaliambia yangaallambl kingaliambia vingaliambia ingaliambia zingaliambia ungaliambia kunge:illambl pange;llambl munggllambl
. nisingaliamb tusin%gliamb usinggliambi msin%gliamb asingzliambi \,vasirglgaaliam usingaliambi isingaliambia lisingaliambi yasir;)?éaliam kisinggliambi visingaliambi isingaliambia zisingaliambi usinggliambi kusir;)?:ﬁam pasi?)?:liam musig?aaliam
Negative | = la hatungaliam hungaliambi hamngaliam hangaliambi hawangalia haungaliamb haingallambi halingaliamb hayangaliam hakingaliam havingaliam haingallambi hazingaliam haungaliamb hakungaliam hapangaliam hamungalia
singaliambia . B E :
bia a bia a mbia 1a Ia bia bia bia bia E] bia bia mbia
- Conditional Contrary to Fact - ~ [less A]
Source: W|kt|onary Positive ningeliambia tungeliambia ungeliambia mngeliambia angeliambia wangihambu ungeliambia ingeliambia lingeliambia yange;lllambn kingeliambia vingeliambia ingeliambia zingeliambia ungeliambia kungeallambl pangtzllambl mungghambn
Gnomic [less A]
30 Positive naambia twaambia waambia mwaambia aambia waambia waambia yaambia laambia yaambia chaambia vyaambia yaambia zaambia waambia kwaambia paambia mwaambia
Perfect lless Al

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Subword Modeling

. Hello how are U tday?
® Solution: look at subwords! :

® Subword modeling encompasses a wide range of methods for
reasoning about structure below the word level
® Subwords may be words, parts of words, characters, bytes hello how are u tday?
® The dominant modern paradigm is to learn a vocabulary of parts of
words (subword tokens)
® At training and testing time, each word is split into a sequence of [hello, how, are, u, tday, ?]
known subwords

® Different algorithms:
® Byte-Pair Encoding
® \WordPiece Modeling
® Follow different strategies. Often contain prepending / appending
special tokens (##, </w>)

lhello, how, are, u, td, ##ay, 7]

31

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Word structure and subword models

® Common words end up being a part of the subword vocabulary, while rarer words are
split into (sometimes intuitive, sometimes not) components.
® |n the worst case, words are split into as many subwords as they have characters.
® | [ama 3 uses a tokenizer with a vocabulary of 128K tokens

word vocab mapping embedding
- hat hat

Common

—

words Iea rn

- —

learn

-—

9
9

Variations 4 taaaaasty -2 taattit aaa#t#t sty
i >
9

la## ern##
Transformer## ify

misspellings - laern

>—

novel items - Transformerify

S—

32

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Byte-pair encoding

® Byte-pair encoding is a simple, eftective strategy for defining a subword vocabulary
® Adapted for word segmentation from data compression technique (Gage, 1994)
® [nstead of merging frequent pairs of bytes, we merge characters or character sequences
® Algorithm:
1. Start with a vocabulary containing only characters and an “end-of-word” symbol.
2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword
® This is a learned operation! However, not a parametric function
® Only combine pairs (hence the namel)
3. Replace instances of the character pair with the new subword; repeat until desired vocabulary size.
® At test time, first split words into sequences of characters, then apply the learned operations to merge
the characters into larger, known symbols

® Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

33

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BPE In action

Corpus Corpus Corpus
low lower newest low</w> | lower</w> | newest</w> low</w> | lower</w> newest</w>
low lower newest low</w> | lower</w> | newest</w> low</w> | lower</w> newest</w>
low widest = newest low</w> | widest</w> newest</w> low</w> widest</w> newest</w>
low widest | newest low</w> | widest</w> newest</w> low</w> widest</w> newest</w>
low widest = newest low</w> | widest</w> newest</w> low</w> ' widest</w> newest</w>
Frequency
d-e (3) -0 (7) t-</w> (8)
Vocabulary
q e i | . 5 . t W e-r (2) n-e (5) w-</w> (5)
es e-s (8) 0-w (7) w-e (7)
e-w (5) r-</w> (2) w-1 (3)
I-d (3) s-t (8)

34
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BPE In action

COI’pUS Corpus COFpUS
low lower newest low</w> | lower</w> | newest</w> low</w> lower</w> ' newest</w>
low lower newest low</w> | lower</w> | newest</w> low</w> | lower</w> newest</w>
low widest | newest low</w> | widest</w> newest</w> low</w> |widest</w> | newest</w>
low widest newest low</w> | widest</w> @ newest</w> | 0 w </w> wid es t</w> newest</w>
low widest newest low</w> | widesti</w> newest</w> | o w </w> widest</w> newest</w>
Frequency
d-es (3) -0 (7) w-</w> (5)
Vocabulary
e-r (2) n-e (5) w-es (5)
d e i I n 0 S t W
e-w (5) 0-w (7) w-e (2)
es est
es-t (8) r-</w> (2) w-1 (3)
I-d (3) t-</w> (8)

35
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP USC Viterbi

BPE In action

Corpus
Corpus Corpus P
low lower newest low</w> | lower</w> | newest</w> low </w> lower </w> new est </w>
low lower newest low</w> | lower</w> | newest</w> | o w </w> lower</w> newest </w>
low widest | newest low</w> | widest</w> newest</w> low </w> | widest </w> new est </w>
low widest newest low</w> | widest</w> @ newest</w> .
| o w </w> W I d est </w> newest </w>
low widest = newest low</w> | widest</w> newest</w> _
| o w </w> w I d est </w> newest </w>
Vocabulary
d e i I n 0 S t W
es est est</w> [0 low low</w> ne new newest</w>

After 10 merges

36 L. . L.
Source: https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

https://www.analyticsvidhya.com/blog/2020/05/what-is-tokenization-nlp/

Fall 2024 CSCI 544: Applied NLP USC Viterbi

WordPiece Modeling

® Algorithm from Google, similar to BPE

® |dentifies subwords by adding a prefix (##)

® Each word is initially split by adding ## to all the characters inside a word

® So, for instance, “word” gets split like this: w ##o ##r ##a

® For this vocabulary:
® ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)
® Splits may look like:
® ("h" "##u" "##g", 10), ("p" "##u" "##g", D), ("p" "##u" "##n",12), ("b" "##u"
"##n", 4), ("h" "##u" "##g" "##s", 5)
® On merging, ## between the two tokens is removed

1))

® This explains the presence of the token "##ing

37

Fall 2024 CSCI 544: Applied NLP

USC Viterbi

WordPiece Modeling Outcome

® Different stopping criteria: number of merges or size of resulting vocabulary

® |n the worst case, at test time, words are split into as many subwords as they have characters
® Common words end up being a part ot the subword vocabulary, while rarer words are split

into (sometimes intuitive, sometimes not) components

WordPiece Qutcome

38

Common
words

—

Variations =

misspellings —

—

novel items —

S—

word vocab mapping
hat hat

learn learn

la## ern#t#
Transformer#i ify

9
9
taaaaasty - taatt# aaattt sty
laern -2
9

Transformerify

embedding

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Tokenization: Frequently Asked Questions

® \Where does the token “##ing"” come from?

® |n WordPiece tokenization, all non-starting characters are initialized as ##x.
® |ike: h, #i#te, ##l #4# ##o.
® Upon merging, only the first segment keeps its

® How is tokenization done in Chinese?
® Follows the same broad overall algorithm, but the initial split into characters involve
language-specitic rules

® c.g. stroke-level tokenization [Si et al., 2023]

Source: https://huggingface.co/learn/nlp-course/chapteré/é6?tw=pt
e S eRstsastmmmmmpEEEET

39

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00560/116047/Sub-Character-Tokenization-for-Chinese-Pretrained
https://huggingface.co/learn/nlp-course/chapter6/6?fw=pt

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| ecture Outline

® Announcements

® Recap: The pre-training and fine-tuning paradigm
® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models

® Pre-training Encoder-Decoder Models

® [okenization

® Natural Language Generation

® (Classic Interence Algorithms: Greedy and Beam Search

40

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Natural Language
Generation

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Natural Language Generation

® Natural language understanding and natural language generation are
two sides of the same coin
® Natural language understanding: Learning representations that
perform well on downstream tasks
® o generate good language, one needs to understand language
® |f you understand language, you should be able to generate it (with

some effort)
® NLG is the workhorse of many classic and novel applications
® Al Assistants
® Translators
® Search summarizers

42

Fall 2024 CSCI 544: Applied NLP

USC Viterbi

NLG Use Cases

Does money buy happiness?

Simple and Effective Multi-Paragraph Reading Comprehension

Christopher Clark, Matt Gardner - Computer Science - ACL - 29 October 2017

TLDR We propose a state-of-the-art pipelined method for training neural paragraph-level question answering models on
document QA data. Expand

&6 236 PDI B ViewPDFonarXiv W Save A Alert &6 Cite 8 Research Feed

Chit-chat
|) Task-oriented

[Depends how much] a

money you spend on it System

“| want to watch |

| don't have much money...

8 | am looking for a place to stay that
has cheap price range it should be

User | in a type of hotel.

S

System

Me too.

it in Seattle” |
I {
I
i

NLG |«————— POL |

“How many tickets |
do you need?” |

Task-driven

Dialog

43

request (num_ tickets)

Okay, do you have a specific
[area you want to stay in? Q

System

ce nter.]

8 { | would like someone in the

User

Chitchat

Dialog

Fall 2024 CSCI 544: Applied NLP USC Viterbi

More Interesting NLG Uses

Creative stories Data-to-text Visual description

Table Title: Robert Craig (American football)

. ® b|g bird's b|rthday celebration Section Title: National Football League statistics
s t Ki Table Description:None
O.ry B ® Cookie monster eats : RUSHING RECEIVING
H ; : YEAR TEAM ATT YDS AVG LNG ™™D NO. YDS AVG LNG ™
ou:tllne ﬂ ¢ roIIer Skatlng rlnk 1983 SF 176 725 4.1 71 8 48 427 8.9 23 4
T [o bigbithdaycake z L o I B I A B B
1986 SF 204 830 4.1 25 7 81 624 7.7 48 0
. 3. 5 4 1.5 3
Plot dynamics ,. | iog8 | —SF—| 310 | sz | 4% | 46 |9 | 76 | s 70| 2 l
P' = paragraph i 1989 SF 271 | 1054 | 3.9 27 6 49 | 413 9.7 4 1
1990 SF 141 439 3.1 26 1 25 201 8.0 31 0
Outline-conditioned Story Generation 9N RAI | 162 | 5% | 36 [15 [1 [17] 136 [80 | 20 0
1992 MIN 105 416 4.0 21 -+ 22 164 1.5 22 0
1993 MIN 38 119 3.1 11 1 19 169 8.9 31 1
It is Big Bird's birthday, and he goes to the roller Totals | - [1991 8189 | 41 [71 [56 | 566 4oui| 87 [73 17
skating rink with his friends.
Back at Sesame Street, Maria and Susan take out the big
birthday cake and leave it on a table.
Cookie Monster sees the cake, but instead of eating it
and spoiling the party, he eats a chair and other things all
over Sesame Street.
Big Bird and the other skaters return to Sesame Street
and are shocked at what Cookie Monster ate, though the
cake is safe. . .« ® . : i : .
. Crai fl nIShEd h IS eleven NFL seasons Two children are sitting at a table in a restaurant. The children are one
Gina and Count Von Count presents the ?ake o ’ . g) little girl and one little boy. The little girl is eating a pink frosted donut
It has 548 candles even though s 6 years °'d_' with 8, 189 rushi Ng ya rds and 566 with white icing lines on top of it. The girl has blonde hair and is wearing
’:/Id thetend, V‘t’hetg G'”al a””Ol{Pr?‘ff the:ponsors, Cookie ti for 4.911 . . d a green jacket with a black long sleeve shirt underneath. The little boy is
onster eats them along with his cake. recep 1oNs 101 4, recelvmg yar S. wearing a black zip up jacket and is holding his finger to his lip but is not

eating. A metal napkin dispenser is in between them at the table. The
wall next to them is white brick. Two adults are on the other side of the
short white brick wall. The room has white circular lights on the ceiling
and a large window in the front of the restaurant. It is daylight outside.

Rashkin et al., 2020 Parikh et al., 2020

W m

Krause et al., 2017

e

44

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Broad Spectrum of NLG Tasks

Less Open-Ended More Open-Ended
- —-ww—_
- - - - -
Machine Summation Task-driven Chitchat Story
Translation Dialog Dialog Generation

Open-ended generation: the output distribution still has high freedom.

Non-open-ended generation: the input mostly determines the output generation.

45

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Broad Spectrum of NLG Tasks

Less Open-Ended More Open-Ended
- ——--- —- — —_——_ —
& - - N .
Machine SummIEation Task-driven Chitchat Story
Translation Dialog Dialog Generation

Ww
Encoder- L2227 Decoders
& Decoders

46

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| anguage Generation: Fundamentals

In autoregressive text generation models, at each time step ¢, our model takes in a sequence of tokens as input

S =f(y.,) € R" and outputs a new token, 9,

For model f,(-) and vocabulary V, we get scores S = f,(y_,) € R" P(w|y.,) = exp(5,,)
ZveV eXp(SV)

~~~~~~

Yo Y1 Vit Yirl Y2

— <8> O 3
y—l S 0 yf—l ‘\ ﬂyt ‘\ -);f+1

<>

----------

47



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Language Generation: Training

® Trained one token at a time to maximize the probability of the next token y* given preceding

words y*

eXp(SYt|Y<t)

vevV eXp(Svl)’q)

T T
F ==Y logP(yly,)=— ) log S
=1 =1

® Classification task at each time step trying to predict the actual word y* in the training data
® “Teacher forcing” (reset at each time step to the ground truth)

Yy r yi Vi1 Vo
Text Generation Model

x x
48



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Teacher Forcing

® Strateqgy for training decoders / language models
® At each time step t in decoding we force the system to use the gold target token from

training as the next input x,_ {, rather than allowing it to rely on the (possibly erroneous)

decoder output y,
® Runs the risk of exposure bias!
® During training, our model’s inputs are gold context tokens from real, human-
generated texts
® At generation time, our model’s inputs are previously—decoded tokens

49



Fall 2024 CSCI 544: Applied NLP USC Viterbi

| anguage Generation: Inference

® At inference time, our decoding algorithm defines a function to select a token from this
distribution: Inference / Decoding Algorithm

y, = 8P| yp))

® The “obvious” decoding algorithm is to greedily choose the highest probability next
token according to the model at each time step

g = arg max

Yy, = argmax(P(y, = w|y))

>0 wevV



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Classic Interence Algorithms:
Greedy and Beam Search

51



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Decoding

® Generation from a language model is also called decoding
® Think encoder-decoder
® Also called inference
® Strategy so far: Take arg max on each step of the decoder to produce the most probable
word on each step
® This is called greedy decoding
® Greedy Strategy: we are not looking ahead, we are making the hastiest decision
given all the information we have

52



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Greedy Decoding: Issues

® Greedy decoding has no wiggle room for errors!
® [nput: the green witch arrived
® Output: llego
® Output: llego la
® Output: llego la verde
® How to fix this?
® Need a lookahead strategy / longer-term planning

53



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Exhaustive Search Decoding

® |deally, we want to find a (length T) translation y that maximizes

P(y|z) = P(y1|z) P(y2ly1, ) P(y3ly1,y2,2) .., P(yr|y1,. .., yr-1,2)

T
— Hp(ytlyb SR 7yt—17x)
t=1

® \\e could try computing all possible sequences y
® This means that on each step t of the decoder, we're tracking V'possible partial
translations, where Vis vocab size

® This O(VT)comp\exity is far too expensive!

54



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Beam Search Decoding

® Core idea: On each step of decoder, keep track ot the k most probable partial
translations (which we call hypotheses)
® k is the beam size (in practice around 5 to 10, in NMT)
® A hypothesis has a score which is its log probability:

t
score(ys, - .-, yi) = log Pun(1, - wsle) = 3 log Post(¥ilyn, - - - pi-1, )

1=1
® Scores are all negative, and higher score is better
® \e search for high-scoring hypotheses, tracking top k on each step
® Beam search is not guaranteed to find optimal solution

® But much more efficient than exhaustive search!

55



