Lecture 2:
n-gram Language Models

Instructor: Swabha Swayamdipta

USC CSCI 544 Applied NLP
Aug 29, Fall 2024

Some slides adapted from Dan Jurafsky and Chris Manning
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® Next Week:

® Tue: HW1 released

® Thu: Quiz 1 (Bring your laptop!)
Brightspace Discussions: Start a new thread under Activities / Discussions / Forums / Topics (e.g. Group Creation)

Missing Class? Report in advance using the form (pinned to Brightspace Announcements)
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| want to ... at < barbecue
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Hey ... Joe comes next, but we can still
make good guesses!

The capital of Nebraska is ... — Lincoln
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| want to ... at <

Building a Language Model

tennis

shovel SNOW

do

Hey ... §Joe

The capital of Nebraska is ...

—— Lincoln

® Task: Given a sequence of
words so far (the context),
predict what comes next

® \\Ve never know for sure wr

comes next, but we can sti
make good guesses!

atl

Certain sentence constructions are more
ikely than others, due to grammaticality,

obscurity or commonness

Sentences have different probabilities!
S ——
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A model that assigns probabilities to sequences of words (e.g., either of
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S ——
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Probabilistic Language Modeling

Goal: compute the probability of a sentence or sequence of words:

P(W) = P(W{, Wy, W3, Wy, Ws, ... W, )

? Difference

Related task: probability of an upcoming word:  P(w, [ wy, wy, wa, wy, ...w, 1)

A model that assigns probabilities to sequences of words (e.g., either of
these: P(w) or P(w, |w;, w,,...w__,)) is called a language model
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P(its water is so transparent that you can see the bottom)

P(its, water, is, so, transparent, that, you, can, see, the, bottom)
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How to compute P(W)?

"its water is so transparent that you can see the bottom”

P(its water is so transparent that you can see the bottom)

P(its, water, is, so, transparent, that, you, can, see, the, bottom)

How to compute this joint probability, P(W) = P(w, Wy, W3, Wy, Ws, ... W, ) 7
e.g. P(its, water, is, so, transparent, that)
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How to compute P(W)?

"its water is so transparent that you can see the bottom”

P(its water is so transparent that you can see the bottom)

P(its, water, is, so, transparent, that, you, can, see, the, bottom)

How to compute this joint probability, P(W) = P(w, Wy, W3, Wy, Ws, ... W, ) 7
e.g. P(its, water, is, so, transparent, that)

Intuition: let’s rely on the Chain Rule of Probability
EE———————
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Chain Rule for words in a sentence

P(its water Is so transparent) =
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Chain Rule for words in a sentence

PWi, Wy, ...w,) = HP(Wi|Wi—1---W1)
i=1

P(its water Is so transparent) = P(its) X
P(water|its) X
P(1s| 1ts water) X
P(so|its water 1s) X

P(transparent| its water Is so)
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Chain Rule for words in a sentence

PWi, Wy, ...w,) = HP(Wi|Wi—1---W1)
i=1

P(its water Is so transparent) = P(its) X
P(water|its) X
P(1s| 1ts water) X
Ordering matters in

language!
s P(transparent| its water is so)

P(so|its water 1s) X
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Why Probabilistic Models?

| will be back soonish

| will be bassoon dish

Why would you want to predict upcoming words,
or assign probabilities to sentences?
® Probabilities are essential for language
generation
® Any task in which we have to identity words
in noisy, ambiguous input, like speech
recognition

10



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Why Probabilistic Models?

| will be back soonish
| will be bassoon dish

Your so silly
You're so silly

Everything has improve
Everything has improved

Why would you want to predict upcoming words,
or assign probabilities to sentences?
® Probabilities are essential for language
generation

® Any task in which we have to identity words
in noisy, ambiguous input, like speech
recognition

® For writing tools like spelling correction or

grammatical error correction

10
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Probabilistic Language Models

Machine Translation:
® P(high winds tonight) > P(large winds tonight)
Spell Correction:
® P(I'm about fitteen minuets away) < P(I'm about fifteen minutes away)
Speech Recognition:
® P(l saw a van) > > P(eyes awe of an)
Summarization, question-answering, etc., etc.!

11
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Probabilistic Language Models

11

Machine Translation:
® P(high winds tonight) > P(large winds tonight)
Spell Correction:
® P(I'm about fitteen minuets away) < P(I'm about fifteen minutes away)
Speech Recognition:
® P(l saw a van) > > P(eyes awe of an)
Summarization, question-answering, etc., etc.!

But how to learn these probabilities?
—
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Suppose we have a biased coin that's heads with probability p.
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Probability Estimation via Statistical Modeling

Suppose we have a biased coin that's heads with probability p.

Suppose we flip the coin four times and see (H, H, H, T). What is p?

We don’t know what p is — could be 0.5! But p = 3/4 = (.75 maximizes the probability
of data sequence (H,H,H,T)

12
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Probability Estimation via Statistical Modeling

Suppose we have a biased coin that's heads with probability p.

Suppose we flip the coin four times and see (H, H, H, T). What is p?

We don’t know what p is — could be 0.5! But p = 3/4 = (.75 maximizes the probability

of data sequence (H,H,H,T) maximum likelihood estimate

The probability of the data is ppp(1 — p) : it you take the derivative and set it equal to
zero and find p = 0.75

12
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n-gram Language Model

The decision for what words occur after a word w is exactly the same as the biased coin,
but with many possible outcomes (as many as all the words) instead of 2

13
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n-gram Language Model

The decision for what words occur after a word w is exactly the same as the biased coin,
but with many possible outcomes (as many as all the words) instead of 2

~

| like to eat cake but |
want to eat pizza right
now. Mary told her
brother to eat pizza too. All other next words = 0 probability

\_

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

13
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n-gram Language Model

The decision for what words occur after a word w is exactly the same as the biased coin,
but with many possible outcomes (as many as all the words) instead of 2

. h
like to eat ca.ke bl,Jt | P(next word = pizza | previous word = eat) = 2/3
want to eat pizza right
now. Mary told her > P(next word = cake | previous word = eat) =1/3
brother to eat pizza too.J All other next words = 0 probability
\_

how many times do you see
COuI]_t (wpreV7 w) / Wprev fO”OWGd by W?

P —
how many times do you see Wpyrey

13
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n-gram Language Model

The decision for what words occur after a word w is exactly the same as the biased coin,

but with many possible outcomes (as many as all the words) instead of 2

| like to eat cake but |
want to eat pizza right
now. Mary told her
brother to eat pizza too.

~

\_ _J

P(w | wprGV) —

13

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

All other next words = 0 probability

how many times do you see
Count (wpreV7 w) / Wprev fO”OWGd by W?

COunt (wprev) \ .
how many times do you see Wpyrey

Vocabulary
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How to estimate the probability of the next word?

Count(its water is so transparent that)

P(that|its water is so transparent)

Count(its water Is so transparent)

14
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Count(its water is so transparent that)

P(that|its water is so transparent)

Count(its water Is so transparent)

Could we just count and divide?
S ————
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How to estimate the probability of the next word?

Count(its water is so transparent that)

P(that|its water is so transparent) , ,
Count(its water Is so transparent)

Could we just count and divide?
——

No! Too many possible sentences!
We'll never see enough data for estimating these

14
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Simplifying Assumption:
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P(that|its water is so transparent ) ~ P(that|transparent)

15
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Markov Assumption

Simplifying Assumption:

P(that|its water is so transparent ) ~ P(that|transparent)
Andrei Markov
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Markov Assumption

Simplifying Assumption:

P(that|its water is so transparent ) ~ P(that|transparent)
Andrei Markov

Or maybe...

P(that|its water is so transparent) ~ P(that|so transparent)

15
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Markov Assumption contd.

Pw,wy, ...w,) = HP(WZ- W oW )

16
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In other words, we approximate each component in the product such that it is only
conditioned on the previous k elements
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In other words, we approximate each component in the product such that it is only
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Markov Assumption contd.

Pw,wy, ...w,) = HP(WZ- W oW )

In other words, we approximate each component in the product such that it is only
conditioned on the previous k elements

Pw;|wi,ws,...ow._ ) & P(W,|W,_;...w,_{)

(k + 1)-th order Markov assumption

16
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® \Why would we need one?

® How do we estimate one?

® How do we simplify the estimation problem?
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Mini Recap: Probabilistic Modeling

® \What is a probabilistic language model?

® \Why would we need one?

® How do we estimate one?

® How do we simplify the estimation problem?
® Next: a simple probabilistic language model

17
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Simplest Case: Unigram model

20
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Simplest Case: Unigram model

Pwi,wy, ...w,) & HP(wi)

20
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Simplest Case: Unigram model

Pwi,wy, ...w,) & HP(WZ-)

Some automatically generated sentences from a unigram model

o fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most,
dollars, quarter, in, is, mass

e thrift, did, eighty, said, hard, 'm, july, bullish

e that, or, limited, the

20
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Bigram Model

Condition on the previous word:

Pw:\wi,w,y,..w._;) = P(w;|w,_;)

21
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Bigram Model

Condition on the previous word:

Pw |wi,wy, ...w._) & P(w;|w._)

Some automatically generated sentences from a bigram model

21
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Bigram Model

Condition on the previous word:

Pw |wi,wy, ...w._) & P(w;|w._)
Some automatically generated sentences from a bigram model

® {exaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house,
said, mr., gurria, mexico, 's, motion, control, proposal, without,
permission, from, five, hundred, fifty, five, yen

® outside, new, car, parking, lot, of, the, agreement, reached

¢ this, would, be, a, record, november

21
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n-gram Language Models

Can extend to trigrams, 4-grams, 5-grams, ...

In general this is an insufficient model of language

22



Fall 2024 CSCI 544: Applied NLP USC Viterbi

n-gram Language Models

Can extend to trigrams, 4-grams, 5-grams, ...

In general this is an insufficient model of language
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n-gram Language Models

Can extend to trigrams, 4-grams, 5-grams, ...

In general this is an insufficient model of language

"The computer which | had just put into the machine room on the fifth floor crashed.”

Long-distance / Long-range dependencies
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n-gram Language Models

Can extend to trigrams, 4-grams, 5-grams, ...

In general this is an insufficient model of language

"The computer which | had just put into the machine room on the fifth floor crashed.”

Long-distance / Long-range dependencies

But we can often get away with n-gram models, where n is a small number

22
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Estimating bigram probabilities

The maximum likelihood estimate

count(w,_, w;)
count(w;_1)

c(w._1, W)

Pw:|w,_;) = )
i—1

23
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Estimating bigram probabilities

The maximum likelihood estimate

count(w,_, w;)

Pw.|lw. ;) =
Wil W) count(w;_1)
c(w._1, W)
c(wW;_1)

? What happens when i = 17
-

23
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Estimating bigram probabilities

The maximum likelihood estimate

count(w,_, w;)

Pw.lw. ;)=
Wil Wiz count(w;_1)
c(w._1, W)
Pw|w,_|) = ———
c(W;_1)

Special edge case tokens: <s> and </s>
7 What happens when i = 1? for beginning of sentence and end of
o

sentence, respectively
e

23
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An example

c(w._1,w;)

Pw,|w,_;) = )
i—1

24
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An example

(Wi 1. W) <s> | am Sam </s>
Pw,|w,_;) = Rl A <s> Sam | am </s>
c(Wi_1) <s> | do not like green eggs and ham </s>

24
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An example

<s>| am Sam </s>

Pw,|w,_;) = M <s> Sam | am </s>
c(Wi—1) <s> | do not like green eggs and ham </s>
P(I|<s>):% = .67 P(Sam <s>):% =.33 P(am I):% = .67
P(</s>|Sam):%:OS P(Sam am):%: 5 P(do I):%:..B

24
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| arger Example:

25

Berkeley Restaurant Project (BRP)

can you tell me about any good cantonese restaurants close by

mid priced thai food is what i'm looking for

tell me about chez panisse

can you give me a listing of the kinds of food that are available
iI'm looking for a good place to eat breaktast

when is caffe venezia open during the day

Total: 9222 similar sentences
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BRP: Raw Counts

Out of 9222 sentences

26
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BRP: Raw Counts

Out of 9222 sentences

, 1 want to eat chinese food lunch spend
3 [ om | mr [ he [ 15 [ 1093 [ M1 [ 2

26
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Out of 9222 sentences

History

26

BRP: Raw Counts

USC Viterbi

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
Next Word
1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 al 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
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BRP: Bigram Probabilities

Bigram Probabilities: Raw bigram counts normalized by unigram counts
E—————

c(w;_i, w;)

c(W;_1)
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BRP: Bigram Probabilities

Bigram Probabilities: Raw bigram counts normalized by unigram counts
E—————

c(w;_i, w;)

c(W;_1)

27

P(Wi ‘ Wi—l)

Wi

1 want | to eat chinese | food | lunch | spend
1 0.002 |033 |0 0.0036 | 0 0 0 0.00079
want 0.0022 | O 0.66 | 0.0011 | 0.0065 | 0.0065 ]| 0.0054 | 0.0011
to 0.00083 | O 0.0017]0.28 | 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | O 0.021 0.0027 ] 0.056 |0
chinese || 0.0063 | 0 0 0 0 0.52 |0.0063 |0
food 0.014 |0 0.014 | 0O 0.00092 | 0.0037 | O 0
lunch | 0.0059 |0 0 0 0 0.0029 | O 0
spend || 0.0036 | O 0.0036 | O 0 0 0 0

USC Viterbi
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What kinds of knowledge?

P(english|want) =.0011
P(chinese|want) = .0065
P(to|want) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) =0

P(i]| <s>)=.25

28
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Bigram estimates of sentence probabilities

29

P(<s> | want english food </s>) =
P(I]<s>)

x P(want]|l)

x P(english|want)

x P(food|english)

x P(</s>|food)

= .000031
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29

USC Viterbi

Bigram estimates of sentence probabilities

P(<s> | want english food </s>) =

P(l]<s>)
x P(want]|l)

x P(english|want)
x P(food|english)
x P(</s>|food)

= .000031

Quite low...
e ———
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Underflow lssues

We do everything in log space
® Avoid underflow

® Adding is faster than multiplying

log(p, x p, x p3 x ps) =log p, +1og p, +1og p; +log p,

30
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Evaluation and
Perplexity
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How good is a language model?
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"ungrammatical” or “rarely observed” sentences?
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How good is a language model?

Does our language model preter good sentences to bad ones?
® Key Idea: Assign higher probability to “real” or "frequently observed” sentences than
"ungrammatical” or “rarely observed” sentences?
® |n practice we don't explicitly need to do the latter!
We train parameters of our model on a training set.

We test the model’s performance on data we haven't seen.

® A test set is an unseen dataset that is different from our training set, totally unused.
® An evaluation metric tells us how well our model does on the test set.

33
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Intuition of Perplexity

The Shannon Game: How well can we predict the next word?
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| always order pizza with cheese and

The 33 President of the US was

| saw a
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/" mushrooms 0.1

pepperoni 0.1
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The 33 President of the US was

| saw a fried rice 0.0001

\_ and 1e-100

34



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Intuition of Perplexity

The Shannon Game: How well can we predict the next word?

/" mushrooms 0.1

pepperoni 0.1

| always order pizza with cheese and < anchovies 0.01

The 33 President of the US was

| saw a fried rice 0.0001
\_ and 1e-100

Unigrams are terrible at this game!

34



Fall 2024 CSCI 544: Applied NLP USC Viterbi

Intuition of Perplexity

The Shannon Game: How well can we predict the next word?

/" mushrooms 0.1

pepperoni 0.1

| always order pizza with cheese and < anchovies 0.01

The 33 President of the US was

| saw a fried rice 0.0001
\_ and 1e-100

7 Unigrams are terrible at this game!

i /
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Intuition of Perplexity

The Shannon Game: How well can we predict the next word?

/" mushrooms 0.1

pepperoni 0.1

| always order pizza with cheese and < anchovies 0.01

The 33 President of the US was

| saw a fried rice 0.0001
\_ and 1e-100

? Unigrams are terrible at this game!

O

A better model ot a text is one which assigns a higher
probability to the word that actually occurs

34
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Perplexity

The best language model is one that best predicts an unseen test set
® Gives the highest P(sentence), for most sentences acceptable to humans
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Perplexity

The best language model is one that best predicts an unseen test set
® Gives the highest P(sentence), for most sentences acceptable to humans

Perplexity is the inverse probability of the test set, normalized by the

number of words
—
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Perplexity

The best language model is one that best predicts an unseen test set
® Gives the highest P(sentence), for most sentences acceptable to humans

PPL(W) = P(W,W,...Wy)"¥

Perplexity is the inverse probability of the test set, normalized by the

number of words
—

35
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Pwiwsy...wy)

1
(2
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PPL(w) = P(wyw,.. .wN)_%

—_—

1

Pwiw,...wy)

|
(2

|
[L.POw;[wy...wip)

(2

Chain rule:

Applying Markov's
assumption for bigrams:
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Chain rule:

Applying Markov's
assumption for bigrams:

PPL(W) = P(w,W,...wy)"¥

36

—_—

1

Pwiw,...wy)

1

[L.POw;[wy...wip)

1

HiP(Wi [ Wi1)

USC Viterbi
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Minimizing perplexity is the
same as maximizing probability

PPL(W) = P(w,W,...wy)"¥

S ——

Chain rule:

Applying Markov's
assumption for bigrams:

36

—_—

1

Pwiw,...wy)

1

[L.POw;[wy...wip)

1

HiP(Wi [ Wi_1)

USC Viterbi
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Perplexity Example

Let's suppose a sentence of length 50 consisting of random digits

1
P(W):l—o

What is the perplexity of this sentence according to a model that assigns uniform probability
to each digit?

PPL(W) = P(WyW,...wy) ¥
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Perplexity Example

Let's suppose a sentence of length 50 consisting of random digits

1
P(W):l—o

What is the perplexity of this sentence according to a model that assigns uniform probability
to each digit?

PPL(W) = P(WyW,...wy) ¥
50

)=

10
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Perplexity Example

Let's suppose a sentence of length 50 consisting of random digits

1
P(W):l—o

What is the perplexity of this sentence according to a model that assigns uniform probability
to each digit?

PPL(W) = P(WyW,...wy) ¥
1Y
— (—— 50
(10 )
— 10

37
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Lower perplexity = better model!
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N-gram Bigram Trigram
Order

Perplexity 962
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Lower perplexity = better model!

Training 38 million words, test 1.5 million words, from the Wall Street Journal

N-gram Bigram Trigram
Order 7

Perplexity 962
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Lower perplexity = better model!

Training 38 million words, test 1.5 million words, from the Wall Street Journal

N-gram Bigram Trigram
Order 7

Perplexity 962

7 What are the two things that might aftect perplexity?
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Generating from an n-
gram model and Zeros
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Recall: BRP

P(english|want) =.0011
P(chinese|want) = .0065
P(to|want) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) =0

P(i | <s>)=.25
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Recall: BRP

P(english|want) =.0011
P(chinese|want) = .0065
P(to|want) = .66

P(eat | to) = .28

P(food | to) =0

P(want | spend) =0

P(i | <s>)=.25
7 How can we generate sentences from this bigram model?

41
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Generating from a bigram model

42
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according to its probability
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<g> T

® Choose a random bigram (<s>, w) I want
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Generating from a bigram model

<g> T

® Choose a random bigram (<s>, w) I want
according to its probability want to

® Now choose a random bigram (w, x) to eat

eat Chinese
Chinese food
food </s>

according to its probability
® And so on until we choose </s>
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Generating from a bigram model

<g> T

® Choose a random bigram (<s>, w) I want
according to its probability want to

® Now choose a random bigram (w, x) to eat

eat Chinese
Chinese food
food </s>

according to its probability
® And so on until we choose </s>
® Then string the words together

I want to eat Chinese food

42
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The WSJ is no Shakespeare!

1 Months the my and 1ssue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram  point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram  Brazil on market conditions

43
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Shakespearean n-grams

44

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he 1s trim, captain.

—Fly, and will rid me these news of price. Theretore the sadness of parting, as they say,
‘t1s done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d 1n;
—It cannot be but so.
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45

Shakespeare as a corpus

N=884 647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of V2= 844 million possible bigrams

So 99.96% of the possible bigrams were never seen (have zero entries in the table)

4-grams (quadrigrams) are rarer still...

Most n-grams are never seen!
S ———————
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45

Shakespeare as a corpus

N=884 647 tokens, V=29,066
Shakespeare produced 300,000 bigram types out of V2= 844 million possible bigrams

So 99.96% of the possible bigrams were never seen (have zero entries in the table)

4-grams (quadrigrams) are rarer still...
What's coming out looks like Shakespeare because it is Shakespeare!

Most n-grams are never seen!
S ———————
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?

So why not just sample from very high order n-gram models? Do we even need
GPT-style LLMs?
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?

i /

So why not just sample from very high order n-gram models? Do we even need
GPT-style LLMs?

The successes we are seeing here is a

phenomena commonly known as overtitting
S ———————

46
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Overtitting bad!
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Overtitting bad!

n-grams only work well for word prediction if the test corpus looks like the training corpus
® |n real life, it often doesn't
® \We need to train robust models that generalize!
® Technical terms for “doing well on the test data” or “doing well on any test data”
® One kind of generalization: Zeros!
® Things that don't ever occur in the training set
® But occur in the test set

47
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Training set:

.. denied the allegations
.. denied the reports

.. denied the claims

.. denied the request
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.. Test set
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... denied the ofter

.. denied the allegati
enie € allegations ... denied the loan

.. denied the reports
.. denied the claims
.. denied the request
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.. Test set
Training set:

... denied the ofter

.. denied the allegati
enie € allegations ... denied the loan

.. denied the reports

... denied the claims
.. denied the request P (offer|denied the) =
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/eros

.. Test set
Training set:

... denied the ofter

.. denied the allegati
enie € allegations ... denied the loan

.. denied the reports
.. denied the claims

.. denied the request P (offer|denied the) = 0

will assign O probability to the test set!
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/eros

.. Test set
Training set:

... denied the ofter

.. denied the allegati
enie € allegations ... denied the loan

.. denied the reports
.. denied the claims

.. denied the request P (offer|denied the) = 0

will assign O probability to the test set!

What happens to perplexity??
8 e ————————————



Fall 2024 CSCI 544: Applied NLP USC Viterbi

One solution: the UNK token

49



Fall 2024 CSCI 544: Applied NLP USC Viterbi

One solution: the UNK token

Problem: Word “offer” didn’t appear in the train set...many words like “Swayamdipta”
won't appear in most training sets!
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These are known as OOV for “out of vocabulary”, or unknown tokens
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We can replace all words that occur fewer than n times in the training set—where n is some
small number—by <UNK> and re-estimate the counts and probabilities
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One solution: the UNK token

A token is a technical term in NLP for what is commonly referred to as a word

49

Problem: Word “offer” didn’t appear in the train set...many words like “Swayamdipta”
won't appear in most training sets!

These are known as OOV for “out of vocabulary”, or unknown tokens

One way to handle OOV tokens is by adding a pseudo-word called <UNK>

We can replace all words that occur fewer than n times in the training set—where n is some
small number—by <UNK> and re-estimate the counts and probabilities

When not done caretully, may artificially lower perplexity 7
o
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5T

Intuition for Smoothing

| like to eat cake but |
want to eat pizza right
now. Mary told her

\—

brother to eat pizza too.

P(next word = pizza | previous word = eat) = 2/3

_/

> P(next word = cake | previous word = eat) = 1/3

All other next words = 0 probability

USC Viterbi
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Intuition for Smoothing

| like to eat cake but |
want to eat pizza right

now. Mary told her
brother to eat pizza too. All other next words = 0 probability

- _J

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

® Types: |, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too
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Intuition for Smoothing

| like to eat cake but |
want to eat pizza right

now. Mary told her
brother to eat pizza too. All other next words = 0 probability

- _J

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

® Types: |, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too
o |V|=7 ‘Vbigrams‘:?
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Intuition for Smoothing

| like to eat cake but |
want to eat pizza right
now. Mary told her
brother to eat pizza too. All other next words = 0 probability

\_ _J

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

® Types: |, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

o |V|=7 ‘Vbigramslz?
® All other vocabulary tokens getting O probability just doesn’t seem right. We want to
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Intuition for Smoothing

| like to eat cake but |
want to eat pizza right
now. Mary told her
brother to eat pizza too. All other next words = 0 probability

\_ _J

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) = 1/3

® Types: |, like, to, eat, cake, but, want, pizza, right, now, ., Mary, told, her, brother, too

o |V|=7 ‘Vbigramslz?
® All other vocabulary tokens getting O probability just doesn’t seem right. We want to
assign some probability to other words
® \Ve want to smooth the distribution from our counts

; What does a count distribution look like?
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The distribution over words resembles that
of a power law:

® there will be a few words that are very
frequent, and a long tail of words that
are rare

® freq, (r) = r—°, where s is a constant
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Zipt's Law

The distribution over words resembles that
of a power law:

® there will be a few words that are very
frequent, and a long tail of words that
are rare

® freq, (r) = r—°, where s is a constant

NLP algorithms must be especially robust to
observations that do not occur or rarely
occur in the training data
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Smoothing ~ Massaging Probability Masses

When we have sparse statistics: Count(w | denied the)

3 allegations

o)
2 reports x g
1 claims g S _;59
1 request © £ O
7 total
Steal probability mass to generalize better: Count(w | denied the)
2.5 allegations -
1.5 reports
0.5 claims = o
0.5 request = X g
2 other éc)a ? IS = %’
7 tOtaI ° qg; | m | | E | | O |
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