
Lecture 12:
Transformers: Self-Attention Networks (contd.)

Instructor: Swabha Swayamdipta
USC CSCI 544 Applied NLP

Oct 03, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2024 CSCI 544: Applied NLP

Announcements

• Today: Quiz 3 (requires lockdown browser!)
• Tomorrow through 10/8: Please fill out a short survey feedback
• Next Tue:

• HW2 due - please follow naming format etc. (see Brightspace announcement)
• Guest lecture by TA Sayan Ghosh on PyTorch for Transformers

• Next Thu: No class / Fall Break
• Tue 10/15: Midterm Exam

• 1 hr - format similar to quizzes
• HW1 / Project Proposal grades will be available by the end of the week
• Sign up sheet now open for Paper Presentation and Final Project Presentation dates (see

Brightspace announcement)

2

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Recap: Transformers
• Quiz 3
• Transformers as Encoders, Decoders and Encoder-Decoders
• The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models
• Pre-training Encoder-Decoder Models

3

Fall 2024 CSCI 544: Applied NLP

Recap:
Transformers

4

Fall 2024 CSCI 544: Applied NLP

Attention Variants

• In general, we have some keys and a query

• Attention always involves
1. Computing the attention scores,
2. Taking softmax to get attention distribution
3. Using attention distribution to take weighted sum of values:

h1, …, hN ∈ ℝd1 q ∈ ℝd2

e(q, h1:N) ∈ ℝN

αt = softmax(e(q, h1:N)) ∈ [0,1]N

5

This leads to the attention output (sometimes called the attention context vector)catt
t

Can be done in multiple ways!

catt
t =

N

∑
i=1

αt,ihi ∈ ℝd1

Fall 2024 CSCI 544: Applied NLP

 Attention and lookup tables
Attention performs fuzzy lookup in a key-value store

6

In a lookup table, we have a table of keys
that map to values. The query matches
one of the keys, returning its value.

In attention, the query matches all keys softly,
to a weight between 0 and 1. The keys’ values
are multiplied by the weights and summed.

Fall 2024 CSCI 544: Applied NLP

Self-Attention: Attention in the decoder

7

The monkey ate the banana because it

k

v

q

k

v

k

v

k

v

k

v

k

v

k

v

A
tt

en
tio

n
Pr

ob
ab

ili
ty

D

ist
rib

ut
io

n

Self-Attention!

Fall 2024 CSCI 544: Applied NLP

 Self-Attention

Let be a sequence of words in vocabulary
For each , let , where is an
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V

8

Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values

Fall 2024 CSCI 544: Applied NLP

Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices.

• Let be the concatenation of input vectors

• First, note that , , and

• The output is defined as

X = [x1; …; xn] ∈ ℝn×d

XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

softmax(XQ(XK)T)XV ∈ ℝn×d

9

First, take the query-
key dot products in

one matrix
multiplication:

 XQ(XK)T

Next, softmax,
and compute the

weighted
average with

another matrix
multiplication.

Fall 2024 CSCI 544: Applied NLP

Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind
Transformers!

• Transformers (self-attention networks) map
sequences of input vectors to
sequences of output vectors of the
same length.

• Made up of stacks of Transformer blocks
• each of which is a multilayer network made

by combining
• simple linear layers,
• feedforward networks, and
• self-attention layers

• No more recurrent connections!

(x1, …, xn)
(y1, …, yn)

10

Fall 2024 CSCI 544: Applied NLP

Self-Attention and Weighted Averages
• Problem: there are no element-wise

nonlinearities in self-attention; stacking
more self-attention layers just re-averages
value vectors

• Solution: add a feed-forward network to
post-process each output vector.

11

Input layer:
vector x

Output layer:
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU
or tanh

Hidden layer:

h = g(Wx) = g(
d0

∑
i=0

Wjixi)

Fall 2024 CSCI 544: Applied NLP

Self Attention and Future Information

• Problem: Need to ensure we don’t “look at the future” when
predicting a sequence during training
• e.g. Target sentence in machine translation or generated

sentence in language modeling
• To use self-attention in decoders, we need to ensure we

can’t peek at the future.
• Solution (Naïve): At every time step, we could change the set

of keys and queries to include only past words.
• (Inefficient!)

• Solution: To enable parallelization, we mask out attention to
future words by setting attention scores to −∞

12

Fall 2024 CSCI 544: Applied NLP

Self-Attention and Heads

13

• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax
• Solution: Consider multiple attention computations in parallel

Multiheaded attention

The monkey ate the banana because it

k

v

q

k

v

k

v

k

v

k

v

k

v

k

v

A
tt

en
tio

n
D

ist
rib

ut
io

n

Fall 2024 CSCI 544: Applied NLP

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

14

First, take the query-key
dot products in one
matrix multiplication:

 XQl(XKl)T

Tensor!

Fall 2024 CSCI 544: Applied NLP

Scaled Dot Product Attention

• So far: Dot product self-attention
• When dimensionality 𝑑 becomes large, dot products between vectors tend

to become large
• Because of this, inputs to the softmax function can be large, making the

gradients small
• Now: Scaled Dot product self-attention to aid in training

15

• We divide the attention scores by , to stop the scores from becoming large just as a
function of , where is the number of heads

d/h
d/h h

scaled-outputℓ = softmax(XQℓKT
ℓ XT

d/h) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)

Fall 2024 CSCI 544: Applied NLP

Positional Embeddings

• Maps integer inputs (for positions) to real-valued vectors
• one per position in the entire context

• is the embedding of the word at index 𝑖. The positioned embedding (token embedding with position

embedding) is:

•

• Can be randomly initialized and can let all be learnable parameters (most common)
• Pros:

• Flexibility: each position gets to be learned to fit the data
• Cons:

• Definitely can’t extrapolate to indices outside 1, … , 𝑛, where is the maximum length of the sequence

allowed under the architecture
• There will be plenty of training examples for the initial positions in our inputs and correspondingly fewer

at the outer length limits

xi

x̃i = xi + pi
pi

n

16

Fall 2024 CSCI 544: Applied NLP

Self-Attention Transformer Building Block
• Self-attention:

• the basis of the method; with multiple heads
• Position representations:

• Specify the sequence order, since self-attention is an
unordered function of its inputs.

• Nonlinearities:
• At the output of the self-attention block
• Frequently implemented as a simple feedforward network.

• Masking:
• In order to parallelize operations while not looking at the

future.
• Keeps information about the future from “leaking” to the

past.

17

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Recap: Transformers
• Quiz 3
• Transformers as Encoders, Decoders and Encoder-Decoders
• The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models
• Pre-training Encoder-Decoder Models

18

Fall 2024 CSCI 544: Applied NLP

Quiz 3
Password: recurrent

19

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Recap: Transformers
• Quiz 3
• Transformers as Encoders, Decoders and Encoder-Decoders
• The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models
• Pre-training Encoder-Decoder Models

20

Fall 2024 CSCI 544: Applied NLP

Transformers as
Encoders, Decoders and

Encoder-Decoders

21

Fall 2024 CSCI 544: Applied NLP

The Transformer Model

• Transformers are made up of stacks of transformer
blocks, each of which is a multilayer network made by
combining feedforward networks and self-attention
layers, the key innovation of self-attention transformers

• The Transformer Decoder-only model corresponds to
• a Transformer language model

• Lookup embeddings for tokens are usually randomly
initialized
• Input tokenization (in next lecture)

22

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Inputs

Re
pe

at
 fo

r
 b

lo
ck

s
L

Block

+

D

DMasked Multi-headed

Self-Attention

Fall 2024 CSCI 544: Applied NLP

The Transformer Decoder

• Two optimization tricks that help training:
• Residual Connections
• Layer Normalization

• In most Transformer diagrams, these are often
written together as “Add & Norm”
• Add: Residual Connections
• Norm: Layer Normalization

23

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Decoder Inputs

Re
pe

at
 fo

r
 d

ec
od

er
 b

lo
ck

s
L

Block

+

D

DMasked Multi-headed

Self-Attention

Transformer Decoder

Fall 2024 CSCI 544: Applied NLP

Residual Connections

• Original Connections: where represents the layer

• Residual Connections : trick to help models train better.

• We let

• Helps learn “the residual” from the previous layer
• Remember: the layer contains all the non-linearities

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

24

Allowing information to skip a layer improves learning and gives higher level layers direct
access to information from lower layers (He et al., 2016).

Fall 2024 CSCI 544: Applied NLP

Layer Normalization

• Another trick to help models train faster
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit

mean and standard deviation within each layer
• Let be an individual (word) vector in the model. x ∈ ℝd

25
LayerNorm = γ ̂x + β

Xu et al., 2019

μ =
1
d

d

∑
j=1

xj; μ ∈ ℝ σ =
1
d

d

∑
j=1

(xj − μ)2 ; σ ∈ ℝ

• Let and be learned “gain” and “bias” parameters. (Can omit!) γ ∈ ℝ β ∈ ℝd

̂x =
x − μ

σ
Result: New vector with zero mean and

a standard deviation of one Component-wise subtraction

Fall 2024 CSCI 544: Applied NLP

The Transformer Decoder

• The Transformer Decoder is a stack of Transformer
Decoder Blocks.

• Each Block consists of:
• Self-attention
• Add & Norm
• Feed-Forward
• Add & Norm

• Output layer is as always a softmax layer

26

Re
pe

at
 fo

r
 d

ec
od

er
 b

lo
ck

s
L

Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Decoder Inputs

Block

+

D

DMasked Multi-headed

Self-Attention

Probabilities
Softmax

Linear

Fall 2024 CSCI 544: Applied NLP

The Transformer Encoder

• The Transformer Decoder constrains to unidirectional
context, as for language models.

• What if we want bidirectional context, i.e. both left to
right as well as right to left?

• The only difference is that we remove the masking in
the self-attention.

• Commonly used in sequence prediction tasks such as
POS tagging

• One output token per input token y x

27

Re
pe

at
 fo

r L
 e

nc
od

er
 b

lo
ck

s Add & Norm

Add & Norm

Feed-forward

Position
Embeddings

Lookup
Embeddings

Encoder Inputs

Block

+

D

DMulti-headed Self-

Attention

Probabilities
Softmax

Linear

No Masking!

Fall 2024 CSCI 544: Applied NLP

The Transformer Encoder-Decoder

• Recall that in machine translation, we processed
the source sentence with a bidirectional model
and generated the target with a unidirectional
model.

• For this kind of seq2seq format, we often use a
Transformer Encoder-Decoder.

• We use a normal Transformer Encoder.
• Our Transformer Decoder is modified to perform

cross-attention to the output of the Encoder.

28

Fall 2024 CSCI 544: Applied NLP

Cross Attention
• We saw that self -attention is when keys, queries, and

values come from the same source.
• In the decoder, we have attention that looks more like

what we saw last week.

• Let be output vectors from the Transformer
encoder;

• Let be input vectors from the Transformer
decoder,

• Then keys and values are drawn from the encoder
(like a memory):

•

• And the queries are drawn from the decoder,

h1, …, hn
hi ∈ ℝd

z1, …, zn
hi ∈ ℝd

ki = Khi, vi = Vhi

qi = Qzi

29

Fall 2024 CSCI 544: Applied NLP

Transformer Diagram

30
Attention is all you need (Vaswani et al., 2017)

Fall 2024 CSCI 544: Applied NLP

Transformers: Performance
Machine Translation

31

Language Modeling

The real power of Transformers comes from pretraining language models which are then
adapted for different tasks

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Recap: Transformers
• Quiz 3
• Transformers as Encoders, Decoders and Encoder-Decoders
• The pre-training and fine-tuning paradigm

• Pre-training Decoder-Only Models
• Pre-training Encoder-Only Models
• Pre-training Encoder-Decoder Models

32

Fall 2024 CSCI 544: Applied NLP

The Pre-training and
Fine-tuning Paradigm

33

Fall 2024 CSCI 544: Applied NLP

The Pretraining / Finetuning Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.

34

Step 1: Pretrain (on language corpora)
Lots of text; learn general things!

Step 2: Finetune (on your task data)
Not many labels; adapt to the task!

Key idea: “Pretrain once, finetune many times.”

Fall 2024 CSCI 544: Applied NLP

Pretraining

• Central Approach: Pretraining methods hide
parts of the input from the model, and train the
model to reconstruct those parts.

• Used for parameter initialization
• Part of network
• Full network

• Abstracts away from the task of “learning the
language”

35

Step 1: Pretrain (on language corpora)
Lots of text; learn general things!

Fall 2024 CSCI 544: Applied NLP

Word embeddings were pretrained too!

Previously:
• Start with pretrained word embeddings

• word2vec
• GloVe
• Trained with limited context (windows)

• Learn how to incorporate context in an
LSTM or Transformer while training on the
task (e.g. sentiment classification)

• Paradigm till 2017

36

However, the word “movie” gets the same word embedding, no matter what
sentence it shows up in!

Fall 2024 CSCI 544: Applied NLP

Pretraining Entire Models

• In modern NLP:
• All (or almost all) parameters in NLP networks

are initialized via pretraining.
• This has been exceptionally effective at

building strong:
• representations of language
• parameter initializations for strong NLP

models.
• probability distributions over language

that we can sample from

37

[This model has learned how to represent
entire sentences through pretraining]

Fall 2024 CSCI 544: Applied NLP

Pretraining: Intuition from SGD

• Pretraining provides parameters by approximating

• is the pretraining loss

• Then, finetuning approximates , but starting at .

• is the finetuning loss

• The pretraining may matter because stochastic gradient descent sticks (relatively) close to
during finetuning

• It is possible that the finetuning local minima near tends to generalize well!

• And/or, maybe the gradients of finetuning loss near propagate nicely!

̂θ min
θ

ℒpretrain(θ)

ℒpretrain(θ)
min

θ
ℒfinetune(θ) ̂θ

ℒfinetune(θ)
̂θ

̂θ
̂θ

38

Why should pretraining and finetuning help, from a “training neural nets” perspective?

Fall 2024 CSCI 544: Applied NLP

Pretraining: Language Models

• Recall the language modeling task:

• Model , the probability
distribution over words given their
past contexts.

• There’s lots of data for this! (In
English.)

• Pretraining through language modeling:
• Train a neural network to perform

language modeling on a large
amount of text.

• Save the network parameters.

pθ(wt |w1:t−1)

39

Fall 2024 CSCI 544: Applied NLP

Pretraining

• Not restricted to language modeling! Can be
any task

• But most successful if the task definition is
very general. Hence, language modeling is a
great pretraining option

• Three options!

40

