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Lecture Outline

• Announcements + Recap


• -gram Language Models


• Zeros!

• Smoothing

• Basics of Supervised Machine Learning


I. Data: Preprocessing and Feature Extraction

II. Model:


I. Logistic Regression

III. Loss

IV. Optimization Algorithm

V. Inference

n

2



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Announcements 

+


Recap

3



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.
• Email policy: Please use Brightspace for your questions, which could be answered by TAs and might be 

beneficial for the rest of the class as well

• Email me very sparingly, I will NOT be able to respond to everyone


• I will especially NOT respond to questions regarding logistics, which are either discussed in class or 
mentioned on the website / Brightspace

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.
• Email policy: Please use Brightspace for your questions, which could be answered by TAs and might be 

beneficial for the rest of the class as well

• Email me very sparingly, I will NOT be able to respond to everyone


• I will especially NOT respond to questions regarding logistics, which are either discussed in class or 
mentioned on the website / Brightspace

• CARC access for Project

• Not possible to get for everyone

• Please let us know if needed and depending on your project description we will apply for it

• Not to be used for anything beyond your class project

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.
• Email policy: Please use Brightspace for your questions, which could be answered by TAs and might be 

beneficial for the rest of the class as well

• Email me very sparingly, I will NOT be able to respond to everyone


• I will especially NOT respond to questions regarding logistics, which are either discussed in class or 
mentioned on the website / Brightspace

• CARC access for Project

• Not possible to get for everyone

• Please let us know if needed and depending on your project description we will apply for it

• Not to be used for anything beyond your class project

• Thu: Quiz 1 (Bring your laptop!)

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.
• Email policy: Please use Brightspace for your questions, which could be answered by TAs and might be 

beneficial for the rest of the class as well

• Email me very sparingly, I will NOT be able to respond to everyone


• I will especially NOT respond to questions regarding logistics, which are either discussed in class or 
mentioned on the website / Brightspace

• CARC access for Project

• Not possible to get for everyone

• Please let us know if needed and depending on your project description we will apply for it

• Not to be used for anything beyond your class project

• Thu: Quiz 1 (Bring your laptop!)
• Final Exam on 12/5 (in person)

4



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Logistics and Announcements
• Today: HW1 released


• TA Office Hours: HW related questions 
• My Office Hours: Questions about lectures, conceptual questions, class project ideas etc.
• Email policy: Please use Brightspace for your questions, which could be answered by TAs and might be 

beneficial for the rest of the class as well

• Email me very sparingly, I will NOT be able to respond to everyone


• I will especially NOT respond to questions regarding logistics, which are either discussed in class or 
mentioned on the website / Brightspace

• CARC access for Project

• Not possible to get for everyone

• Please let us know if needed and depending on your project description we will apply for it

• Not to be used for anything beyond your class project

• Thu: Quiz 1 (Bring your laptop!)
• Final Exam on 12/5 (in person)
• Final Report Submission for Team Projects on 12/17 (online)
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Probabilistic Language Modeling

5

A model that assigns probabilities to sequences 
of words is called a language model

P(w) = P(w1, w2, w3, …wn)

P(wn |w1, w2, w3, w4, …wn−1)

Goal: compute the probability of a sentence or sequence of words: 

Related task: probability of an upcoming word: 

P(w1, w2, …wn) =
n

∏
i=1

P(wi |wi−1…w1)Chain Rule
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P(that | its water is so transparent) =
Count(its water is so transparent that)

Count(its water is so transparent)

Maximum Likelihood Estimate
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How to estimate the probability of the next word?

6

P(that | its water is so transparent) =
Count(its water is so transparent that)

Count(its water is so transparent)

Maximum Likelihood Estimate

Too many possibilities to count! Too few sentences that look like this…

Need to make some simplifying assumptions…
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7

P(wi |w1, w2, …wi−1) ≈ P(wi |wi−k+1 . . . wi−1)
-th order Markov Assumptionk
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In other words, we approximate each component in the product such that it is only 
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7

P(w1, w2, …wn) = ∏
i

P(wi |wi−k+1 . . . wi−1)

P(wi |w1, w2, …wi−1) ≈ P(wi |wi−k+1 . . . wi−1)
-th order Markov Assumptionk
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P(w1, w2, …wn) ≈ ∏
i

P(wi)Unigram Model

Bigram Model P(w1, w2, …wn) ≈ ∏
i

P(wi |wi−1)

-gram Modelk P(w1, w2, …wn) ≈ ∏
i

P(wi |wi−k+1…wi−1)
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Definitely true for tokens in 
natural language!
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n-gram Models: Limitations

In general this is an insufficient model of language
• “The computer which I had just put into the machine room on the fifth floor crashed.”

At times the dependencies are not even clear!
• “The complex houses married and single soldiers and their families.”
• “The horse raced past the barn fell.” 
• “The old man the boat.” 

 But we can often get away with -gram modelsn

10

Language has long-distance dependencies

Garden Path Sentences
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count(wi−1, wi)

count(wi−1)

Maximum Likelihood Estimate
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Estimating bigram probabilities

11

PMLE(wi |wi−1) =
c(wi−1wi)
c(wi−1)

PMLE(wi |wi−1) =
count(wi−1, wi)

count(wi−1)

Special edge case tokens: <s> and </s> for beginning of 
sentence and end of sentence, respectively

Maximum Likelihood Estimate

We do everything in 
log space to handle 

overflow issues

Counts are whole 
numbers
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For the 9222 sentences in the Berkeley Restaurant Corpus:

12

History

Next Word

Unigram 
Counts

Bigram 
Counts

wi−1

wi

P(wi |wi−1) =
c(wi−1, wi)

c(wi−1)

Bigram 
Probabilities

Most n-grams are 
never seen!
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How good is a language model?

A better model of a text 
• is one which assigns a higher probability to the word that actually occurs
• returns the highest probability when evaluated on an unseen test set

• Mantra: I will never train my model on a test set

13

Perplexity PPL(w) = P(w1, w2, …, wN)− 1
N Normalization Factor

= exp(−
1
N

log P(w1, w2, …, wN))

Negative log likelihood
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14

Bigram Perplexity PPL(w) = exp(−
1
N

N

∑
i=1

log P(wi |wi−1))

Lower the perplexity, better the language model

WSJ Perplexities

n-grams do a better and 
better job of modeling the 

training corpus as we 
increase the value of n 
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How best to evaluate an LM?

• Extrinsic evaluation 
• On an external task (e.g. summarization) that uses an LM
• More reliable
• Can be time-consuming; hard to design

• Which is the best task? How many tasks to try? 
• Therefore, we often use intrinsic evaluation: perplexity

• Bad approximation (less reliable) 
• Unless the test data looks just like the training data 

• Generally only useful in pilot experiments (faster to compute)

15
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• Choose a random bigram (<s>, w) 
according to its probability 


• Now choose a random bigram (w, x) 
according to its probability 


• And so on until we choose </s>

• Then string the words together

16
On your own: Sampling from a probability distribution
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Shakespearean corpus cannot produce WSJ vocabulary and vice versa
Overfitting!
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Two Types of Overfitting Issues

• At test time:
• Zero unigram counts
• Zero bi-gram counts
• May lead to undefined n-gram probabilities and perplexity
• To be expected, very common!

• Solutions:
• Zero unigram counts: <UNK> token
• Closed and Open Vocabularies

• Zero bi-gram counts: Smoothing

19

P(wi |wi−1) =
c(wi−1, wi)

c(wi−1)

PPL(w) = N
1

P(w1w2…wN)
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N-gram models: Zero Counts

• At test time, we may encounter tokens never seen (unigram with 0 frequency)

• Very severe yet common problem resulting in undefined probabilities

• Happens because of new terms, words, different dialects, evolving language

• These are known as OOV for “out of vocabulary”, or <UNK> for unknown tokens 

• Solution: During training (probability estimation), replace all words that occur fewer 
than  times in the training set, where  is some small number by <UNK> and re-
estimate the counts and probabilities. 

• At test time, any OOV token is automatically mapped to <UNK>

n n

• Design: Open Vocabulary vs. Closed Vocabulary

• Closed Vocabulary: predetermine the vocabulary (e.g. using a dictionary)


• Restricted…why?

• Open Vocabulary: no predetermination but anticipate new tokens

20

Open vs. Closed Vocabularies



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Smoothing

21



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Intuition for Smoothing

22



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Intuition for Smoothing

• Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

22



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Intuition for Smoothing

• Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

• ?                 ?|V | = |Vbigrams | =

22



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Intuition for Smoothing

• Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

• ?                 ?|V | = |Vbigrams | =
• All other vocabulary tokens getting 0 probability just doesn’t seem right. We want to 

assign some probability to other words

22



Fall 2024 CSCI 544: Applied NLP                                                                                                                                                                                                            

Intuition for Smoothing

• Types: I, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

• ?                 ?|V | = |Vbigrams | =
• All other vocabulary tokens getting 0 probability just doesn’t seem right. We want to 
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• ?                 ?|V | = |Vbigrams | =
• All other vocabulary tokens getting 0 probability just doesn’t seem right. We want to 

assign some probability to other words
• We want to smooth the distribution from our counts

22

What does a count distribution look like?
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Zipf’s Law

The distribution over words resembles that 
of a power law: 


• there will be a few words that are very 
frequent, and a long tail of words that 
are rare


• , where  is a constant


NLP algorithms must be especially robust to 
observations that do not occur or rarely 
occur in the training data

freqw(r) ≈ r−s s

23
Zipf, G. K. (1949). Human behavior and the principle of least effort. 
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          2 reports 

          1 claims 

          1 request 

          7 total 

Count(w |denied the)
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Count(w |denied the)
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Steal probability mass to generalize better: 

       2.5 allegations 

          1.5 reports 

          0.5 claims 

          0.5 request 

          2 other 

          7 total

Count(w |denied the)
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p( ⋅ | ⋅ )

p( ⋅ | ⋅ )

p( ⋅ | ⋅ )
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 Add-One Estimation

1. Pretend we saw each word one more time than we did 
2. Just add one to all the counts! 
3. All the counts that used to be zero will now have a count of 1…

26

75 year old method!

MLE estimate

Add-1 estimate

PMLE (wi) =
c(wi)

∑w c(w)

PAdd−1 (wi) =
c(wi) + 1

∑w (c(w) + 1)
=

c(wi) + 1
V + ∑w c(w)

Laplace smoothing 

What happens to our  if we don’t increase the denominator?P
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Add-1 Estimation Bigrams

27

MLE estimate PMLE (wi |wi−1) =
c(wi−1wi)
c(wi−1)

Pretend we saw each bigram one more time than we did 
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Add-1 Estimation Bigrams

27

MLE estimate

Add-1 estimate

PMLE (wi |wi−1) =
c(wi−1wi)
c(wi−1)

PAdd−1 (wi |wi−1) =
c(wi−1wi) + 1
c(wi−1) + V

Pretend we saw each bigram one more time than we did 

=
c*(wi−1wi)

c(wi−1)

What does this do 
to the unigram 

counts?

Keep the same denominator as 
before and reconstruct bigram counts
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• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for 

• tell me about chez panisse 

• can you give me a listing of the kinds of food that are available 

• i’m looking for a good place to eat breakfast 

• when is caffe venezia open during the day

Recall: BRP Corpus

28

Unigrams

Bigramswi

wi−1
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Laplace-smoothed bigram counts

29

Just add one to all the counts! 
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Laplace-smoothed bigram counts

29

Just add one to all the counts! 

wi

wi−1
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 Laplace-smoothed bigram probabilities

30

PAdd−1 (wi |wi−1) =
c(wi−1wi) + 1
c(wi−1) + V
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Reconstituted Counts

31

c * (wi−1wi) =
[c(wi−1wi) + 1]c(wi−1)

c(wi−1) + V
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 Compare with raw bigram counts

32

Original, Raw

Reconstructed

Big change 
to the 

counts!

Perhaps 1 is too 
much, add a 

fraction?

Add-  smoothingk
 is a 

hyperparameter
k
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 Add-1 Estimation: Last thoughts

So add-1 isn’t used for -grams, being something of a blunt instrumentn
• One-size-fits-all 

Add-1 is used to smooth other NLP models though… 
• For text classification (Naïve Bayes)
• In domains where the number of zeros isn’t so huge

33
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Interpolation

Perhaps use some pre-existing evidence
• Condition on less context for contexts you haven’t learned much about 

34

Interpolation works better than Add-1 / Laplace

Interpolation

• mix unigram, bigram, trigram probabilities for a trigram LM

• mix n-gram, (n-1)-gram, … unigram probabilities for an n-gram LM
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 Linear Interpolation

35

 Simple Interpolation

̂P(wi |wi−2wi−1) = λ3(wi−1
i−2)P(wi |wi−2wi−1)

+λ2(wi−1
i−2)P(wi |wi−1)

+λ1(wi−1
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 Simple Interpolation

Context-Conditional Interpolation
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 Linear Interpolation

35

 Simple Interpolation

Context-Conditional Interpolation

̂P(wi |wi−2wi−1) = λ3(wi−1
i−2)P(wi |wi−2wi−1)

+λ2(wi−1
i−2)P(wi |wi−1)

+λ1(wi−1
i−2)P(wi)

̂P(wi |wi−2wi−1) = λ1P(wi)

+λ2P(wi |wi−1)

+λ3P(wi |wi−2wi−1)
∑

k

λk = 1

Different for 
every unique 

context

Hyperparameters!

Different for different bigrams! 

Serve as Reconstituted Counts
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Choose λs to maximize the probability of held-out data: 

• Fix the n-gram probabilities (on the training data) 

• Then search for λs that give largest probability to held-out set:

36

logP(w1 . . . wn |M(λ1…λk)) = ∑
i

logPM(λ1...λk)(wi |wi−1)
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Lecture Outline

• Announcements 

• Recap


• n-gram Language Models

• Zeros!


• Smoothing

• Basics of Supervised Machine Learning


I. Data: Preprocessing and Feature Extraction

II. Model:


I. Logistic Regression

III. Loss

IV. Optimization Algorithm

V. Inference

38
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Learning Phase
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Text Classification Tasks

41

Not just NLP, classification is a general ML technique 
often applied across a wide variety of prediction tasks!
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• a document x
• Each observation  is represented by a feature vector x(i)

x(i) = [x(i)
1 , x(i)

2 , …, x(i)
d ]

• a label  from a fixed set of classes y C = c1, c2, …, cJ

• Output: a predicted class ̂y ∈ C
• Setting for Binary Classification: given a series of input / output pairs: 

•  where label (x(i), y(i)) y(i) ∈ C = {0,1}
• Goal of Binary Classification

• At test time, for input , compute an output: a predicted class xtest

̂ytest ∈ {0,1}

42
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Is language modeling a classification task?
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• Input observation: vector of features, x = [x1, x2, …, xn]
• Weights: one per feature:  w = [w1, w2, …, wn]

• Sometimes we call the weights Θ = [θ1, θ2, …, θn]
• Output: a predicted class  

• Binary logistic regression ̂y ∈ {0,1}
• Multinomial logistic regression (e.g. 5 classes):  ̂y ∈ {0,1,2,3,4}

44
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Lecture Outline

• Announcements 

• Recap


• n-gram Language Models

• Zeros!


• Smoothing

• Basics of Supervised Machine Learning


I. Data: Preprocessing and Feature Extraction

II. Model:


I. Logistic Regression

III. Loss

IV. Optimization Algorithm

V. Inference
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Can you guess the  for  = “review contains ‘restaurant’”? w xl
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• Converting capital letters to lowercase: New York -> new york
• Stemming or Lemmatization: tokenization -> token

• In many of the above cases, pre-existing libraries exist for the task (e.g. Porter Stemmer)
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Still relevant, especially for you to understand what current LLMs can automate!
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What happens when we see OOV 
words at test time?
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Is  the number of types or tokens?k

“I love this shirt because it is nice and 
warm. The fabric is also nice and the 
color complements my skin tone.“ 
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Bag of Words: Pros and Cons

• Limitations:

• Insensitive to language structure: all contextual information has been discarded

• Information in word dependencies is overlooked: new york vs new book

• The resulting vectors are just word counts and are highly sparse

• Dominated by common words


• Pros:

• Simple!

• Leads to acceptable performance in quite a few settings

52

Solutions?
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Next Class:

II. Model: 


(a) Logistic Regression

53


