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Instructor: Swabha Swayamdipta 
USC CSCI 544 Applied NLP 

Oct 03, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning
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Announcements

• Today: Quiz 3 (requires lockdown browser!) 
• Tomorrow through 10/8: Please fill out a short survey feedback 
• Next Tue:  

• HW2 due - please follow naming format etc. (see Brightspace announcement) 
• Guest lecture by TA Sayan Ghosh on PyTorch for Transformers 

• Next Thu: No class / Fall Break 
• Tue 10/15: Midterm Exam 

• 1 hr - format similar to quizzes 
• HW1 / Project Proposal grades will be available by the end of the week 
• Sign up sheet now open for Paper Presentation and Final Project Presentation dates (see 

Brightspace announcement)
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Lecture Outline

• Recap: Transformers 
• Quiz 3 
• Transformers as Encoders, Decoders and Encoder-Decoders 
• The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 
• Pre-training Encoder-Decoder Models
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Recap:  
Transformers
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Attention Variants

• In general, we have some keys  and a query  

• Attention always involves 
1. Computing the attention scores,  
2. Taking softmax to get attention distribution  
3. Using attention distribution to take weighted sum of values:

h1, …, hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) ∈ ℝN

αt = softmax(e(q, h1:N)) ∈ [0,1]N

5

This leads to the attention output  (sometimes called the attention context vector)catt
t

Can be done in multiple ways!

catt
t =

N

∑
i=1

αt,ihi ∈ ℝd1
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 Attention and lookup tables
Attention performs fuzzy lookup in a key-value store

6

In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.
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Self-Attention: Attention in the decoder
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 Self-Attention

Let  be a sequence of words in vocabulary  
For each  , let , where  is an 
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V

8

Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values
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Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices.  

• Let  be the concatenation of input vectors 

• First, note that , , and  

• The output is defined as 

X = [x1; …; xn] ∈ ℝn×d

XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

softmax(XQ(XK)T)XV ∈ ℝn×d

9

First, take the query-
key dot products in 

one matrix 
multiplication: 

 XQ(XK)T

Next, softmax, 
and compute the 

weighted 
average with 

another matrix 
multiplication.
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Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind 
Transformers! 

• Transformers (self-attention networks) map 
sequences of input vectors  to 
sequences of output vectors  of the 
same length.  

• Made up of stacks of Transformer blocks 
• each of which is a multilayer network made 

by combining  
• simple linear layers,  
• feedforward networks, and  
• self-attention layers 

• No more recurrent connections!

(x1, …, xn)
(y1, …, yn)

10
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Self-Attention and Weighted Averages
• Problem: there are no element-wise 

nonlinearities in self-attention; stacking 
more self-attention layers just re-averages 
value vectors 

• Solution: add a feed-forward network to 
post-process each output vector.
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Input layer: 
vector x

Output layer: 
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU 
or tanh

Hidden layer: 

h = g(Wx) = g(
d0

∑
i=0

Wjixi)
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Self Attention and Future Information

• Problem: Need to ensure we don’t “look at the future” when 
predicting a sequence during training 
• e.g. Target sentence in machine translation or generated 

sentence in language modeling 
•  To use self-attention in decoders, we need to ensure we 

can’t peek at the future. 
• Solution (Naïve): At every time step, we could change the set 

of keys and queries to include only past words.  
• (Inefficient!) 

• Solution: To enable parallelization, we mask out attention to 
future words by setting attention scores to −∞

12
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Self-Attention and Heads

13

• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax 
• Solution: Consider multiple attention computations in parallel

Multiheaded attention

The monkey ate the banana because it
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Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

14

First, take the query-key 
dot products in one 
matrix multiplication: 

 XQl(XKl)T

Tensor!
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Scaled Dot Product Attention

• So far: Dot product self-attention  
• When dimensionality 𝑑 becomes large, dot products between vectors tend 

to become large 
• Because of this, inputs to the softmax function can be large, making the 

gradients small 
• Now: Scaled Dot product self-attention to aid in training

15

•  We divide the attention scores by , to stop the scores from becoming large just as a 
function of , where  is the number of heads

d/h
d/h h

scaled-outputℓ = softmax( XQℓKT
ℓ XT

d/h ) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)
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Positional Embeddings

• Maps integer inputs (for positions) to real-valued vectors 
• one per position in the entire context 

•  is the embedding of the word at index 𝑖. The positioned embedding (token embedding with position 

embedding) is: 

•  

• Can be randomly initialized and can let all  be learnable parameters (most common) 
• Pros:  

• Flexibility: each position gets to be learned to fit the data  
• Cons:  

• Definitely can’t extrapolate to indices outside 1, … , 𝑛, where  is the maximum length of the sequence 

allowed under the architecture  
• There will be plenty of training examples for the initial positions in our inputs and correspondingly fewer 

at the outer length limits

xi

x̃i = xi + pi
pi

n

16
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Self-Attention Transformer Building Block
• Self-attention:  

• the basis of the method; with multiple heads 
• Position representations:  

• Specify the sequence order, since self-attention is an 
unordered function of its inputs. 

• Nonlinearities:  
• At the output of the self-attention block  
• Frequently implemented as a simple feedforward network.  

• Masking:  
• In order to parallelize operations while not looking at the 

future.  
• Keeps information about the future from “leaking” to the 

past.

17
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Lecture Outline

• Recap: Transformers 
• Quiz 3 
• Transformers as Encoders, Decoders and Encoder-Decoders 
• The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 
• Pre-training Encoder-Decoder Models
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Quiz 3 
Password: recurrent

19



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Lecture Outline

• Recap: Transformers 
• Quiz 3 
• Transformers as Encoders, Decoders and Encoder-Decoders 
• The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 
• Pre-training Encoder-Decoder Models
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Transformers as  
Encoders, Decoders and 

Encoder-Decoders

21
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The Transformer Model

• Transformers are made up of stacks of transformer 
blocks, each of which is a multilayer network made by 
combining feedforward networks and self-attention 
layers, the key innovation of self-attention transformers 

• The Transformer Decoder-only model corresponds to 
• a Transformer language model 

• Lookup embeddings for tokens are usually randomly 
initialized  
• Input tokenization (in next lecture)

22
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The Transformer Decoder

• Two optimization tricks that help training:  
• Residual Connections  
• Layer Normalization  

• In most Transformer diagrams, these are often 
written together as “Add & Norm” 
• Add: Residual Connections 
• Norm: Layer Normalization
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Residual Connections

• Original Connections:  where  represents the layer 

• Residual Connections : trick to help models train better.  

• We let   

• Helps learn “the residual” from the previous layer 
• Remember: the layer contains all the non-linearities

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

24

Allowing information to skip a layer improves learning and gives higher level layers direct 
access to information from lower layers (He et al., 2016).
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Layer Normalization

• Another trick to help models train faster 
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit 

mean and standard deviation within each layer 
• Let  be an individual (word) vector in the model. x ∈ ℝd

25
LayerNorm = γ ̂x + β

Xu et al., 2019

μ =
1
d

d

∑
j=1

xj; μ ∈ ℝ σ =
1
d

d

∑
j=1

(xj − μ)2 ; σ ∈ ℝ

• Let  and  be learned “gain” and “bias” parameters. (Can omit!) γ ∈ ℝ β ∈ ℝd

̂x =
x − μ

σ
Result: New vector with zero mean and 

a standard deviation of one Component-wise subtraction
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The Transformer Decoder

• The Transformer Decoder is a stack of Transformer 
Decoder Blocks.  

• Each Block consists of:  
• Self-attention  
• Add & Norm  
• Feed-Forward  
• Add & Norm 

• Output layer is as always a softmax layer
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The Transformer Encoder

• The Transformer Decoder constrains to unidirectional 
context, as for language models.  

• What if we want bidirectional context, i.e. both left to 
right as well as right to left?  

• The only difference is that we remove the masking in 
the self-attention. 

• Commonly used in sequence prediction tasks such as 
POS tagging 

• One output token  per input token y x
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The Transformer Encoder-Decoder

• Recall that in machine translation, we processed 
the source sentence with a bidirectional model 
and generated the target with a unidirectional 
model.  

• For this kind of seq2seq format, we often use a 
Transformer Encoder-Decoder.   

• We use a normal Transformer Encoder. 
• Our Transformer Decoder is modified to perform 

cross-attention to the output of the Encoder.

28
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Cross Attention 
• We saw that self -attention is when keys, queries, and 

values come from the same source. 
• In the decoder, we have attention that looks more like 

what we saw last week.  

• Let  be output vectors from the Transformer 
encoder;  

• Let  be input vectors from the Transformer 
decoder,  

• Then keys and values are drawn from the encoder 
(like a memory):  

•  

• And the queries are drawn from the decoder,  

h1, …, hn
hi ∈ ℝd

z1, …, zn
hi ∈ ℝd

ki = Khi, vi = Vhi

qi = Qzi

29
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Transformer Diagram

30
Attention is all you need (Vaswani et al., 2017)
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Transformers: Performance
Machine Translation

31

Language Modeling

The real power of Transformers comes from pretraining language models which are then 
adapted for different tasks
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Lecture Outline

• Recap: Transformers 
• Quiz 3 
• Transformers as Encoders, Decoders and Encoder-Decoders 
• The pre-training and fine-tuning paradigm  

• Pre-training Decoder-Only Models 
• Pre-training Encoder-Only Models 
• Pre-training Encoder-Decoder Models
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The Pre-training and 
Fine-tuning Paradigm

33
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The Pretraining / Finetuning Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.

34

Step 1: Pretrain (on language corpora) 
Lots of text; learn general things!

Step 2: Finetune (on your task data) 
Not many labels; adapt to the task!

Key idea: “Pretrain once, finetune many times.” 
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Pretraining

• Central Approach: Pretraining methods hide 
parts of the input from the model, and train the 
model to reconstruct those parts.  

• Used for parameter initialization 
• Part of network 
• Full network 

• Abstracts away from the task of “learning the 
language”

35

Step 1: Pretrain (on language corpora) 
Lots of text; learn general things!
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Word embeddings were pretrained too!

Previously:  
• Start with pretrained word embeddings 

• word2vec 
• GloVe 
• Trained with limited context (windows) 

• Learn how to incorporate context in an 
LSTM or Transformer while training on the 
task (e.g. sentiment classification)  

• Paradigm till 2017

36

However, the word “movie” gets the same word embedding, no matter what 
sentence it shows up in!



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Pretraining Entire Models

• In modern NLP:  
• All (or almost all) parameters in NLP networks 

are initialized via pretraining.  
• This has been exceptionally effective at 

building strong:  
• representations of language  
• parameter initializations for strong NLP 

models.  
• probability distributions over language 

that we can sample from

37

[This model has learned how to represent 
entire sentences through pretraining]
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Pretraining: Intuition from SGD

• Pretraining provides parameters  by approximating   

•  is the pretraining loss 

• Then, finetuning approximates , but starting at .  

•  is the finetuning loss 

• The pretraining may matter because stochastic gradient descent sticks (relatively) close to  
during finetuning 

• It is possible that the finetuning local minima near  tends to generalize well!  

• And/or, maybe the gradients of finetuning loss near  propagate nicely!

̂θ min
θ

ℒpretrain(θ)

ℒpretrain(θ)
min

θ
ℒfinetune(θ) ̂θ

ℒfinetune(θ)
̂θ

̂θ
̂θ

38

Why should pretraining and finetuning help, from a “training neural nets” perspective? 
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Pretraining: Language Models

• Recall the language modeling task:  

• Model , the probability 
distribution over words given their 
past contexts.  

• There’s lots of data for this! (In 
English.)  

• Pretraining through language modeling: 
• Train a neural network to perform 

language modeling on a large 
amount of text.  

• Save the network parameters.

pθ(wt |w1:t−1)

39
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Pretraining

• Not restricted to language modeling! Can be 
any task 

• But most successful if the task definition is 
very general. Hence, language modeling is a 
great pretraining option 

• Three options!
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