Lecture J5:
Word Embeddings

Instructor: Swabha Swayamdipta

USC CSCI 544 Applied NLP
Sep 10, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning and Xuezhe Ma
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Quiz 1: Solutions
(Redacted)
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® As of now: we have 48 teams?
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® HW 1 Due

® All quiz dates were changed slightly to give some space between them
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Recap:
Model (Logistic Regression)
+ Loss + Optimization
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Ingredients of Supervised Machine Learning

. Data as pairs (x®,yD)stie {l1...N)
o W usually represented by a feature vector x\) = (X1, X5, -y X ],
® c.g. word embeddings
II. Model
® A classitfication function that computes y, the estimated class, via p(y | x)
® c.g. logistic regression, naive Bayes
lll. Loss
® An objective function for learning

Learning Phase
S ————————

® c.g. cross-entropy loss, L-g
V. Optimization
® An algorithm for optimizing the objective function
® c.g. stochastic gradient descent
V. Inference / Evaluation
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How to get the right y?

® For each feature x;, introduce a weight w;, which determines the importance of x;

® Sometimes we have a bias term, b or wy, which is just another weight not associatea
to any feature

® Together, all parameters can be termed as 6 = [w; D]
® \Ve consider the weighted sum of all features and the bias

7= dexd+b
d

=W-X+b

N

f high, $ = 1 f low, $ = 0
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How to get the right y?

® For each feature x;, introduce a weight w;, which determines the importance of x;

® Sometimes we have a bias term, b or wy, which is just another weight not associatea
to any feature

® Together, all parameters can be termed as 6 = [w; D]
® \Ve consider the weighted sum of all features and the bias

But how to determine the threshold?
{ = 2 ded + b
d

We need probabilistic models!
—wW-X+b S ——

/ \ P(y = 1]x;0)

f high, $ = 1 f low, § = 0 P(y =0]x;0)
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Solution: Squish it into the 0-1 range

I=W-X+b 7€ R

® Sigmoid Function, o( - )

® Non-linear! O

® Compute z and then pass it through 08
the sigmoid function

® Treat it as a probability! Y

® Also, a differentiable function, which

0.6/

0.4}

makes it a good candidate for -
optimization (more on this later!)

05 ~6 —4 —3 2 4 6 3

Py=1|x;0)=cw-x+b) Piy=0|x;0)=0(—(W-X+Db))

10
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11

Classitication Decision

1 ifply=1]x)>0.5
0 otherwise /

Decision Boundary

1 fw-x+b>0
0 ifw-x+b<0

Py =1|x;w,b)

10 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

- Sigmoid Function

USC Viterbi
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Classitication Decision

Inference under a Logistic Regression Mode|

{1 if py=1|x)> 0.

j} — . 10 1 —— sigmoid Function E
0 otherwise ;
0.8 -
Decision Boundary >
= 06 -
'i“ :
. 04 - :
5 = 1 ifw-x+b>0 = ;
— : x :
0 ifw-x+b<0 02- ;
0.0 1 E
-4 -3 0 2 4

11
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Classitication Decision

if p(y =1]x) > 0.
otherwise /

Decision Boundary

ifw-x+b6>0
ifw-x+b<0

Often y is used to indicate probability:

11

Py =1|x;w,b)

10 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

USC Viterbi

Inference under a Logistic Regression Mode|

- Sigmoid Function
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Classitication Decision

Inference under a Logistic Regression Mode|

{1 if py=1|x)> 0.

j} — . 10 1 —— sigmoid Function
0 otherwise
0.8 -
Decision Boundary >
= 06 -
=
. 04 -
5 = 1 ifw-x+b>0 =
— . <
0 ifw-x+bH<0 02 -
0.0 - .
Often y is used to indicate probability: -4 -2 0 2 4

y=P@y=1|x;60) =0(w-Xx+b)

11
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Maximizing conditional likelihood

For a single observation

— — — —
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Maximizing conditional likelihood

For a single observation
Goal: maximize probability of the correct label p(y|x) —

Since there are only 2 discrete ground truth outcomes, y (O or 1) we can express the

probability p(y | X) from our classitier (the thing we want to maximize) as

p(ylx) =31 =97

Data Likelihood Estimated probabilities —

12
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Minimizing negative log likelihood

Measures how well the training

Goal: maximize probability of the correct label p(y|x) data matches the proposed
model distribution and how

Maximize:  log p(y|x) = log(3*(1 — j\,)l—y) good the model distribution is

= ylogy + (1 —y)log(l —y)
Now flip the sign for something to minimize (we minimize the loss / cost)

Minimize: Leg(y, §) = — log p(y | x) = — [ylog$ + (1 — y)log(1 — $)]

Cross-Entropy
Loss
= — [ylogo(w-x+b)+ (1 —y)logo(—(W-x+b))]

13
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Logistic Regression: LOSS

\/ Image Credit: Medium
B e BEa

Convex function

® Has only one option for steepest gradient

Non-convex function

® Or one minimum

® Gradient descent starting from any point is Neural Networks -

guaranteed to find the minimum multiple alternatives

e ————————

14


https://medium.com/swlh/non-convex-optimization-in-deep-learning-26fa30a2b2b3
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Gradients

Loss 1! Should we move
right or left from here?

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

Find the gradient of the loss function at the current W w W
point and move in the opposite direction. 0 (goal)

But by how much?

——

15
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Gradient Updates

0
e Move w by the value of the gradient a—L(f(x; w), y¥), weighted by a learning rate 7
W

® Higher learning rate means move w faster

n Too high: the learner will take big steps and overshoot

AN,
w. =w,—n—L(f(x;w), y*
1 = W L ), )

n Too low: the learner will take too long

f parameter @ is a vector of d dimensions:

The gradient is just such a vector; it expresses the directional components of the sharpest
slope along each of the d dimensions.

16
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Gradients for Logistic Regression

]

Recall: the cross-entropy loss tor logistic regression

Log(y, ) = —[ylogo(w-x+b) + (1 — y)log(o(—w - X+ b))]

17



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Gradients for Logistic Regression

]

Recall: the cross-entropy loss tor logistic regression

Log(y, ) = —[ylogo(w-x+b) + (1 — y)log(o(—w - X+ b))]

Derivatives have a closed form solution:

aLCE(ya j})

= [o(W - X+ b) — y]x;

17
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Pseudocode

function STOCHASTIC GRADIENT DESCENT (L(), f(), x, y) returns 6
# where: L is the loss function

# fis a function parameterized by 0
# X is the set of training inputs x(D x@  x®)
# y is the set of training outputs (labels) yD y@ W)

0 < 0 (or randomly initialized) ’K Stochastic Gradient Descent
repeat till done

for each training tuple(x(i),y(i)): (in random order)
1. Compute ¥ = f(x\V; 9) # What is our estimated output $?
2. Compute the loss LW, y®¥)  # How far off is $¥) from the true output y@ 2

3. g « VL(f(x";0),y") # How should we move 6 to maximize loss?
4. 0 <« 0 —ng # Go the other way insteaad

return @

18
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Mini-Batching

function STOCHASTIC GRADIENT DESCENT (L(), fO, x, y, m) returns 0
# where: L is the loss function

# fis a function parameterized by 6
# X is the set of training inputs x(D x(@  xW)
# y is the set of training outputs (labels) y(l),y@), ...y(N) and m is the mini-batch size

0 < 0 (or randomly initialized)
repeat till done

for each randomly sampled minibatch of size m:

1. for each training tuple(x(i),y(i)) in the minibatch: (in random order)

i.  Compute ) = f(x?; 9) # What is our estimated output $?
i. ComputethelossL, ..« L ..+ LHY y"Y) #How far off is $ ¥ from the true output y¥ ?
2. g <« —VL . (f(x?;0),y") # How should we move @ to maximize loss?
m
3. 0 < 0-—ng # Go the other way instead

return @

19
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Mini-Batching

function STOCHASTIC GRADIENT DESCENT (L(), fO, x, y, m) returns 0
# where: L is the loss function

# fis a function parameterized by 6
# X is the set of training inputs x(D x(@  xW)
# y is the set of training outputs (labels) y(l),y@), ...y(N) and m is the mini-batch size

0 < 0 (or randomly initialized)
repeat till done

for each randomly sampled minibatch of size m:
1. for each training tuple(x(i),y(i)) in the minibatch: (in random order)
i.  Compute ) = f(x?; 9) # What is our estimated output $?
i. ComputethelossL, ..« L ..+ LHY y"Y) #How far off is $ ¥ from the true output y¥ ?

2. g <« —VL . (f(x?;0),y") # How should we move 6 to maximize loss?
m
3. 0 < 0-ng # Go the other way instead
return 0

Why is this better than stochastic gradient descent?
19
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Overtitting

® 4-gram model on tiny data will just memorize the data
® 100% accuracy on the training set
® But it will be surprised by the novel 4-grams in the test data
® | ow accuracy on test set
® Models that are too powertul can overfit the data
® Fitting the details of the training data so exactly that the model doesn't generalize

well to the test set
How to avoid overtitting?

Regularization in logistic regression Dropout in neural networks

20
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Regularization

® A solution for overfitting: Add a reqularization term R(60) to the loss function
® (for now written as maximizing logprob rather than minimizing loss)

® |dea: choose an R(0) that penalizes large weights
® fitting the data well with lots of big weights not as good as
® fitting the data a little less well, with small weights

0 = arg min — Z log P(yW|xY) + aR(6)
0 i=1

21
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| 2 / Riage Regularization

® The sum of the squares of the weights
2, = Euclidean distance of 6 to

® The name is because this is the (square of the) L2 norm ||&
the origin.

d
— 19112 — 2
R©O) = ||0|I3= ) 6
j=1
| 2 regularized objective function:
n d
) — (D) | @y _ 2
0 = argmnglogP(y | x) aZé’j

i=1 =1

22
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| 1 / Lasso Regularization

® The sum of the (absolute value of the) weights

® Named after the L1 norm ||@||; = sum of the absolute values of the weights = Manhattan
distance

d
RO) =10, = )16
j=1

L1 regularized objective tfunction:

n d
0 = are max log P(yD | xW) — & 0.
g m: Z} g P(y® | x®) Z‘"‘

23
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Multinomial Logistic
Regression
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Multinomial Logistic Regression
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Multinomial Logistic Regression

® Often we need more than 2 classes
® Positive / negative / neutral sentiment of a document
® Parts of speech of a word (noun, verb, adjective, adverb, preposition, etc.)
® Actionable classes for emergency SMSs

26
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Multinomial Logistic Regression

® Often we need more than 2 classes
® Positive / negative / neutral sentiment of a document
® Parts of speech of a word (noun, verb, adjective, adverb, preposition, etc.)
® Actionable classes for emergency SMSs
® |[f > 2 classes we use the term “multinomial logistic regression “
® Typically the term “logistic regression” indicates binary classification

26
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Multinomial Logistic Regression

The probability of everything must still sum to 1

P(+|x)+P(—|x)+P(~|x)=1

27
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Multinomial Logistic Regression

The probability of everything must still sum to 1

P(+|x)+P(—|x)+P(~|x)=1

® Need a generalization of the sigmoid!

® |ntroducing the softmax function, which

® Takes a vector z = [z, 25, ..., Zx| Of K arbitrary values

® cach z; corresponds to weighted sum of features for the Kth class
® Outputs a probability distribution

® cach value in the range [0,1]

® all the values summing to 1

27
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The Softmax Function

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

28
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The Softmax Function

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

exp(z;)

ZJ'K:I eXp(Zj)

softmax(z,) = 1 <i<K

K
The denominator Z exp(z;) is used to normalize all the values into probabilities.

=1

28
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The Softmax Function

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

softmax(z,) = Pz) ] <i<K

ZJ'K:I eXp(Zj)

K
The denominator Z exp(z;) is used to normalize all the values into probabilities.

=1

exp(z;) exp(2,) exp(zx)
— s

YK expz) X expz) X exp(z)

softmax(z) =

28
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Softmax: Example

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

exp(z;) exp(2,) exp(zx)

,...,

Y €XP() | ¥ eXP(z) Y., exp(z)

softmax(z) =

29
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Softmax: Example

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

z = [0.6, 1.1, 1.5, 1.2, 3.2, 1.1]

exp(z;) exp(2,) exp(zx)
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Y €XP() | ¥ eXP(z) Y., exp(z)

softmax(z) =

29



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Softmax: Example

Turns a vector z = [z, 2, ..., Zx] of K arbitrary values into probabilities

z = [0.6, 1.1, 1.5, 1.2, 3.2, 1.1]

exp(z;) exp(2,) exp(zx)

,...,

Y €XP() | ¥ eXP(z) Y., exp(z)

softmax(z) =

softmax(z) = [0.055, 0.090, 0.0067, 0.10, 0.74, 0.010]

29
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Binary versus Multinomial

Binary Logistic Regression

Why do we NOT need a different
weight for each class in binary

ogistic regression?
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Binary versus Multinomial

Binary Logistic Regression

e — {1 if “1” € doc We=3.0

Why do we NOT need a different
weight for each class in binary

ogistic regression?
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Binary versus Multinomial

Binary Logistic Regression

Multinomial Logistic Regression

e — {1 if “1” € doc We=3.0

Why do we NOT need a different
weight for each class in binary

ogistic regression?

30
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Binary versus Multinomial

Binary Logistic Regression

Multinomial Logistic Regression

Ws.+ W5~ Ws, -
xg = 4 Lt Fredoc ws = 3.0 Separate weights for each class
O otherwise \ y

Why do we NOT need a different
weight for each class in binary

ogistic regression?

30
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Binary versus Multinomial

Binary Logistic Regression

1 1if “!” € doc
S { 0 otherwise >

Why do we NOT need a different
weight for each class in binary

ogistic regression?

30

Multinomial Logistic Regression

\4 \4 \4

Ws + Ws ~ Ws

Separate weights for each class

e —————————————————

Feature Definition W5+ Ws5_ Wsy
1 1t “!” €doc
f5(x) {O otherwise 30 31 =33
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Softmax in multinomial logistic regression

Ply = ¢|x: 0) = exp(w,. - X + D)

ijl exp(W; - X + b)

31
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Softmax in multinomial logistic regression

exp(w. - X+ b
Py = c|x: 0) = —PMe X+ D)

K
ijl exp(W; - X + b)

® |nput is still the dot product between weight vector w. and input vector X, offset by b

31
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Softmax in multinomial logistic regression

exp(w. - X+ b
Py = ¢|x;0) = — PN XH D)

K f
zj=1 €Xp<\Wj - X + b)

® |nput is still the dot product between weight vector w. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d
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Softmax in multinomial logistic regression

1

Parameters are now a matrix W € Rk and b € |

exp(w. - X+ b
Py = ¢|x;0) = — PN XH D)

K f
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® |nput is still the dot product between weight vector w. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d
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eXp(w,. - X + D)

P(y =c|x;0) =

K f
zj=1 €Xp<\Wj - X + b)

® |nput is still the dot product between weight vector w. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d

Multinomial LR Loss:
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Softmax in multinomial logistic regression

1

Parameters are now a matrix W € Rk and b € |

exp(w. - X+ b
Py = ¢|x;0) = — PN XH D)

K f
zj=1 €Xp<\Wj - X + b)

® |nput is still the dot product between weight vector w. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d

Multinomial LR Loss:

K

Lrp=—-logP(y=c|x;0)=—(W_.-xX+ D) log[Zexp(wj-X+b)
j=1

31
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Softmax in multinomial logistic regression

1

Parameters are now a matrix W € Rk and b € |

exp(w. - X+ b
Py = ¢|x;0) = — PN XH D)

K f
zj=1 €Xp<\Wj - X + b)

® |nput is still the dot product between weight vector w. and input vector X, offset by b
® But separate weight vectors for each of the K classes, each of dimension d

Multinomial LR Loss:

K

Lrp=—-logP(y=c|x;0)=—(W_.-xX+ D) log[Zexp(wj-X+b)
j=1
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e Yet do I fear thy nature. It is too full o'the milk
of human kindness To catch the nearest way.

e If it were done when ‘tis done, then ‘twere well
It were done quickly.

e [s this a dagger which I see before me, The

handle toward my hand?

e My hands are of ;your color, but I shame To
wear a heart so white.

e Knock, knock, knock! Who's there,
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e Yet do I fear thy nature. It is too full o'the milk
of human kindness To catch the nearest way.

e If it were done when ‘tis done, then ‘twere well
It were done quickly.

e [s this a dagger which I see before me, The
handle toward my hand?

e My hands are of ;your color, but I shame To
wear a heart so white.

e Knock, knock, knock! Who's there,

Where is it more likely to

find the word “doth”?
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Case Study: Word Neighborhood Predictor

Ingredients Directions
12 Large Eggs, Hard-boiled And Peeled Slice eggs in half lengthwise. Pop out yolks and place them in a
(See Note) medium-sized mixing bowl. Mash yolks with a fork and then add

. mayonnaise, mustard, and salt. Mix until smooth. To achieve
1/2 c¢. Mayonnaise

maximum smoothness, blitz the yolk mixture a few times with an

2 tbsp. Prepared Yellow Mustard immersion blender. If you are planning to use a pastry bag and

1/4 tsp. Kosher Salt piping tip to add the yolk mixture to the egg whites, it helps to get

the yolk mixture nice and smooth.

See Nutritional Information v

Divide the yolk mixture evenly between the egg white halves.

Garnish as desired. Serve immediately or refrigerate until ready to

Serve.
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Case Study: Word Neighborhood Predictor

What words are likely to co-occur with the word “garnish”?

Ingredients Directions
12 Large Eggs, Hard-boiled And Peeled Slice eggs in half lengthwise. Pop out yolks and place them in a
(See Note) medium-sized mixing bowl. Mash yolks with a fork and then add

. mayonnaise, mustard, and salt. Mix until smooth. To achieve
1/2 c¢. Mayonnaise

maximum smoothness, blitz the yolk mixture a few times with an

2 tbsp. Prepared Yellow Mustard immersion blender. If you are planning to use a pastry bag and

1/4 tsp. Kosher Salt piping tip to add the yolk mixture to the egg whites, it helps to get

the yolk mixture nice and smooth.

See Nutritional Information v

LY Divide the yolk mixture evenly between the egg white halves.
" s f Garnish as desired. Serve immediately or refrigerate until ready to
. . . serve.

Next Class: This is the text classification task we will use logistic regression for

to learn word embeddings!
33
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® Can use an n-gram language model for text classification!
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® Can use an n-gram language model for text classification!

® However questions and answers (remember one of K classes) need to be part of the
same sequence
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® Can use an n-gram language model for text classification!

® However questions and answers (remember one of K classes) need to be part of the
same sequence
® At inference time, we only care about the probability of the answers, given the history
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® Can use an n-gram language model for text classification!

® However questions and answers (remember one of K classes) need to be part of the
same sequence
® At inference time, we only care about the probability of the answers, given the history
® Probability of all other tokens does not matter

34



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Text Classitication with a Language Model

® Can use an n-gram language model for text classification!

® However questions and answers (remember one of K classes) need to be part of the
same sequence
® At inference time, we only care about the probability of the answers, given the history
® Probability of all other tokens does not matter

® Renormalize probabilities of the K possible answers so they add to 1

34



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Text Classitication with a Language Model

® Can use an n-gram language model for text classification!

® However questions and answers (remember one of K classes) need to be part of the
same sequence
® At inference time, we only care about the probability of the answers, given the history
® Probability of all other tokens does not matter

® Renormalize probabilities of the K possible answers so they add to 1

® Use the softmax function!
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| ecture Outline

® Quiz 1 Solution
® Recap
® | ogistic Regression
® Model
® | Oss
® Optimization
® Regularization

® Multinomial Logistic Regression
® \Word Embeddings
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What do words mean?

Dictionary

Definitions from Oxford Languages - Learn more

© objective

/ab’jektiv/

adjective

1. (of a person or their judgment) not influenced by personal feelings or opinions in considering and

representing facts.
"historians try to be objective and impartial®

Similar:  impartial unbiased unprejudiced nonpartisan disinterested v

2. GRAMMAR
relating to or denoting a case of nouns and pronouns used as the object of a transitive verb or a

preposition.
noun

1. athing aimed at or sought; a goal.
"the system has achieved its objective”

Similar: aim intention purpose target goal intent object end Vv
2. GRAMMAR
the objective case.
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What do words mean?

Dictionary

Definitions from Oxford Languages - Learn more

© objective

/ab’jektiv/

A sense or “concept” is the meaning

component of a word

adjective

1. (of a person or their judgment) not influenced by personal feelings or opinions in considering and
representing facts.
"historians try to be objective and impartial®

Similar:  impartial unbiased unprejudiced nonpartisan disinterested v

2. GRAMMAR
relating to or denoting a case of nouns and pronouns used as the object of a transitive verb or a
preposition.
noun

1. athing aimed at or sought; a goal.
"the system has achieved its objective”

Similar: aim intention purpose target goal intent object end Vv

2. | GRAMMAR
the objective case.
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What do words mean?

Dictionary

Definitions from Oxford Languages - Learn more

A sense or “concept” is the meaning

component of a word

@ ob-jec-tive Lemma

/ab’jektiv/
Lemmas adjective
® Canonical form 1. (of a person or their judgment) not influenced by personal feelings or opinions in considering and
oF representing facts.
Oor example, "historians try to be objective and impartial®
brea <, brea kS, bro ke, broken and Similar:  impartial unbiased unprejudiced nonpartisan disinterested v
breaking all share the lemma 2. GRAMMAR
" 1" relating to or denoting a case of nouns and pronouns used as the object of a transitive verb or a
break preposition.

noun

1. athing aimed at or sought; a goal.
"the system has achieved its objective”

Similar: aim intention purpose target goal intent object end Vv

2. | GRAMMAR
the objective case.
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What do words mean?

Dictionary

Definitions from Oxford Languages - Learn more

A sense or “concept” is the meaning

component of a word

@ ob-jec-tive Lemma

/ab’jektiv/
Lemmas adjective
® Canonical form 1. (of a person or their judgment) not influenced by personal feelings or opinions in considering and
oF representing facts.
Oor example, "historians try to be objective and impartial®
brea <, brea kS, bro ke, broken and Similar:  impartial unbiased unprejudiced nonpartisan disinterested v
breaking all share the lemma 2. GRAMMAR
" 1" relating to or denoting a case of nouns and pronouns used as the object of a transitive verb or a
break preposition.

® Different from “stem” noun

1. athing aimed at or sought; a goal.
"the system has achieved its objective”

Can be polysemous (have mU|t|p|e Similar: aim intention purpose target goal intent object end v

senses)

2. | GRAMMAR
the objective case.
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Words as Vectors

man —| 0.6 |-0.2| 0.8 |0.9 -0.1 |—0.9 -0.7

woman —| 0.7 | 0.3 | 0.9 I—O.7 0.1 I—O.S —0.4

queen —| 0.8 |-0.1|0.8 [-0.9| 0.8 [-0.5]-0.9

\ J \ y,
Y Y

Word Word embedding
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Words as Vectors

In NLP, we commonly represent word types with vectors!

man —| 0.6 |-0.2| 0.8 |0.9 -0.1 |—0.9 -0.7

woman —| 0.7 | 0.3 | 0.9 |—0.7 0.1 I—O.S —0.4

queen —»>| 08 |-0.1(0.8 [-09] 0.8 |-0.5|-0.9

\ J \ y,
Y Y

Word Word embedding
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Words as Vectors

® \ery useful in capturing similarity between words, and man - 06 [-02|08 [09 |-01]|-09]-07

In NLP, we commonly represent word types with vectors!

other forms of lexical semantics (e.g. synonymy, woman —107 1oz los |_0_7 0 |_0.5 o4

hypernyms, antonymy)

queen —»>| 08 |-0.1(0.8 [-09] 0.8 |-0.5|-0.9

\ J \ y,
Y Y

Word Word embedding
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Words as Vectors

® \ery useful in capturing similarity between words, and man |06 |-02|08 [09 |-01]|-09]-07

In NLP, we commonly represent word types with vectors!

other forms of lexical semantics (e.g. synonymy, woman —107 1oz los |_0.7 0 I‘O'S o4

hypernyms, antonymy)

® Computing the similarity between two words (or

phrases, or documents) is extremely usetul for many queen ={ 0.9 =0L] 95 03| 08 [=0 =02
NLP tasks \ )\ J

Y Y
Word Word embedding
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Words as Vectors

® \ery useful in capturing similarity between words, and man |06 |-02|08 [09 |-01]|-09]-07

In NLP, we commonly represent word types with vectors!

other forms of lexical semantics (e.g. synonymy, woman —107 1oz los |_0.7 0 I‘O'S o4

hypernyms, antonymy)

® Computing the similarity between two words (or

phrases, or documents) is extremely usetul for many queen ={ 0.9 =0L] 95 03| 08 [=0 =02
NLP tasks \ )\ J

Y Y
® O: How tall is Mount Everest? Word Word embedding
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Words as Vectors

In NLP, we commonly represent word types with vectors!

® \ery useful in capturing similarity between words, and man |06 |-02|08 [09 |-01]|-09]-07

other forms of lexical semantics (e.g. synonymy, woman —07 103 1oo 07104 I‘O'S o4

hypernyms, antonymy)

® Computing the similarity between two words (or

phrases, or documents) is extremely usetul for many quecn =[085 [-0.1] 05 09| 06 [~0S P05
NLP tasks NI ; J
® Q: How tall is Mount Everest? Word Word embedding

® A: The official height of Mount Everest is 29029 ft
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Original source
onlinelibrary.wiley.com/stor...

. . . enough scale tar companies 0 make peolit from it In ocder 1o be competstive with new
’ S I m I | a r'l 't 'FO r' echnologies. the challenge of today's large companses is 30 create new business within their
y business (Ganvia & Levesque, 2006). Panthermare, the two rescarchers emphasize a switch
. . from downsixing aad cost cultmng %0 the creatioa, development and assistance of Innovutlve

p | 3 g 1ariIsm sew businesses. For existing compaaies the implementation of corporate enirepeeseurship. all grow toget her e qua | y, or do

in ander 8o develop insovative businesses, is risky. Are the three types of entrepeencurship
o linked sogether over time”? How loeg does it ke 1o change bebavior of the finm as o whalke?! .

detection 1 the fve ribunc ane creed,do all o sogeshee ey, o o same grow fste ad some grow faster and earlier than

carbser than others? How do the lmportance and intensities of the anbates dulter both

absolutely and relatively im each type” These are the questions that o longitudenal stxly such

e 1l et 0 e o o hs s f g imente others? These are the questions

Rostile emvaroaments. According 10 Garvin and Levesque (2N6) implementing new ventures

® \Vord simila rity S e apy—— that a longitudinal study such as

innovanive behavsor i ceder to saceeed In dynamic business eavarooments ( Yuan &

can lead to this can attempt to answer to shed
sentence and B light on the nature of organiza-
document .‘ tions’ adjustments to hostile
similarity B environments. Of the many ways

The downside & potentinlly very damaging 10 o statup’s lifespan: i o stamap lands a

palot or POC with the corparution running the acceleratoe, they have very lintle baneneg to a dj u St’ tWO Sta n d O ut at

power o time o find other panness to west thewr sodution with, The transition from

MANUEACIUNING SConomy 50 servicoe eocmomy has ked to o shif s business agenda from ® . 2 - . -
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® Visualizing
semantic change
over time

® New words: dank,

cheugy, rizz,
shook,
situationship,
simp, delulu,
cottagecore

Aaft 9ay (1900s)

flaunting sweet
tasteful cheerful
pleasant
frolicsome
witty Y gay (1950s)
bright

gays Yisexual

gay (1990s) nomosexual

lesbian

b
spread
broadcast (1850s). ez(é]\'ﬂ'/
| SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
Hhe broadcast (1990s)

USC Viterbi

C solemn
awful (1850s)

majestic
awe
dread yensive
gloomy

horrible

appalliwg terrible

awful (1900s) wonderful

awful (1990s)

welrd
awfully

~30 million books, 1850-1990, Google Books data

L A

e e
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Cosine Similarity for Word Similarity

- —>
V. W

[V]|W

Cosine similarity of two vectors cos(v, W) =
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Based on the definition of the dot
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Cosine as a similarity metric

-1: vectors point in opposite directions

+1: vectors point in same directions
0: vectors are orthogonal
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Cosine as a similarity metric

-1: vectors point in opposite directions
+1: vectors point in same directions

0: vectors are orthogonal

Greater the cosine, more similar the words
e ————————————
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n-grams and Semantics

® \\ere feature representations! And so were Bag-of-Words

® X's in machine learning, which are associated with parameters
® Just strings - atomic symbols!

® As n increases, we get strings that co-occur

® n-grams do not represent meaning well
® Do not tell us that the word “rancor” is close in meaning to the word “hatred”
® Or that "Rise” and "Fall” have opposite meanings
® | et alone more complex is-a or part-of relations

® Discrete representations of meaning!

® |ater: feature representations which are continuous
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n-grams as One-hot Vectors

vocabulary
i
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the Unigram Vectors: Represent each
ovie word as a vector of zeros with a
. single 1 identitying the index of
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n-grams as One-hot Vectors

vocabulary
i movie = < 0,0,0,0,1,0 >
hate film = < 0,0,0,0,0,1 >
love
the Unigram Vectors: Represent each How can we compute a vector
ovie word as a vector of zeros with a representation such that the dot
. single 1 identifying the index ot oroduct correlates with wora

the word similarity?

Dot product is zero! These vectors are orthogonal

S —————

44
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Project high-dimensional embeddings down into 2 dimensions
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Project high-dimensional embeddings down into 2 dimensions
® Most common projection method: t-SNE

Visualizing Embeddings

Word Embedding t-SNE Plot
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Visualizing Embeddings

Project high-dimensional embeddings down into 2 dimensions
® Most common projection method: t-SNE
® Also: Principal Component Analysis (PCA)

Word Embedding t-SNE Plot
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Analogy Relations

® The classic parallelogram model of analogical reasoning

® \Nord analogy problem: /Q
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47



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Analogy Relations

® The classic parallelogram model of analogical reasoning

® \Nord analogy problem: /Q
® "Apple is to tree as grape isto ...” apple

/

o
Ado (Wapple o Wtree) to ngpe o/ vine

Should result inw, ., grape

tree

Rumelhart and Abrahamson, 1973

M —m

For a problem a : a* :: b : b*, the parallelogram method is:

b* = arg max sim(w,b —a + a*)

W
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Analogy Relations

Maximize similarity = minimize distance
S ——————

® The classic parallelogram model of analogical reasoning

® \Nord analogy problem: O/'O
® "Apple is to tree as grape isto ...” apple

/

o
Ado (Wapple o Wtree) to ngpe / vine

Should result inw, ., grape

tree

Rumelhart and Abrahamson, 1973

B e SnslsbMRNSEN T

For a problem a : a* :: b : b*, the parallelogram method is:

b* = arg max sim(w,b —a + a*)

W
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Analogy Relations: GloVe
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Analogy Relations: GloVe

® Relational properties of the GloVe vector 05| heirese _
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Analogy Relations: GloVe
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