Lecture 8:
Feed-forward Neural Nets

Instructor: Swabha Swayamdipta

USC CSCI 544 Applied NLP
Sep 19, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Announcements + Logistics

® HW and late days: DO NOT email, your submission time will determine how many late days you used.
® NO partial late days - 1 day = 24 hours!
® Projects Proposal - what to expect (also see the class website)
® Student teams should submit a ~1-page proposal (follow *CL format)
® The proposal should:
® state and motivate the problem by providing a problem or task detinition (preferably with example inputs
and expected outputs),
® situate the problem within related work (this might help you find sources of data for training a model for your
task),
® Related work: publications, start by looking in the ACL anthology (https://aclanthology.org/)
® References do not count towards page limit, but please follow the correct format
® state a hypothesis to be veritied and how to verity it (evaluation framework), and
® a brief description of the approach to be followed to verify the hypothesis (such as proposed models and
baselines, and metrics).
® \We will need you to submit all your code as a final deliverable. PLAGIARISM will be strictly penalized

https://aclanthology.org/

Fall 2024 CSCI 544: Applied NLP

USC Viterbi

Fxample Project

Project Proposal: Code to Pseudocode Using LLM

Wenda Gu
wendagu@usc. edu

Egor Cherkashin
cherkash@usc.edu

Sarah Chen

snchen@usc.edu

Abstract

This document is a project proposal for a Large
Language Model trained to convert Python
code to pseudocode and an explanation of the
code function. It goes over the problem and its
importance, related research, and our method-
ology.

3 Related Work
T —

4 Hypothesis

A specially trained language model for code to
pseudocode translation and explanation will per-
form better than general purpose language models.

S Methodology
5.1 Baseline Models

To evaluate the effectiveness of our model, we will
compare its performance to that of GPT-3.5 Turbo
and Mixtral-8x7b.

5.2 Datasets

We will focus on two main datasets. The first
dataset is the Python Code Instruction dataset from
Kaggle, which has the columns Instruction, Input,
Output, and Prompt. This will be used to train our
model to understand the purpose of given Python

- code, which will enable it to generate an expla-

nation for provided code. The second dataset is
the Django Dataset, which consists of 16000 train-
ing, 1000 development, and 1805 test annotations,
where each data point is a line of Python code and
its corresponding English pseudocode (Oda et al.,

———————————— U)

vector<int> A;
A.resize(n);

for(int i=0; i<A.size(); i++) {
int min_i = 1i;

swap(A[i], A[min_il);

for(int j=i+1; j<A.size(); j++) {
if (Almin_i] > A[j1) { min_i = j; }

for(int i=0; i<A.size(); i++) cin >> A[i]

for(int i=0; i<A.size(); i++) cout<<A[i]<<" ";

Input Output

int main() { in function main
int n; let n be integer
cin >> n; read n

let A be a vector of integers
set size of A =n
read n elements into A
for all elements in A
set min_i to 1
for j=i+1 to size of A exclusive
set min_i to j if A[min_i]>A[j]
swap A[i], Almin_i]
print all elements in A

Explanation: An implementation of a sorting algorithm
that sorts user-inputted values in a vector in
ascending order, then prints the sorted vector.

Table 1: Example input and output for our LLM.

*

References

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE ’15, pages 574—
584, Lincoln, Nebraska, USA. IEEE Computer Soci-
ety.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. CoRR,

abs/2009.10297.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore:
Evaluating text generation with BERT. CoRR,
abs/1904.09675.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x.

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| ecture Outline

® Announcements

® Recap: FFNN

® Feedforward Neural Net Language Models
® FFNN for Classitication

® [raining FFNNs

® Computation Graph and Backdrop

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Recap:
Feedforward Neural Nets

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Neural Network Unit

Logistic Regression is a very simple neural network

Input

Cell body
Features

Non-linear

v

Weights and \
transformation \
Nucleus
Axon hillock \t Synaptic terminals
: >N

Biases ~o—1
Welghted : // WD e
Endoplasmic
o(2) ’

Golgi apparatus

-
\@\ reticulum \
— — ’
/@ m OUtPUt y e \ \ o
/
\g Dendritic branches

w Activation
Function

Resembles a neuron in the brain!

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Non-Linear Activation Functions

Most common!

1.0 , 10 , |
Z =z
s V= o [, ¥y =max(z,0)
- Z —Z | |
- ec+e
s >
T 0.0 | 0 |
| " i
| —0.5| {/// | =5
6 8
~1.0 — 5 c T ~10

=10 0 =10 -5

relu (Rectified Linear Unit)

The key ingredient of a neural network is the non-linear activation function

max(z,0)

Y

USC Viterbi

Fall 2024 CSCI 544: Applied NLP

Power ot non-linearity

-1.0 -

e —e ¢

tanh(z) =
e+ e+

After a tanh(-) transformation:

10 1

0.5 -

0.0 -

05 0.0 0.5 10

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Binary Logistic Regression

Output layer: y = o(wW - X + b)

.Weighted sum of all

incoming, followed by
\V 7 W v/wﬁ\ b a non-linear activation
| Xy e Xy X =

1

Input layer: vector x

1-layer Network

Don’t count the input layer in counting layers!

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Multinomial Logistic Regression

Output layer: y = softmax(w - X + b) . ..
»4'
matrix — W /’;’$ b —
Xy oo X,

vector

Input layer: vector X X Xo =1

1-layer Network Fully connected single layer network

10

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Two-layer Feedtorward Network

OUtPUt ‘ayer: Y = o(uh) . Scalar Output / Binary Outcome

Hidden layer: h = g(Wx + b)

Usually ReLU or tanh

Hidden Unit, A,

Input layer: vector x

11

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Two-layer Feedtorward Network with Softmax Output

Output layer: y = softmax(U - h)

Hidden layer: h = g(Wx + b)

/

Usually ReLU or tanh

Input layer: vector x

12

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Two-layer FFNN: Notation

Output layer: y = softmax(U - h)

dO
Hidden layer: h = g(Wx) = g(Z WJ-,-Xi>

/

Usually ReLU or tanh

Input layer: vector x

We usually drop the b and add one dimension to the W matrix

13

Fall 2024 CSCI 544: Applied NLP USC Viterbi

FFNN Language
Models

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Feedforward Neural Language Models

15

® | anguage Modeling: Calculating the probability of the next
word in a sequence given some history.

® Compared to n-gram language models, neural network LMs

achieve much higher performance

® |n general, count-based methods can never do as well as
optimization-based ones
® State-of-the-art neural LMs are based on more powertful neural
network technology like Transformers
® But simple feedforward LMs can do almost as well!

Can neural LMs
overcome the

overtitting problem
in n-gram LMs?

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Simple Feedforward Neural LMs

Task: predict next word w, given prior words w,_, w,_», W,_1, ...
Problem: Now we are dealing with sequences ot arbitrary length....

lution: Slidi | f fixed | h
Solution: Sliding windows (of fixed length) Basis of word embedding models!

S ——

Pw,\w,_) = PW,|W,_1.,_pa1)

First introduced by Yoshua Bengio and colleagues in 2003
e R —ehstsdsdmEmmpEmEE—T

16

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Data: Feedforward Language Model

® Self-supervisea
® Computation is divided into time steps #, where different sliding windows are considered
® x,=(W_q,...,w,_y.1) for the context
® represent words in this prior context by their embeddings, rather than just by their
word identity as in n-gram LMs

® allows neural LMs to generalize better to unseen data / similar data
® All embeddings in the context are concatenated

® y = w, for the next word

® Represented as a one hot vector of vocabulary size where only the ground truth

One-hot vector

gets a value of 1 and every other elementisa O

17

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Feedtorward Neural LM

p(aardvark|...) p(fish|...) p(for]...)
A

® Sliding window of size 4

(including the target word) Ou:gt}:ltnla?er , y@‘\\ <§/59
® Every feature in the V\

embedding vector connected U e R S

to every single hidden unit Hidden layer
® Projection / embedding layer

is a kind of input layer
® This is where we plug in Projection layer

embeddings a

our word2vec - ! y

. E embedding for embedding for embedding for
embedd ngs word 35 word 9925 word 45180

| |
® May or may not update —

. . and |thanks 5

embedding weights a]| RN | SRR for all the N -4

18

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Simplified Representation

fish wishes

: !

p(aardvark|...) p(fish|...)
A

Output layer @ .
softmax Wy

p(fo‘rl...)

[—
< >
d

T 200

e0000000000000 0

U U

Hidden 1 L Y E

B = 2 AL g x>y
W
Projection layer
embeddings [O 000 0000 000 O]
E embedding for embedding for embedding for 3 X X

word 35 word 9925 word 45180 :
[ank 5 g .
snd [hankef_for T a1 e T 703 [v | for | al | the :
Wt-3 Wt-2 Wi-1 Wi 2 .

ﬁ

19 _

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Feedforward LMs: Windows

fish .
wishes

: l

[—
< |
d

® The goodness of the language model T -
. g ©000000000000000

depends on the size of the sliding :

window! U
® Fixed window can be too small Xy
® Enlarging window enlarges W I
® Each word uses different rows of W. We w

don’t share weights across the window. @ee0o o0oc00 0000
® \\Vindow can never be large enough! I I !

thanks for al the ?

20
Wi _3 Wi o Wi 1

Fall 2024 CSCI 544: Applied NLP USC Viterbi

FFNN for
Classification

Fall 2024 CSCI 544: Applied NLP

FFNN and Classitication

22

® [earn both w and (distributed!) representations for
words

® The word vectors X re-represent one-hot vectors,
moving them around in an intermediate layer

vector space, for easy classitication with a (linear)
softmax classifier

® Conceptually, we have an embedding layer: x

® \We use deep networks—more layers—that let us

re-represent and compose our data multiple times,
giving a non-linear classifier

USC Viterbi

Fall 2024 CSCI 544: Applied NLP USC Viterbi

FNIN and Classification

® Training Objective: For each training example (X, y), our

objective is to maximize the probability of the correct

class y or we can minimize the negative log probability —
of that class:

K O
Lrp=—-1logP(y=c|x;0)=—(w,.-Xx+b)+log Zexp(wj-x+b)
j=1 U
C
o LOss as Cross entropy: H(p,q) = — Zpl- log g, 000000000
i=1
® ground truth (or true or gold or target) is a 1-hot W

vector,p = [0,...,0,1,0,...,0], then:
® hence, the only term left is the negative log ©000 0000 00060
orobability of the true class y*: —logp(y; | x;)

® True for both language modeling and classification This ovie o boring |

23

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Training FFNNs

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Intuition: Training a 2-layer Network

Training instance y @ @ .
Loss function

Model Output ¥ = softmax(U - h) . . Ly y)

Training instance X

25

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Intuition: Training a 2-layer network

For every training tuple (x, y)
® Run computation to find our estimate y

® Run backward computation to update weights:
® For every output node

® Compute loss L between true y and the estimated y
® For every weight w from hidden layer to the output layer
® Update the weight

® For every hidden node
® Assess how much blame it deserves for the current answer

® For every weight w from input layer to the hidden layer
® Update the weight

26

Fall 2024 CSCI 544: Applied NLP USC Viterbi

| R and FFNN: Similarities and Differences

Cross Entropy Loss again!

Lep(y,y) = —logp(y|x) = = [ylogy + (1 — y)log(1l —y)]
= —[ylogo(w-x+b)+ (1 — y)log(e(—w - X + b))]

aLCE(j\;a y)
ow;

Only one parameter! Computation Graphs

As (multiple) hidden layers are introduced, there will be many more parameters to consider,
not to mention activation functions!

Gradient Update = [o(W - X+ b) — ylx;

27

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Computation Graphs
and Backprop

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Why Computation Graphs?

® For training, we need the derivative of the

Loss
loss with respect to each weight in every function
layer of the network Ly.y)

® But the loss is computed only at the
very end of the network!
® Solution: error backpropagation or
backward differentiation -
Xy =

® Backprop is a special case of backward
differentiation

® \Which relies on computation

graphs Graph representing the process of computing a mathematical expression

29 Rumelhart, Hinton, Williams, 1986

s e e

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Example: Computation Grapnh

d=2%b 0 >
o= gt d e=a+d
b —., / \
L=c*e d=2%b
L=c*e
6 >

30

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Example: Forward Pass

d=2%b
e=a+d Need the forward
L=c*e pass to compute the

loss!

But how to compute parameter updates?

31

Fall 2024 CSCI 544: Applied NLP USC Viterbi

EFxample: Backward Pass Intuition

® The importance of the computation graph comes from the backward pass
® Used to compute the derivatives needed for the weight updates

a_L _ 9 a_L _ 9 a_L _ 9 Input Layer
d=2%p e Gradients
e=a+d Hidden Layer a_L _ 9

_ ¥ Gradients e

Chain Rule of Differentiation!
S ——————
32

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Example: Applying the chain rule

oL
P oL
— =7
d=2%b OL OL de oe
e=a+d Oa_aeaa a_L:a_Lﬁ
) od Ode dd
L=c™ e 0L 0L ode od
ob Oe dd b

Cannot do all at once, need to tollow an order...
33 e ———————————

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Example: Backward Pass

But we need the gradients
of the loss with respect to

parameters...
oL oL
—=¢ — =
ac oe
oL. OL oOe ~ oL
—_——— —_— — =27
oa de 0a b _a_d_» d Z*b/ad ae_l ()_L oe
oL dL Oe o L=c*e
I - —
od Ode dd - —
C oc ol
ol. JL ode dd — =€
— ac

b e dd ob

34

Fall 2024 CSCI 544: Applied NLP USC Viterbi

oL

— = C = —
oe

oL

— ==
ac
()L_()Lde_
da Oe da
8L_6Lde_
od de od
dL_dL@eOd_

b ode dadob

35

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Example: Two Paths

When multiple branches converge on

@\< a single node we will add these
branches
L=c*a
00

F3 _ o
E_*@ = ¢ R~ 00 00 OR
oR o dc - OR oc

ac

|
1
|
|

Such cases arise when considering regularized loss functions

36

USC Viterbi

Fall 2024 CSCI 544: Applied NLP

Backward Difterentiation on a 2-layer MLP

Softmax Activation

wi2]
RelLU
Activation T

00(2)
07

= 0(2)o(—2z) = 6(2)(1 — 0(2))

37

$ = o(z'%)

2 = wl2l . pli]

h[l] — Re LU(Z[l]) Element-wise

A1 — Willy

dReLU(z) [0 for z<0
1 for z>0

Fall 2024 CSCI 544: Applied NLP USC Viterbi

2 layer MLP with 2 input features

Do @/ e
ReLU

38

Fall 2024 CSCI 544: Applied NLP

dL

Starting off the backward pass: —

(I'l write a for al?! and z for z[2])

Ly,y)=—(ylog(®) + (1 —y)log(1—9))

L(a,y) = —(yloga + (1 —y)log(1 —a))
0L _ 0L da

E‘%az

QN |~

6L_
oa

o

=a(l —a)

dlog(a)
Y da

dlog(1—a)

)"'(1—}’)
1

)+(1—y) 1_a(—1))=—(

oL

0z

y—1
1—a

y_

da

0z

y y—1
— +
a 1—a

-

1
1
2
2

USC Viterbi

witlx + plt
ReLU(z!!)
w2 gl 4 pl2
O—(Z[Z])

y = a

)a(l—a)=a—y

Fall 2024 CSCI 544: Applied NLP USC Viterbi

Summary: Backprop / Backward Ditterentiation

® [or training, we need the derivative of the loss with M _5 T g L
‘ ' agd _ NoL Z_L:C
respect to weights in early layers of the network -5 @295 ™ “o1 G

® But loss is computed only at the very end of the
network!
® Solution: backward differentiation

Given a computation graph and the derivatives of all the functions in it we can automatically

compute the derivative of the loss with respect to these early weights.
——————

Libraries such as PyTorch do this for you in a single line: model.backward()
40

