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Instructor: Swabha Swayamdipta 
USC CSCI 544 Applied NLP 

Oct 01, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Announcements

• Thu: Quiz 3 
• Before that: Install Lockdown Browser 
• Cannot take Quiz 3 onwards otherwise 
• 36 students did not sign the acknowledgment for the lockdown browser, and may not be able to take the 

quiz in time… I won’t be making exceptions for anyone 
• Next Tue:  

• HW2 due - please follow naming format etc. (see Brightspace announcement) 
• Guest lecture by TA Sayan Ghosh on PyTorch for Transformers 

• Next Thu: No class / Fall Break 
• Tue 10/15: Midterm Exam 

• 1 hr - format similar to quizzes 
• HW1 / Project Proposal grades will be available by the end of the week 
• Sign up sheet now open for Paper Presentation and Final Project Presentation dates (see Brightspace 

announcement)
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Lecture Outline

• Announcements 
• Recap: Seq2Seq and Attention 
• More on Attention 
• Transformers: Self-Attention Networks 

• Multiheaded Attention 
• Positional Embeddings 
• Transformer Blocks 

• Transformers as Encoders, Decoders and Encoder-Decoders
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Recap:  
Sequence-to-Sequence and 

Attention

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

RNNLMs are Autoregressive Models

• Autoregressive models predict a value at time  based on a function of the previous 
values at times   and so on 

• Word generated at each time step is conditioned on the word selected by the network 
from the previous step 

• State-of-the-art generation approaches are all autoregressive! 
• Machine translation, question answering, summarization 

• Key technique: prime the generation with the most suitable context

t
t − 1, t − 2,
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Can do better than <s>!

Provide rich task-appropriate context!
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(Neural) Machine Translation
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(Neural) Machine Translation

• Sequence Generation Problem (as opposed to 
sequence classification) 

•  = Source sequence of length x n
•  = Target sequence of length y m

6
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Sequence-to-Sequence (Seq2seq)
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(Neural) Machine Translation

• Sequence Generation Problem (as opposed to 
sequence classification) 

•  = Source sequence of length x n
•  = Target sequence of length y m

• Different from regular generation from an LM
• Since we expect the target sequence to 

serve a specific utility (translate the source)
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Provide rich task-appropriate context!

Sequence-to-Sequence (Seq2seq)

The green witch arrived

Ilegó la bruja verde
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Sequence-to-Sequence Models

• Models capable of generating contextually appropriate, arbitrary length, output 
sequences given an input sequence.   

• The key idea underlying these networks is the use of an encoder network that takes an 
input sequence and creates a contextualized representation of it, often called the 
context.  

• This representation is then passed to a decoder network which generates a task- specific 
output sequence.
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Encoder-Decoder Networks
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Encoder-Decoder Networks
Encoder-decoder networks consist of three components:

8



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Encoder-Decoder Networks
Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence,  and generates a 
corresponding sequence of contextualized representations, 

x1:n
he

1…he
n
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Encoder-Decoder Networks
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Encoder-Decoder Networks
Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence,  and generates a 
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2. A encoding vector,  which is a function of  and conveys the 
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Encoder-Decoder Networks
Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence,  and generates a 
corresponding sequence of contextualized representations, 

x1:n
he

1…he
n

2. A encoding vector,  which is a function of  and conveys the 
essence of the input to the decoder

c he
1…he

n

3. A decoder which accepts  as input and generates an arbitrary 
length sequence of hidden states , from which a 
corresponding sequence of output states  can be obtained
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Encoder-Decoder Networks
Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence,  and generates a 
corresponding sequence of contextualized representations, 

x1:n
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2. A encoding vector,  which is a function of  and conveys the 
essence of the input to the decoder

c he
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3. A decoder which accepts  as input and generates an arbitrary 
length sequence of hidden states , from which a 
corresponding sequence of output states  can be obtained

c
hd

1…hd
m
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x1 x2 … xn

Encoder

Decoder

Encoding

y1 y2 … ym

Encoders and decoders can be 
made of FFNNs, RNNs, or 

Transformers
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This needs to capture all information about the 
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“you can’t cram the meaning of a whole %&@#&ing 
sentence into a single $*(&@ing vector!” 

– Ray Mooney, Professor of Computer Science, UT Austin
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What if we had access to all hidden states?

How to create this?
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Attention Mechanism

• Attention mechanisms allow the decoder to focus on 
a particular part of the source sequence at each time 
step

• Fixed-length vector  (attention context vector)catt
t

• Take a weighted sum of all the encoder hidden  
states

• One vector per time step of the decoder!
• Weights attend to part of the source text relevant 

for the token the decoder is producing at step t
• In general, we have a single query vector and 

multiple key vectors. 
• We want to score each query-key pair
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Why Attention?
• Attention significantly improves neural machine 

translation performance  
• Very useful to allow decoder to focus on certain 

parts of the source  
• Attention solves the information bottleneck problem  

• Attention allows decoder to look directly at 
source; bypass bottleneck  

• Attention helps with vanishing gradient problem  
• Provides shortcut to faraway states  

• Attention provides some interpretability  
• By inspecting attention distribution, we can see 

what the decoder was focusing on →  
• We get alignment for free! We never explicitly 

trained an alignment system! The network just 
learned alignment by itself

19
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1. Computing the attention scores, e(q, h1:N) ∈ ℝN

2. Taking softmax to get attention distribution αt = softmax(e(q, h1:N)) ∈ [0,1]N

3. Using attention distribution to take weighted sum of values:

22

This leads to the attention output  (sometimes called the attention context vector)catt
t

Can be done in multiple ways!

catt
t =

N

∑
i=1

αt,ihi ∈ ℝd1
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• There are several ways you can compute  from  and  e(q, h1:N) ∈ ℝN h1…hN ∈ ℝd1 q ∈ ℝd2

• Basic dot-product attention: e(q, h1:N) = [q ⋅ hj]j=1:N

• This assumes d1 = d2
• We applied this in encoder-decoder RNNs

• Multiplicative (bilinear) attention: e(q, h1:N) = [qTWhj]j=1:N

• Where  is a learned weight matrix. W ∈ ℝd2×d1

• Linear attention: No non-linearity, i.e. no step (2).
• Unsurprisingly, does not work too well…
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More on Attention

• We sometimes say that the query attends to the values. 
• For example, in the seq2seq + attention model, each decoder hidden state (query) 

attends to all the encoder hidden states (values)
• Keys and values correspond to the same entity (the encoded sequence).

• The weighted sum is a selective summary of the information contained in the values, 
where the query determines which values to focus on. 

• Attention is a way to obtain a fixed-size representation of an arbitrary set of 
representations (the values), dependent on some other representation (the query). 

• Attention is a powerful, flexible, general deep learning technique in all deep learning 
models. 
• A new idea from after 2010! Originated in NMT
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 Attention and lookup tables
Attention performs fuzzy lookup in a key-value store
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In a lookup table, we have a table of keys 
that map to values. The query matches 
one of the keys, returning its value.

In attention, the query matches all keys softly, 
to a weight between 0 and 1. The keys’ values 
are multiplied by the weights and summed.
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Attention in the decoder
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Self-Attention!



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Lecture Outline

• Announcements 
• Recap: Seq2Seq and Attention 
• More on Attention 
• Transformers: Self-Attention Networks 

• Multiheaded Attention 
• Positional Embeddings 
• Transformer Blocks 

• Transformers as Encoders, Decoders and 
Encoder-Decoders

27



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Transformers:  
Self-Attention Networks
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 Self-Attention

Let  be a sequence of words in vocabulary  
For each  , let , where  is an 
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V

29

Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values
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• First, note that , , and XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

• The output is defined as softmax(XQ(XK)T)XV ∈ ℝn×d

30

First, take the query-
key dot products in 

one matrix 
multiplication: 

 XQ(XK)T

Next, softmax, 
and compute the 

weighted 
average with 

another matrix 
multiplication.
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• Allows a network to directly extract and use information from arbitrarily large contexts 
without the need to pass it through intermediate recurrent connections as in RNNs

• Used often with feedforward networks!

31
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• Self-Attention is the key innovation behind 
Transformers!

• Transformers (self-attention networks) map 
sequences of input vectors  to 
sequences of output vectors  of the 
same length. 

(x1, …, xn)
(y1, …, yn)

• Made up of stacks of Transformer blocks 
• each of which is a multilayer network made 

by combining  
• simple linear layers,  
• feedforward networks, and  
• self-attention layers 

• No more recurrent connections!

32
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Input layer: 
vector x

Output layer: 
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU 
or tanh

Hidden layer: 

h = g(Wx) = g(
d0

∑
i=0

Wjixi)
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• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax
• Solution: Consider multiple attention computations in parallel

Multiheaded attention
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• For word , self-attention “looks” where  is high, but 
maybe we want to focus on different  for different reasons? 

i xT
i QT(Kxj)

j
• Define multiple attention “heads” through multiple  matricesQ, K, V
• Let , each in , where  is the number of attention 

heads, and . 
Ql, Kl, Vl ℝd× d

h h
1 ≤ l ≤ h

• Each attention head performs attention independently: 
• Then the outputs of all the heads are combined! 
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Each head gets to “look” at different things, and construct value vectors differently
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 XQl(XKl)T
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Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

38

First, take the query-key 
dot products in one 
matrix multiplication: 

 XQl(XKl)T

Tensor!
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Scaled Dot Product Attention

• So far: Dot product self-attention 
• When dimensionality 𝑑 becomes large, dot products between vectors tend 

to become large
• Because of this, inputs to the softmax function can be large, making the 

gradients small
• Now: Scaled Dot product self-attention to aid in training

39

•  We divide the attention scores by , to stop the scores from becoming large just as a 
function of , where  is the number of heads

d/h
d/h h

outputℓ = softmax( XQℓKT
ℓ XT

d/h ) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)
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(and not typically) based on Recurrent 
Neural Nets
• No more order information!

• Since self-attention doesn’t build in order 
information, we need to encode the order 
of the sentence in our keys, queries, and 
values. 
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Do feedforward nets contain order 
information?
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• , for 𝑖 ∈ {1,2, … , 𝑛} are position vectors pi ∈ ℝd

• Don’t worry about what the  are made of yet! pi

• Easy to incorporate this info: just add the  to our inputs! pi

• Recall that  is the embedding of the word at index 𝑖. The positioned embedding is:xi

• x̃i = xi + pi

42

In deep self-attention networks, we do this at the first layer! You could 
concatenate them as well, but people mostly just add…
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Positional Embeddings

• Maps integer inputs (for positions) to real-valued vectors 
• one per position in the entire context

• Can be randomly initialized and can let all  be learnable parameters (most common)pi
• Pros:  

• Flexibility: each position gets to be learned to fit the data 
• Cons:  

• Definitely can’t extrapolate to indices outside 1, … , 𝑛, where  is the maximum 

length of the sequence allowed under the architecture  
• There will be plenty of training examples for the initial positions in our inputs and 

correspondingly fewer at the outer length limits

n
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Self-Attention Transformer Building Block
• Self-attention:  

• the basis of the method; with multiple heads 
• Position representations:  

• Specify the sequence order, since self-attention is an 
unordered function of its inputs. 

• Nonlinearities:  
• At the output of the self-attention block  
• Frequently implemented as a simple feedforward network.  

• Masking:  
• In order to parallelize operations while not looking at the 

future.  
• Keeps information about the future from “leaking” to the 

past.
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