Lecture 12:
Transformers: Self-Attention Networks (contd.)

Instructor: Swabha Swayamdipta

USC CSCI 544 Applied NLP
Oct 03, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning
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Announcements

® Today: Quiz 3 (requires lockdown browser!)
® Tomorrow through 10/8: Please fill out a short survey teedback
® Next Tue:
® HW2 due - please follow naming format etc. (see Brightspace announcement)

® Guest lecture by TA Sayan Ghosh on PyTorch for Transformers
® Next Thu: No class / Fall Break

® Tue 10/15: Midterm Exam
® 1 hr - format similar to quizzes
® HW1 / Project Proposal grades will be available by the end of the week
® Sign up sheet now open for Paper Presentation and Final Project Presentation dates (see
Brightspace announcement)
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| ecture Outline

® Recap: Transtormers

® Quiz 3

® Transtormers as Encoders, Decoders and Encoder-Decoders
® The pre-training and fine-tuning paradigm

® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models
® Pre-training Encoder-Decoder Models
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Recap:
Transformers
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Attention Variants

® In general, we have some keys hy, ..., hy, € R% and a query q € R%

® Attention always involves Can be done in multiple ways!
1. Computing the attention scores, e(q,h;.,) € RY T

2. Taking softmax to get attention distribution a, = softmax(e(q, h,.y)) € [0,1]"
3. Using attention distribution to take weighted sum of values:

N
¢ = Z a h € R4
i=1

This leads to the attention output ¢/ (sometimes called the attention context vector)
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Attention and lookup tables

Attention performs fuzzy lookup in a key-value store

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

keys values

vl
V2
V3

output
v4 % v4
v5

In attention, the query matches all keys so

to a weigh
are multip

query

tly,

ues

t between O and 1. The keys' va
ied by the weights and summed.

keys values Weighted

Sum
ki vl
k2 V2
output
k3 v3 ZH
k4 v4

k5 v5
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Attention
robability
istribution

USC Viterbi
Selt-Attention: Attention in the decoder

P
D.

Self-Attention!
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Self-Attention

Keys, Queries, Values from the same sequence
query

Let w,.y be a sequence of words in vocabulary V q

Foreach w;, letx; =E, , where E € RV is an
embedding matrix.

1. Transtorm each word embedding with weight matrices Q, K, V, each in

L;’ = Qxl 1::[1'} l,_,.]n:":i‘-iﬁ:":.'f:._] kl = le (key5) ‘Ui - Vxl (Va|ues)

keys values Weighted

ki

k2

k3

k4

k5

vl

V2

V3

v4

v5

Sum

Yy —

Rdxd

2. Compute pairwise similarities between keys and queries; normalize with softmax

exp(e;;)
2.j,exp(e;jr)

a,;j —

3. Compute output for each word as weighted sum of values

0; = Zaij Vj

8 J

output
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Selt-Attention as Matrix Multiplications

® Key-query-value attention is typically computed as matrices.
® letX =[X;5..5X,| R4 be the concatenation of input vectors

® First, note that XK € R XQ € R4 and XV € R™¢
® The output is defined as softmax(XQ(XK)HXV € R™

First, take the query- All pairs of Next, softmax,
. X0 — XQKT xT attention scores!
key dot products in S and compute the
) K X = Rnxn :
one matrix >, weighted
multiplication: / average with
XQ(XK)! another matrix

T vT . 1. .
e SOftmax| xokT x XV multiplication.
9 output € R™**¢ S ——
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Transformers are Self-Attention Networks

® Self-Attention is the key innovation behind

ransformers!

® Transformers (self-attention networks) map
sequences of input vectors (X, ..., X,) to Attention Is All You Need

sequences of output vectors (yy, ...,Y,) of the
same length.

C Ashish Vaswani” Noam Shazeer"’ Niki Parmar” Jakob Uszkoreit”®

® M d d e u p O Sta Cl(S Of ran Sfo rmer b | OCI(S Google Brain Google Brain Google Research Google Research
. . . avaswani@google.com noam@google.com nikip@google.com usz@google.com

® cach of which is a multilayer network made
o Llion Jones* Aidan N. Gomez* ' Fukasz Kaiser*
by com b| NN 9 QOoglc Research ‘Univcrsity of Toronto quglc Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
® . .
simple linear layers, o

illia.polosukhin@gmail.com

® feedforward networks, and

® No more recurrent connections!

10
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Selt-Attention and Weighted Averages

® Problem: there are no element-wise

nonlinearities in self-attention; stacking 7]
_ - - _ | T | |
more self-attention layers just re-averages EF rE o e
value vectors T T | T
® Solution: add a feed-forward network to self-attention
post-process each output vector. ] Q Q T
FF FF FF FF
Hidden layer: T T T T

Output layer: .
PEE 9y self-attention

Usually ReLU
or tanh S \ The chef who food

Input layer:

vector X

11
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Selt Attention and Future Information

® Problem: Need to ensure we don't “look at the future” when
predicting a sequence during training ,
® c.g. Target sentence in machine translation or generated
sentence in language modeling
® To use self-attention in decoders, we need to ensure we
can't peek at the future.
® Solution (Naive): At every time step, we could change the set  chef
of keys and queries to include only past words.
® (Inefficient!)
® Solution: To enable parallelization, we mask out attention to

[START]

The

who

future words by setting attention scores to — oo

12
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Self-Attention and Heads

® \What it we needed to pay attention to multiple ditterent kir

® Solution: Consider multiple attention computations in para

13

Attention
Distribution

USC Viterbi

ds of things e.g. entities, syntax

el

Multiheaded attention

The
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Multiheaded Attention: Visualization

Still efficient, can be parallelized!

Tensor!

First, take the query-key 3 sets of all pairs of
dot products in one X0 - XQK'XT attention scores!
matrix multiplication: S
XQ(XK)" — o € R3*nxn

~

Next, softmax, and

compute the weighted softmax X0KTXT | xy =
average with another p

matrix multiplication.

output € R™*¢

14 mix
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Scaled Dot Product Attention

output, = softmax(XQ, K, X") * XV,

® So far: Dot product self-attention

® \When dimensionality d becomes large, dot products between vectors tend

to become large
® Because of this, inputs to the softmax function can be large, making the Mask (opt)
gradients small

® Now: Scaled Dot product self-attention to aid in training
X0Q,K: X'
\Vd/lh

scaled-outputfz softmax( )*XVK Q KV

® Ve divide the attention scores by \/d/h, to stop the scores from becoming large just as a

function of d/h, where h is the number of heads

Attention is all you need (Vaswani et al., 2017)

e Rama SesatshbammEeEEGITTT

15
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Positional Embeddings

® Maps integer inputs (for positions) to real-valued vectors
® one per position in the entire context

® X is the embedding of the word at index i. The positioned embedding (token embedding with position

embedding) is:
® X, =X, +P,
® Can be randomly initialized and can let all p; be learnable parameters (most common)
® Pros:

® Flexibility: each position gets to be learned to fit the data
® Cons:

® Definitely can't extrapolate to indices outside 1, ... , n, where n is the maximum length of the sequence

allowed under the architecture

® There will be plenty of training examples for the initial positions in our inputs and correspondingly fewer
at the outer length limits

16
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Selt-Attention Transtformer Building Block

® Self-attention: Probabilities
® the basis of the method; with multiple heads Softmax
® Position representations: Lir’]‘;m
® Specity the sequence order, since self-attention is an A
unordered function of its inputs. 3 v
. .- Q35 Feed-Forward
® Nonlinearities: §§
® At the output of the self-attention block 553 3 Maskll o
® Frequently implemented as a simple feedforward network. = 9 Attention
® Masking: S .
® In order to parallelize operations while not looking at the B Slock
future. Add Posi:cion
® Keeps information about the future from "“leaking” to the Embe']qdmgS
past. Embeddings

Inputs
17
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® Recap: Transtormers

® Quiz 3

® Transtormers as Encoders, Decoders and Encoder-Decoders
® The pre-training and fine-tuning paradigm

® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models
® Pre-training Encoder-Decoder Models

18
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Quiz 3
Password: recurrent
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| ecture Outline

® Recap: Transtormers

® Quiz 3

® Transtormers as Encoders, Decoders and Encoder-Decoders
® The pre-training and fine-tuning paradigm

® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models
® Pre-training Encoder-Decoder Models

20
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Transformers as
Encoders, Decoders and
Encoder-Decoders

2]
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The Transtormer Model

® Transformers are made up of stacks of transformer
blocks, each of which is a multilayer network made by
combining feedforward networks and self-attention
layers, the key innovation of self-attention transtformers
® The Transtformer Decoder-only model corresponds to

® 3
® | ook
INnitia

Transformer language model
up embeddings for tokens are usually randomly

ized

® |nput tokenization (in next lecture)

22
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Add & Norm
P T
S Feed-forward
0 )
~
s Add & Norm
i T
o
2 Masked Multi-headed

Self-Attention
Block

Position Lookup
Embeddings Embeddings

Inputs
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The Transtormer Decoder

% Add & Norm
> t
S Feed-forward
L . .. o A
® Two optimization tricks that help training: p Add & Norm
® Residual Connections - N\
® | ayer Normalization 2
, = Masked Multi-headed
® |n most Transformer diagrams, these are often 3 Self.Attention
* 117 17 v
written together as “Add & Norm = Block
® Add: Residual Connections
® Norm: Layer Normalization Bosition Lookup

Embeddings Embeddings

Decoder Inputs

23 Transformer Decoder
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Residual Connections

XD ) aver 0

® Original Connections: XY = Layer(X'~1) where i represents the layer
® Residual Connections : trick to help models train better.
® We let X = XU=D 4 Layer(X(i_l))
® Helps learn “the residual” from the previous layer
® Remember: the layer contains all the non-linearities

X4 — Layer ?—' xW

Allowing information to skip a layer improves learning and gives higher level layers direct
access to information from lower layers (He et al., 2016).

24
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| ayer Normalization

® Another trick to help models train faster
® |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer

® Let x € RY be an individual (word) vector in the model.

1 & 1 &
_ . _ 2.
=135 wen o= 5 E s oer
J=1 \ i=1
Result: New vector with zero mean and A—H

a standard deviation of one

o Component-wise subtraction

® ety € R and f € R?be learned “gain” and “bias” parameters. (Can omit!)

LayerNorm =7 ﬁ Xu et al., 2019

25 R ettt
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Th e Tra n S-FO rm e r D e COd e r Probabilities

Softmax
)
Linear
)
Ag Add & Norm
® The Transformer Decoder is a stack of Transformer L 0
Decoder Blocks. % Feed-forward
’ ° . O T
Fach Bﬂock co!’msts of: é Add & Normm
® Seclf-attention - 0
® Add & Norm 0 o Mol ended
T Masked Multi-heade
® Feed-Forward :3’. Self-Attention
® Add & Norm o Block
® Output layer is as always a softmax layer
Position Lookup

Embeddings Embeddings

” Decoder Inputs
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Th e Tra n S-FO rm e r E n COd e r Probabilities

Softmax
A
Linear
)
® The Transformer Decoder constrains to unidirectional %‘2 Add & Norm
context, as for language models. 2 !
| 7= | | T Feed-forward
® \\What it we want bidirectional context, i.e. both left to K \
. . O
right as well as right to left? G Add & Norm
. . . . -l
® The only difference is that we remove the masking in i !
the self-attention. & Multi-headed Self-
® Commonly used in sequence prediction tasks such as o Attention Block
(@] o

POS tagging

® One output token y per input token x No Masking!

| — Position Lookup
Embeddings Embeddings

2 Encoder Inputs
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® Recall that in machine translation, we processea
the source sentence with a bidirectional model
and generated the target with a unidirectional
model.

® For this kind of seg2seq format, we often use a
Transformer Encoder-Decoder.

® \\Ve use a normal Transformer Encoder.

® Our Transtormer Decoder is moditfied to perform
cross-attention to the output of the Encoder.

28
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[% Add & Norm
N

Feed-Forward

\ 1

|
ﬁ Add & Norm
N
Multi-Head

Attention

\ w Block

Add Position
Embeddings

T

Embeddings

Encoder Inputs

USC Viterbi
The Transformer Encoder-Decoder

Probabilities

Softmax
N
Linear

N
ﬁ Add & Norm
N

Feed-Forward

\ )
Add & Norm
[p——
Multi-Head
Attention
/—) Add & Norm
N
Masked Multi-

Head Attention

\ U Block

Add Position
Embeddings

T

Embeddings

Decoder Inputs
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Cross Attention

® \Ve saw that self -attention is when keys, queries, and h h
1) === "t
values come from the same source. -
' : Add & N
® |n the decoder, we have attention that looks more like > addaNorm ~ L Norm
N Multi-Head
what we saw last week. Jyveidhs
Feed-Forward l‘ﬁ\
® Leth,,....h, be output vectors from the Transtformer \ 0 . J AVRDIRA:
Add & Norm
encoder; h, € R? [ Add&Norm ~ ~
| Multi-Head Masked Mul'.u-
® letz,,...,Z, be input vectors from the Transformer Attention Head Attention
d (W) yJ
decoder, h; € R \ el \ Block
® Then keys and values are drawn from the encoder Add Position Add Position
: Embeddings 2 1il2Ck ik
(like a memory): 3 . b’ld\d,
Embeddings mbeddings
® k. = Kh;,v. = Vh; .
ncoder Inputs Decoder Inputs

® And the queries are drawn from the decoder, q; = Qz.

29
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USC Viterbi

Transtormer Diagram

30

Add & Norm

N x

Add & Norm

Multi-Head
Attention

Qutput
Probabilities

| Softmax |

i

Linear

Add & Norm

Multi-Head
Attention

Positional
Encoding

Ca

Input
Embedding

INputs

Masked
Multi-Head
Attention

A

)
I Add & Norm l‘\
] } N x

I Add & Norm :

.

v,

+i
Output
Embedding

T

OQutputs
(shifted right)

Positional
Encoding

Attention is all you need (Vaswani et al., 2017)

RS SetmmmeSET
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Transformers: Performance

Machine Translation
Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the .
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost. I—a N 9 ua 9 c M Od c ‘ 1 9

| BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR EN-DE EN-FR Model Test perplexity ROUGE-L
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 392 1.0 - 1020 seq2seq-attention, L = 500 5.04952 12.7
GNMT + RL [38 24.6 30.02 2.3. 1019 1.4 - 1020 Transformer—ED, L = 500 2.46645 34.2
ConvS2S [9] > 25.16 4046  9.6-10 1.5.10% Trangformer-D, L = 4000 2.22216 330
MOoE [32] 26.03 40.56 2°0 1019 1.2.1020 Transformer-DMCA, no MoE-layer, L = 11000 2.05159 36.2

' ' ' ' 56 Transformer-DMCA, MoE-128, L = 11000 1.92871 37.9

Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10 Transformer-DMCA, MoE-256, L = 7500 1.90325 38.8
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-10° 1.2.10%
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.8 2.3-101°

The real power of Transtformers comes from pretraining language models which are then

adapted for different tasks
E———————

31



Fall 2024 CSCI 544: Applied NLP USC Viterbi
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® Recap: Transtormers

® Quiz 3

® Transtormers as Encoders, Decoders and Encoder-Decoders
® The pre-training and fine-tuning paradigm

® Pre-training Decoder-Only Models
® Pre-training Encoder-Only Models
® Pre-training Encoder-Decoder Models

32
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The Pre-training and
Fine-tuning Paradigm
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The Pretraining / Finetuning Paradigm

® Pretraining can improve NLP applications by serving as parameter initialization.

Key idea: “Pretrain once, finetune many times.”
S ——————————

Step 1: Pretrain (on language corpora) Step 2: Finetune (on your task data)
Lots of text; learn general things! Not many labels; adapt to the task!
©/B
8(;es tcT> maTke tas%ty teTa El\;D y y ) \ ) /T
(Transformer, LSTM, ++) (Transformer, LSTM, ++)

. Iroh  goes make tasty tea ... the movie was ...
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Pretraining

Step 1: Pretrain (on language corpora)

® Central Approach: Pretraining methods hide Lots of text; learn general things!
parts of the input from the model, and train the goes to make tasty tea END
model to reconstruct those parts. t t t t t t
® Used for parameter initialization
® Part of network (Transformer, LSTM, ++)
® Full network
® Abstracts away from the task of “learning the i i i i i i
language”

lroh  goes make tasty tea

35
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Word embeddings were pretrained too!

?

Previously: —

:lﬂﬂ -
® [ earn how to incorporate context in an :

LSTM or Transtormer while training on the - pretrained
task (e.g. sentiment classitication) B (word embeddings)
® Paradigm till 2017

® Start with pretrained word embeddings
® word2vec
® GloVe

® Trained with limited context (windows)

.. the mowe was ..

However, the word "movie” gets the same word embedding, no matter what

sentence it shows up in!
36
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Pretraining Entire Models

® [n modern NLP:
® All (or almost all) parameters in NLP networks

are initialized via pretraining.
® This has been exceptionally effective at
bui\ding strong: — Pretrained jointly

y

® representations of language

® parameter initializations for strong NLP

P

*
models. ... the movie was ...

® probability distributions over language

that we can Samp‘e from [This model has learned how to represent
entire sentences through pretraining]

37
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Pretraining: Intuition from SGD

Why should pretraining and finetuning help, from a “training neural nets” perspective?

e Pretraining provides parameters 0 by approximating m@in 3pretrain(9)

° gpretrain(e) is the pretraining loss

e Then, finetuning approximates min Zs - .+ ,ne(6), but starting at 0.
0

® Ztetunel®) is the finetuning loss
® The pretraining may matter because stochastic gradient descent sticks (relatively) close to ()
during finetuning
® It is possible that the finetuning local minima near 0 tends to generalize well!

® And/or, maybe the gradients of finetuning loss near () propagate nicely!

38
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Pretraining: Language Models

goes to make tasty tea END

® Recall the language modeling task: T T ? T T T
® Model py(w,|w;.,_;), the probability Decoder
distribution over words given their (Transformer, LSTM, ++)
past contexts.
® There's lots of data for this! (In i i i i i i
Eng\ish.) lroh  goes make tasty tea

® Pretraining through language modeling:
® Train a neural network to perform
language modeling on a large
amount of text.
® Save the network parameters.

Semi-supervised Sequence Learning

Andrew M. Dai Quoc V. Le
Google Inc. Google Inc.
adai@google.com gqvl@google.com
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Pretraining

Decoders

® Not restricted to language modeling! Can be

any task Encoders

® But most successful if the task definition is
very general. Hence, language modeling is a
great pretraining option

® Three options! AE%VT
Encoder-
>E] Decoders

40



