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Announcements + Logistics

• HW and late days: DO NOT email, your submission time will determine how many late days you used. 
• NO partial late days - 1 day = 24 hours! 

• Projects Proposal - what to expect (also see the class website) 
• Student teams should submit a ~1-page proposal (follow *CL format) 
• The proposal should: 

• state and motivate the problem by providing a problem or task definition (preferably with example inputs 
and expected outputs), 

• situate the problem within related work (this might help you find sources of data for training a model for your 
task),  

• Related work: publications, start by looking in the ACL anthology (https://aclanthology.org/)  
• References do not count towards page limit, but please follow the correct format 

• state a hypothesis to be verified and how to verify it (evaluation framework), and  
• a brief description of the approach to be followed to verify the hypothesis (such as proposed models and 

baselines, and metrics). 
• We will need you to submit all your code as a final deliverable. PLAGIARISM will be strictly penalized
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https://aclanthology.org/
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Example Project

3
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Lecture Outline

• Announcements 
• Recap: FFNN 
• Feedforward Neural Net Language Models 
• FFNN for Classification 
• Training FFNNs 
• Computation Graph and Backdrop
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5

Recap:  
Feedforward Neural Nets
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Neural Network Unit
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Resembles a neuron in the brain!

Logistic Regression is a very simple neural network

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input  
Features

Weights and  
Biases

Weighted  
Sum

Activation 
Function

Output  = y

…

z σ(z)

Non-linear 
transformation
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Non-Linear Activation Functions

7

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!
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Power of non-linearity
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After a  transformation:tanh( ⋅ )

tanh(z) =
ez − e−z

ez + e−z
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Weighted sum of all 
incoming, followed by 
a non-linear activation

Binary Logistic Regression
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Don’t count the input layer in counting layers!

1-layer Network

x1 x2 xd x0 = 1

y

…

bw w1 w2 wd

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)
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Multinomial Logistic Regression

10

Fully connected single layer network

x1 x2 xd x0 = 1

y2

…

bW

Input layer: vector x

Output layer: y = softmax(w ⋅ x + b) y1 yK…

matrix vector

1-layer Network
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Two-layer Feedforward Network

11

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W b

u

W2,3

Scalar Output / Binary Outcome

Usually ReLU or tanh

Input layer: vector x

Hidden layer: h = g(Wx + b)

Output layer: y = σ(uh)

Hidden Unit, hi
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Two-layer Feedforward Network with Softmax Output
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x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b
Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Usually ReLU or tanh

What is ?y

Hidden layer: h = g(Wx + b)
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Two-layer FFNN: Notation

13

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the  and add one dimension to the  matrixb W
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FFNN Language 
Models

14
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Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next 
word in a sequence given some history. 

• Compared to n-gram language models, neural network LMs 
achieve much higher performance 
• In general, count-based methods can never do as well as 

optimization-based ones 
• State-of-the-art neural LMs are based on more powerful neural 

network technology like Transformers  
• But simple feedforward LMs can do almost as well!

15

Why?

Can neural LMs 
overcome the 

overfitting problem 
in n-gram LMs?
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Simple Feedforward Neural LMs

Task: predict next word  given prior words  

Problem: Now we are dealing with sequences of arbitrary length…. 

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

16

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!
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Data: Feedforward Language Model

• Self-supervised 

• Computation is divided into time steps , where different sliding windows are considered 

•  for the context 

• represent words in this prior context by their embeddings, rather than just by their 
word identity as in n-gram LMs  

• allows neural LMs to generalize better to unseen data / similar data 
• All embeddings in the context are concatenated 

•  for the next word 

• Represented as a one hot vector of vocabulary size where only the ground truth 
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

17

One-hot vector
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Feedforward Neural LM

18

• Sliding window of size 4 
(including the target word) 

• Every feature in the 
embedding vector connected 
to every single hidden unit 

• Projection / embedding layer 
is a kind of input layer 
• This is where we plug in 

our word2vec 
embeddings 

• May or may not update 
embedding weights
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Simplified Representation

19

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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Feedforward LMs: Windows

• The goodness of the language model 
depends on the size of the sliding 
window! 

• Fixed window can be too small 

• Enlarging window enlarges  

• Each word uses different rows of . We 
don’t share weights across the window. 

• Window can never be large enough! 

W
W

20

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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FFNN  for 
Classification

21
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FFNN and Classification

• Learn both  and (distributed!) representations for 
words  

• The word vectors  re-represent one-hot vectors, 
moving them around in an intermediate layer 
vector space, for easy classification with a (linear) 
softmax classifier  

• Conceptually, we have an embedding layer:   

• We use deep networks—more layers—that let us 
re-represent and compose our data multiple times, 
giving a non-linear classifier

w

x

x

22
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FNN and Classification
• Training Objective: For each training example , our 

objective is to maximize the probability of the correct 
class  or we can minimize the negative log probability 
of that class: 

 

• Loss as Cross entropy:  

• ground truth (or true or gold or target) is a 1-hot 
vector, , then:  

• hence, the only term left is the negative log 
probability of the true class :  

• True for both language modeling and classification

(x, y)

y

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
H(p, q) = −

C

∑
i=1

pi log qi

p = [0,…,0,1,0,…,0]

y*i −logp(yi |xi)

23

movie is boringThis !

W

U
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Training FFNNs

24
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Intuition: Training a 2-layer Network

25

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function 

L(ŷ, y)

Forward Pass Backward Pass

Training instance y
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 Intuition: Training a 2-layer network

For every training tuple  

• Run forward computation to find our estimate  

• Run backward computation to update weights:  
• For every output node  

• Compute loss  between true  and the estimated   

• For every weight  from hidden layer to the output layer  

• Update the weight  
• For every hidden node  

• Assess how much blame it deserves for the current answer  

• For every weight  from input layer to the hidden layer  

• Update the weight

(x, y)
̂y

L y ̂y
w

w

26
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LR and FFNN: Similarities and Differences

27

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE( ̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter!

As (multiple) hidden layers are introduced, there will be many more parameters to consider, 
not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!
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Computation Graphs 
and Backprop

28
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Why Computation Graphs?

29

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss 

function 
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the 
loss with respect to each weight in every 
layer of the network  
• But the loss is computed only at the 

very end of the network!  
• Solution: error backpropagation or 

backward differentiation 
• Backprop is a special case of backward 

differentiation  
• Which relies on computation 

graphs
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Example: Computation Graph

30

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e
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Example: Forward Pass

31

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward 
pass to compute the 

loss!
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Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass  
• Used to compute the derivatives needed for the weight updates

32

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer 
Gradients

}Hidden Layer 
Gradients
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Example: Applying the chain rule

33

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…
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Example: Backward Pass

34

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients 
of the loss with respect to 

parameters…
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Example

35

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Example: Two Paths

36

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on 
a single node we will add these 

branches

Such cases arise when considering regularized loss functions
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Backward Differentiation on a 2-layer MLP
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W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU 
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise 

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))
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2 layer MLP with 2 input features

38
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Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with 
respect to weights in early layers of the network  
• But loss is computed only at the very end of the 

network!  
• Solution: backward differentiation 

40

Given a computation graph and the derivatives of all the functions in it we can automatically 
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e


