
Lecture 8:
Feed-forward Neural Nets

Instructor: Swabha Swayamdipta
USC CSCI 544 Applied NLP

Sep 19, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2024 CSCI 544: Applied NLP

Announcements + Logistics

• HW and late days: DO NOT email, your submission time will determine how many late days you used.
• NO partial late days - 1 day = 24 hours!

• Projects Proposal - what to expect (also see the class website)
• Student teams should submit a ~1-page proposal (follow *CL format)
• The proposal should:

• state and motivate the problem by providing a problem or task definition (preferably with example inputs
and expected outputs),

• situate the problem within related work (this might help you find sources of data for training a model for your
task),

• Related work: publications, start by looking in the ACL anthology (https://aclanthology.org/)
• References do not count towards page limit, but please follow the correct format

• state a hypothesis to be verified and how to verify it (evaluation framework), and
• a brief description of the approach to be followed to verify the hypothesis (such as proposed models and

baselines, and metrics).
• We will need you to submit all your code as a final deliverable. PLAGIARISM will be strictly penalized

2

https://aclanthology.org/

Fall 2024 CSCI 544: Applied NLP

Example Project

3

Fall 2024 CSCI 544: Applied NLP

Lecture Outline

• Announcements
• Recap: FFNN
• Feedforward Neural Net Language Models
• FFNN for Classification
• Training FFNNs
• Computation Graph and Backdrop

4

Fall 2024 CSCI 544: Applied NLP

5

Recap:
Feedforward Neural Nets

Fall 2024 CSCI 544: Applied NLP

Neural Network Unit

6

Resembles a neuron in the brain!

Logistic Regression is a very simple neural network

x0 = 1

x1

x2

xd

b

w1

w2

wd

Σ ∼

Input
Features

Weights and
Biases

Weighted
Sum

Activation
Function

Output = y

…

z σ(z)

Non-linear
transformation

Fall 2024 CSCI 544: Applied NLP

Non-Linear Activation Functions

7

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!

Fall 2024 CSCI 544: Applied NLP

Power of non-linearity

8

After a transformation:tanh(⋅)

tanh(z) =
ez − e−z

ez + e−z

Fall 2024 CSCI 544: Applied NLP

Weighted sum of all
incoming, followed by
a non-linear activation

Binary Logistic Regression

9

Don’t count the input layer in counting layers!

1-layer Network

x1 x2 xd x0 = 1

y

…

bw w1 w2 wd

Input layer: vector x

Output layer: y = σ(w ⋅ x + b)

Fall 2024 CSCI 544: Applied NLP

Multinomial Logistic Regression

10

Fully connected single layer network

x1 x2 xd x0 = 1

y2

…

bW

Input layer: vector x

Output layer: y = softmax(w ⋅ x + b) y1 yK…

matrix vector

1-layer Network

Fall 2024 CSCI 544: Applied NLP

Two-layer Feedforward Network

11

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W b

u

W2,3

Scalar Output / Binary Outcome

Usually ReLU or tanh

Input layer: vector x

Hidden layer: h = g(Wx + b)

Output layer: y = σ(uh)

Hidden Unit, hi

Fall 2024 CSCI 544: Applied NLP

Two-layer Feedforward Network with Softmax Output

12

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2…

W

U

b
Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Usually ReLU or tanh

What is ?y

Hidden layer: h = g(Wx + b)

Fall 2024 CSCI 544: Applied NLP

Two-layer FFNN: Notation

13

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the and add one dimension to the matrixb W

Fall 2024 CSCI 544: Applied NLP

FFNN Language
Models

14

Fall 2024 CSCI 544: Applied NLP

Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next
word in a sequence given some history.

• Compared to n-gram language models, neural network LMs
achieve much higher performance
• In general, count-based methods can never do as well as

optimization-based ones
• State-of-the-art neural LMs are based on more powerful neural

network technology like Transformers
• But simple feedforward LMs can do almost as well!

15

Why?

Can neural LMs
overcome the

overfitting problem
in n-gram LMs?

Fall 2024 CSCI 544: Applied NLP

Simple Feedforward Neural LMs

Task: predict next word given prior words

Problem: Now we are dealing with sequences of arbitrary length….

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

16

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!

Fall 2024 CSCI 544: Applied NLP

Data: Feedforward Language Model

• Self-supervised

• Computation is divided into time steps , where different sliding windows are considered

• for the context

• represent words in this prior context by their embeddings, rather than just by their
word identity as in n-gram LMs

• allows neural LMs to generalize better to unseen data / similar data
• All embeddings in the context are concatenated

• for the next word

• Represented as a one hot vector of vocabulary size where only the ground truth
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

17

One-hot vector

Fall 2024 CSCI 544: Applied NLP

Feedforward Neural LM

18

• Sliding window of size 4
(including the target word)

• Every feature in the
embedding vector connected
to every single hidden unit

• Projection / embedding layer
is a kind of input layer
• This is where we plug in

our word2vec
embeddings

• May or may not update
embedding weights

Fall 2024 CSCI 544: Applied NLP

Simplified Representation

19

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

Fall 2024 CSCI 544: Applied NLP

Feedforward LMs: Windows

• The goodness of the language model
depends on the size of the sliding
window!

• Fixed window can be too small

• Enlarging window enlarges

• Each word uses different rows of . We
don’t share weights across the window.

• Window can never be large enough!

W
W

20

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

Fall 2024 CSCI 544: Applied NLP

FFNN for
Classification

21

Fall 2024 CSCI 544: Applied NLP

FFNN and Classification

• Learn both and (distributed!) representations for
words

• The word vectors re-represent one-hot vectors,
moving them around in an intermediate layer
vector space, for easy classification with a (linear)
softmax classifier

• Conceptually, we have an embedding layer:

• We use deep networks—more layers—that let us
re-represent and compose our data multiple times,
giving a non-linear classifier

w

x

x

22

Fall 2024 CSCI 544: Applied NLP

FNN and Classification
• Training Objective: For each training example , our

objective is to maximize the probability of the correct
class or we can minimize the negative log probability
of that class:

• Loss as Cross entropy:

• ground truth (or true or gold or target) is a 1-hot
vector, , then:

• hence, the only term left is the negative log
probability of the true class :

• True for both language modeling and classification

(x, y)

y

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
H(p, q) = −

C

∑
i=1

pi log qi

p = [0,…,0,1,0,…,0]

y*i −logp(yi |xi)

23

movie is boringThis !

W

U

Fall 2024 CSCI 544: Applied NLP

Training FFNNs

24

Fall 2024 CSCI 544: Applied NLP

Intuition: Training a 2-layer Network

25

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function

L(ŷ, y)

Forward Pass Backward Pass

Training instance y

Fall 2024 CSCI 544: Applied NLP

 Intuition: Training a 2-layer network

For every training tuple

• Run forward computation to find our estimate

• Run backward computation to update weights:
• For every output node

• Compute loss between true and the estimated

• For every weight from hidden layer to the output layer

• Update the weight
• For every hidden node

• Assess how much blame it deserves for the current answer

• For every weight from input layer to the hidden layer

• Update the weight

(x, y)
̂y

L y ̂y
w

w

26

Fall 2024 CSCI 544: Applied NLP

LR and FFNN: Similarities and Differences

27

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE(̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter!

As (multiple) hidden layers are introduced, there will be many more parameters to consider,
not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!

Fall 2024 CSCI 544: Applied NLP

Computation Graphs
and Backprop

28

Fall 2024 CSCI 544: Applied NLP

Why Computation Graphs?

29

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss

function
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the
loss with respect to each weight in every
layer of the network
• But the loss is computed only at the

very end of the network!
• Solution: error backpropagation or

backward differentiation
• Backprop is a special case of backward

differentiation
• Which relies on computation

graphs

Fall 2024 CSCI 544: Applied NLP

Example: Computation Graph

30

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e

Fall 2024 CSCI 544: Applied NLP

Example: Forward Pass

31

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward
pass to compute the

loss!

Fall 2024 CSCI 544: Applied NLP

Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass
• Used to compute the derivatives needed for the weight updates

32

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer
Gradients

}Hidden Layer
Gradients

Fall 2024 CSCI 544: Applied NLP

Example: Applying the chain rule

33

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…

Fall 2024 CSCI 544: Applied NLP

Example: Backward Pass

34

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients
of the loss with respect to

parameters…

Fall 2024 CSCI 544: Applied NLP

Example

35

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

Fall 2024 CSCI 544: Applied NLP

Example: Two Paths

36

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on
a single node we will add these

branches

Such cases arise when considering regularized loss functions

Fall 2024 CSCI 544: Applied NLP

Backward Differentiation on a 2-layer MLP

37

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))

Fall 2024 CSCI 544: Applied NLP

2 layer MLP with 2 input features

38

Fall 2024 CSCI 544: Applied NLP

39

Fall 2024 CSCI 544: Applied NLP

Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with
respect to weights in early layers of the network
• But loss is computed only at the very end of the

network!
• Solution: backward differentiation

40

Given a computation graph and the derivatives of all the functions in it we can automatically
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

