
RLHF-based Optimization of Recommendations Using Large Language
Models

Fanyu You
fyou@usc.edu

Rishabh Agrawal
rishabha@usc.edu

Mingxi Wang
mingxiwa@usc.edu

Rutik Rajendra Yerunkar
ryerunka@usc.edu

Yash Gawankar
gawankar@usc.edu

Abstract

This study explores the optimization of rec-
ommendation systems with Large Language
Models (LLMs) using two distinct methodolo-
gies: Reinforcement Learning from Human
Feedback (RLHF) and Direct Preference Opti-
mization (DPO). Separate pipelines were devel-
oped to fine-tune LLMs for inferred user prefer-
ences. Using MovieLens datasets, we show that
supervised fine-tuning (SFT) and preference
tuning improve LLM-based recommendations.
These results highlight the potential and limi-
tations of LLM-based systems for recommen-
dation tasks. Our code is available at https:
//github.com/fanyuy2/LLM-RL4Rec/.

1 Introduction

Recommendation systems are essential to deliver
personalized content and address user preferences
effectively. Traditional methods like collaborative
filtering and content-based recommendations of-
ten struggle with sparse data and dynamic user
behaviors, limiting their scalability and adaptabil-
ity. Advances in artificial intelligence, particularly
reinforcement learning and large language models
(LLMs), offer promising solutions to these chal-
lenges.

LLMs excel in understanding and generating
complex information, making them well-suited for
recommendation tasks. Reinforcement Learning
from Human Feedback (RLHF) enhances these
models by iteratively refining recommendations
based on user feedback. However, RLHF alone
may falter with noisy or sparse feedback signals.

To address these limitations, we developed two
separate optimization pipelines: one using RLHF
and another with Direct Preference Optimization
(DPO). The RLHF pipeline iteratively fine-tunes
LLMs using reward feedback, while the DPO
pipeline optimizes preference-based ranking for
inferred user preferences. These independent ap-

proaches enable a comprehensive evaluation of
their strengths and weaknesses.

Using MovieLens datasets (Harper and Konstan,
2015) as benchmarks, our results show that super-
vised fine-tuning (SFT) and preference tuning sig-
nificantly improve LLM-based recommendations
over initial baselines.

Key contributions of this study include: 1. De-
velopment of RLHF and DPO pipelines for LLM-
based recommendation systems. 2. Evaluation of
the impact of SFT and preference tuning on model
performance using various metrics.

This study explores the adaptation of LLMs
for recommendation tasks. Figure 1 presents an
overview of our RLHF-based approach, while the
other approach employed in this work is based on
DPO.

2 Related Works

Traditional recommendation models such as collab-
orative filtering (Sarwar et al., 2001) and content-
based methods (Chu and Park, 2009) have been
the foundation for personalized recommendations.
However, these approaches often struggle to gener-
alize to new or sparse data and have limited ability
to capture dynamic user preferences. Recently,
large language models (LLMs) have demonstrated
significant potential to address these challenges,
thanks to their advanced contextual understand-
ing and natural language processing capabilities
(Bao et al., 2023). At the same time, reinforce-
ment learning (RL) has gained traction as a pow-
erful tool to optimize long-term user satisfaction
by continuously adapting to evolving user behav-
iors (Zheng et al., 2018). While both LLMs and RL
have individually proven effective in enhancing rec-
ommendation systems, the synergy between them
remains under-explored. Existing efforts largely
focus on using RL to automate prompt engineering
(Wang et al., 2024b) or leveraging LLMs as the

https://github.com/fanyuy2/LLM-RL4Rec/
https://github.com/fanyuy2/LLM-RL4Rec/


Figure 1: An overview of our RLHF approach.

environment to improve state representation and
reward modeling in RL-based recommender sys-
tems (Wang et al., 2024a). In contrast, our model
introduces a Reinforcement Learning from Human
Feedback (RLHF) framework specifically designed
to optimize large language models for recommen-
dation tasks.

3 Methodologies

3.1 Data Preparation
The data preparation pipeline processes and en-
riches user, movie, and interaction data from the
MovieLens dataset to support the recommendation
task. User profiles are constructed by incorporat-
ing demographic details such as age, gender, oc-
cupation, and geographic location, with the latter
inferred from ZIP codes (Gheem and Verkhovskiy,
2020). The dataset includes detailed user informa-
tion, such as demographics and a comprehensive
history of each user’s rated movies, along with cor-
responding movie ratings. However, timestamps
are provided only for when the user rated a movie,
not when they watched it. For our setup, we assume
the rating timestamp as the time the user watched
the movie.

A custom method identifies valid interaction win-
dows by balancing positive and negative user rat-
ings based on predefined thresholds. These inter-
action windows define the user’s historical context,
categorizing movies into "liked" and "disliked"
groups based on ratings above or below the thresh-

olds, respectively.
To define the recommendation task, we iterate

over all users and identify valid timestamps where
the context window contains at least a minimum
number (k) of liked or disliked movies. For each
valid user, a random timestamp is sampled, serving
as the endpoint of the fixed-length context window.
Movies watched within this window are catego-
rized into liked or disliked groups based on prede-
fined thresholds and used to generate prompts for
the user at the sampled timestamp. A predefined
prompt template incorporates the user’s historical
data, which is passed to the LLM to produce a list
of top-k recommended movies, where k is a config-
urable parameter. Figure 2 illustrates an example
of the prompt.

The preprocessed data and generated prompts
facilitate downstream tasks such as reward model
training, policy optimization, and recommendation
evaluation. To handle cases where the LLM rec-
ommends movies not present in the dataset, a final
mapping step is performed, which we discuss in
the following section.

3.2 Item Space Mapping

A key challenge in using LLMs for recommen-
dation systems is aligning their non-deterministic
output with the structured item space of the dataset.
LLM-generated recommendations often vary in for-
matting, capitalization, token ordering, or phrasing.
For instance, LLMs might output "The Shawshank



Figure 2: An example of prompt.

Redemption" instead of the exact movie title as in
the dataset - "Shawshank Redemption, The (1994)"
or omit details like the release year entirely, leading
to misalignment with ground truth entries.

To address this, we use a fuzzy matching tech-
nique based on the fuzz.WRatio (Leite and Vacon-
celos, 2024) scoring function, which incorporates
Levenshtein distance—a measure of the minimum
character edits needed to match two strings. The
method combines multiple scoring techniques to
resolve discrepancies:

• Simple Ratio: Direct comparison using Lev-
enshtein distance, e.g., matching "The Shaw-
shank Redemption" to "Shawshank Redemp-
tion, The (1994)."

• Partial Ratio: Matches the best substring,
e.g., "Star Wars: A New Hope" with "Star
Wars (1977)."

• Token Sort Ratio: Matches strings after sort-
ing tokens alphabetically, e.g., "Dead Man’s
Chest Pirates of the Caribbean" with "Pirates
of the Caribbean: Dead Man’s Chest (2006)."

• Token Set Ratio: Matches unique tokens, ig-
noring redundancies, e.g., "Fast and Furious"
with "The Fast and the Furious (2001)."

• Weighted Adjustments: Adjusts scores for
string length and complexity, e.g., "Avatar"
compared to "Avatar: The Way of Water
(2022)."

This approach ensures robust handling of for-
matting variations and token mismatches. For
each LLM-generated title, similarity scores are
computed against all dataset entries, and the best
match is selected to align recommendations with
the dataset effectively.

Figure 3: A flowchart of SFT pipeline.

3.3 Supervised Fine-Tuning (SFT)

SFT is a critical initial step in our project to opti-
mize the recommendation system. In this stage, we
adopt a pre-trained LLM to generate recommenda-
tions tailored to user preferences by fine-tuning it
with labeled data.

The primary goal of SFT is to familiarize the
pre-trained LLM with the specific task structure
of generating top-k movie recommendations given
a user’s context. By training in prompt-response
pairs, the model learns to produce outputs aligned
with user preferences based on historical interac-
tions and predefined criteria as well as domain
knowledge. This significantly improves the base-
line performance, forming the foundation for fur-
ther refinement using preference tuning.

For labeled data, we used prompt and ground
truth pairs obtained after data preparation, where
the prompt provides the context and the ground
truth serves as the corresponding response. Figure
3 illustrates the flowchart of our SFT pipeline.

For SFT, we used the “meta-llama/Llama-3.2-
1B-Instruct” model as our pretrained base model,
chosen for its strong contextual understanding and
ability to handle natural language prompts effec-
tively.



The training process focused on maximizing the
probability of generating target recommendations
that align with labeled responses. This employs
cross-entropy loss function to encourage the model
to generate outputs closely matching the labeled
data while penalizing incorrect predictions.

While SFT established a strong baseline by en-
abling the pretrained LLM to generate recommen-
dations based on historical data, it revealed lim-
itations in adapting to structural responses and
nuanced preferences. This underscored the need
for further refinement through preference tuning,
which builds on the foundation laid during SFT.

Figure 4: A flowchart for preference data creation.

3.4 Preference Data

To enable preference-based optimization, a pair-
wise preference dataset was constructed by gen-
erating n distinct responses for each prompt and
evaluating their quality against the ground truth
using NDCG@k. The NDCG metric was chosen
to prioritize the ranking of recommendations. The
model outputs were mapped to the item space us-
ing fuzzy matching, and pairwise comparisons

(
n
2

)
were conducted based on their NDCG@k scores.
Preferences were assigned to the response with
the higher score, forming a structured dataset of
ranked preferences for downstream optimization
through Direct Preference Optimization (DPO) and
Proximal Policy Optimization (PPO). A visual rep-
resentation for this process is shown in figure 4.

3.5 RLHF with PPO

We use Proximal Policy Optimization (PPO) to fine-
tune the model with human feedback. Let πθ(a|s)
represent the policy that produces an action a given
a state s. Let rt(θ) = πθ(at|st)

πθold (at|st)
represent the

probability ratio between the current policy and
the old policy. Let At represent the advantage.
Let ϵ represent a small threshold, for example 0.1.

PPO updates the parameters θ by maximizing the
following objectives:

LPPO(θ) = Et

[
min

(
rt(θ)At, clip

(
rt(θ),

1− ϵ, 1 + ϵ
)
At

)]
.

(1)

This objective function tries to improve the pol-
icy while avoiding large changes. It uses a clipped
probability ratio to keep updates stable. The ad-
vantage At represents how much better an action
is compared to an average action. We estimate
At with standard methods like Generalized Ad-
vantage Estimation. The reward model provides
a scalar score for each recommended item. This
score reflects user feedback. The model updates its
parameters to increase expected reward over many
iterations. PPO steps allow the model to produce
recommendations that align with observed user
preferences. The process repeats until it reaches
a stable policy that gives better recommendations
than the initial supervised baseline.

3.6 Direct Preference Optimization (DPO)

Direct Preference Optimization (DPO) is a method
for fine-tuning language models to align with pref-
erences through a direct, supervised learning frame-
work. Unlike Reinforcement Learning with Human
Feedback (RLHF), which relies on a reward model
and reinforcement learning algorithms, DPO di-
rectly optimizes a language model’s parameters
using preference data.

Given a dataset of response pairs (x, ypref, ynpref),
where x is the input and ypref and ynpref are the re-
sponses annotated with preference, where ypref is
the preferred one whereas ynpref is the dispreferred
one, DPO aims to optimize the model πθ by maxi-
mizing the likelihood of the preferred responses.

The optimization is based on the following objec-
tive derived from a probabilistic preference model:

LDPO(θ) = E(x,ypref,ynpref)

[
log σ

(
β
(
log πθ(ypref|x)

− log πθ(ynpref|x)
))]

,

where σ(z) = 1
1+e−z is the sigmoid function,

and β > 0 is a temperature-like scaling parameter



controlling the sharpness of the preference deci-
sion.

The core idea is to directly fine-tune the model
πθ such that it assigns higher probabilities to pre-
ferred responses compared to dispreferred ones.
This approach circumvents the complexities of re-
ward modeling and reinforcement learning, leading
to a more stable and computationally efficient train-
ing process.

4 Experiments

4.1 Datasets
We used MovieLens 100K and 1M datasets for
training, validation, and testing in our experiments.
These datasets contain detailed user profiles, includ-
ing demographic information, viewing history, and
movie ratings. To ensure consistency, the data was
split into training, validation, and testing sets with
a 70%-15%-15% ratio. The split was performed
randomly at the user level.

The datasets were preprocessed by categorizing
movie ratings into positive (liked) or negative (dis-
liked) classes using predefined thresholds: ratings
less or equal to 2 were labeled as disliked, while rat-
ings more than or equal to 3 were labeled as liked.
User interactions were subsequently transformed
into natural language prompts, which served as
input for the recommendation model.

4.2 Baseline Model
We compared our proposed model to the “meta-
llama/Llama-3.2-1B-Instruct” model, a pretrained
LLM known for its strong natural language pro-
cessing capabilities and ability to handle recom-
mendation tasks with minimal fine-tuning. This
model serves as a benchmark to highlight the im-
provements introduced by incorporating SFT and
preference tuning.

4.3 Experimental Setups
The experiments were conducted in the following
environment:

• Hardware: 16GB NVIDIA GPU, and 128GB
RAM.

• Software: Hugging Face Transformers, and
Python 3.12.

• Framework: The Hugging Face TRL API
(von Werra et al., 2020) was used for SFT,
DPO, and RLHF, while the PEFT API (Man-
grulkar et al., 2022) was utilized for LoRA.

We trained the SFT model using the follow-
ing configuration: the optimizer was AdamW
(Loshchilov and Hutter, 2019), with a learning
rate of 5 × 10−5, a batch size of 8, and 3 train-
ing epochs. For the LoRA configuration, we set the
LoRA alpha to 128, the LoRA dropout to 0.05,
the rank (r) to 256, and the bias parameter to
"none," while applying LoRA to all linear layers
(target_modules="all-linear").

We trained DPO with the following configura-
tion: AdamW optimizer, a batch size of 1, 2 train-
ing epochs, 1 gradient accumulation step, and fp16
enabled True. Logging was performed every 10
steps. The LoRA-specific configuration included r
equals to 16, LoRA alpha set to 16, target modules
as all − linear, and a LoRA dropout rate of 0.05.

We trained the RLHF pipeline using the follow-
ing configuration. For the LoRA setup, we used a
rank (r) of 8, a LoRA alpha of 32, and a dropout
rate of 0.1. The reward model was trained with
a learning rate of 5 × 10−5, a batch size of 1 per
device, and 1 training epoch. For the PPO config-
uration, we set the learning rate to 1 × 10−5 and
used a batch size of 16.

Further details of our configuration can be found
on our GitHub repository.

4.4 Evaluation Metrics
The performance of our recommendation system
was evaluated using the following metrics:

Normalized Discounted Cumulative Gain
(NDCG@k) evaluates the ranking quality of rec-
ommendations, emphasizing higher-ranked items:

NDCG@k =
DCG@k
IDCG@k

.

The formula for DCG@k is given as:

DCG@k =
k∑

i=1

reli
log2(i+ 1)

,

Here:

• k is the rank position until which the gain is
considered.

• reli is the relevance score of the item at posi-
tion i.

IDCG@k is the ideal DCG when documents are
perfectly ranked.

Precision@k is the proportion of recommended
movies within the top-k that are relevant. It is



calculated by the number of relevant documents
retrieved at rank k divided by the total number of
documents retrieved at rank k.

Precision@k =
1

k

k∑
i=1

Reli

Here:

• k is the rank position.

• Reli is an indicator function that equals 1 if
the document at position i is relevant, and 0
otherwise.

Recall@k is the proportion of relevant movies
retrieved within the top-k recommendations. It is
calculated by the number of relevant documents
retrieved at rank k divided by the total number of
relevant documents.

Recall@k =

∑k
i=1 Reli
R

Here:

• k is the rank position.

• Reli is an indicator function that equals 1 if
the document at position i is relevant, and 0
otherwise.

• R is the total number of relevant documents
in the dataset.

The evaluation was performed on the test set,
and metrics were computed for k = 5.

5 Results

The performance of our recommendation
pipelines—Base Model, SFT Model, RLHF
Model, and DPO Model—using NDCG@k,
Precision@k, and Recall@k metrics. The results
are summarized in Table 1 for Movielens 100k
dataset.

Metric Base SFT DPO RLHF
NDCG@k 0.624 1.687 1.726 1.821
Precision@k 0.606 1.818 1.890 1.818
Recall@k 0.512 1.441 1.497 1.489

Table 1: Performance comparison across Base Model,
SFT, DPO, and RLHF pipelines (in %) over Movielens
100k dataset.

Stage Sample Recommendations
Ground Truth [“Devil’s Advocate, The

(1997)”, ’Jaws (1975)’,
’Alien (1979)’, ’Raiders of
the Lost Ark (1981)’, ’Psycho
(1960)’]

Pre-SFT [’For Richer or Poorer (com-
edy)’, ’Half Baked (comedy)’,
’Everyone Says I Love You
(comedy, musical, romance)’,
’The Saint (action, romance,
thriller)’, ’Rocket Man (com-
edy)’]

Post-SFT [’Sleeper (1973)’, ’Bridge on
the River Kwai, The (1957)’,
’English Patient, The (1996)’,
’Raiders of the Lost Ark’,
“Dead Poets Society”]

Post-DPO [’Bridge on the River Kwai,
The (1957)’, ’Alien (1979)’,
“Devil’s Advocate, The
(1997)”, ’Raiders of the Lost
Ark (1981)’, ’Jaws (1975)’]

Post-RLHF [“Devil’s Advocate, The
(1997)”, ’Jaws (1975)’,
’Bridge on the River Kwai,
The (1957)’, ’Alien (1979)’„
’Raiders of the Lost Ark
(1981)’]

Table 2: Sample recommendations after different stages
of training.

Sample recommendations after each training
stage are shown in Table 2 to highlight qualitative
changes.

Next, we expanded our experiments to the larger
Movielens 1M dataset. The results are summarized
in Table 3. Note that this table does not include
results for DPO or RLHF, as resource constraints
prevented us from training these models on this
dataset.

Metric Base SFT
NDCG@k 0.213 2.341
Precision@k 0.254 2.199
Recall@k 0.228 1.812

Table 3: Performance comparison across Base Model
and SFT over Movielens 1M dataset.



6 Discussion

The experimental results provide valuable insights
into the performance and behavior of LLM-based
recommendation systems. Key observations are as
follows:

SFT establishes a strong foundation by align-
ing the pretrained LLM’s outputs with instruc-
tions through task-specific prompt-response pairs.
The substantial 170%-200% improvements in
NDCG@k, Precision@k, and Recall@k over the
base model highlights the effectiveness of this ap-
proach in adapting LLMs to recommendation tasks.
SFT enables the model to produce relevant and
context-aware recommendations, addressing the
limitations of the base model.

Building on this, Direct Preference Optimization
(DPO) further refines the recommendation qual-
ity by directly optimizing on pairwise user pref-
erences. Unlike RLHF with PPO, DPO avoids
reliance on a separate reward model, simplifying
the optimization process. While the 2.3%-3.9%
incremental gains over SFT appear modest, they
demonstrate the importance of fine-grained prefer-
ence alignment in improving ranking performance.
Together, SFT and DPO showcase a complemen-
tary approach: SFT provides large-scale improve-
ments by adapting the model to structured data,
while DPO fine-tunes the model to prioritize user-
preferred outputs.

For RLHF, although training requires substantial
computational resources and time, it achieves the
best NDCG@k scores, which is the most critical
metric in recommendation tasks. Since the prefer-
ence dataset was generated using the same metric,
we believe this alignment contributes to the ob-
served improvements in NDCG@k for both DPO
and RLHF compared to the SFT model. Overall,
we observe 0.5%–8% improvements in NDCG@k,
Precision@k, and Recall@k over the SFT base-
line, highlighting RLHF’s ability to enhance the
recommendation capabilities of LLMs.

We hypothesize that RLHF slightly outperforms
DPO due to the learning process. In RLHF, the
preference dataset is first used to train a reward
model, which then guides the policy model by pro-
viding feedback signals during exploration of its
output space. This allows the policy model to itera-
tively generate outputs that maximize the learned
reward, effectively aligning its predictions with
user preferences. In contrast, in our framework,
the DPO model relies solely on a fixed preference

dataset and lacks real-time preference feedback dur-
ing training. Due to resource constraints, we were
unable to generate human-annotated preferences
on the fly, which limits the DPO model’s ability to
explore the output space as effectively as RLHF in
our setting.

Table 2 illustrates the progression of model-
generated recommendation lists. The Pre-SFT
model often produces irrelevant or loosely related
outputs, whereas the Post-SFT model demonstrates
significant improvements in relevance and align-
ment with user preferences. Both DPO and RLHF
further enhance the ranking quality, delivering out-
puts that are more closely aligned with the ground
truth.

7 Conclusion

In this work, we explored the optimization of
Large Language Model (LLM)-based recommenda-
tion systems using Reinforcement Learning from
Human Feedback (RLHF) with Proximal Policy
Optimization (PPO) and Direct Preference Opti-
mization (DPO). Starting from a pretrained LLM
baseline, we introduced a systematic fine-tuning
pipeline consisting of Supervised Fine-Tuning
(SFT) followed by preference-based optimization.

Our approach demonstrates the feasibility of
adapting LLMs for recommendation tasks by com-
bining task-specific fine-tuning with preference
alignment. The results show significant improve-
ments over the baseline, indicating that LLMs can
successfully learn to generate structured recom-
mendations with high relevance and ranking qual-
ity. Additionally, we provided a qualitative anal-
ysis that reveals the progressive improvements in
model outputs, bridging the gap between unstruc-
tured LLM responses and structured item recom-
mendations.

Overall, this study highlights the strengths and
limitations of LLM-based recommendation sys-
tems. While our approach demonstrates promis-
ing results, it also underscores the need for further
work to address scalability, ranking precision, and
comparison with traditional collaborative filtering
methods. Our findings provide a solid foundation
for advancing LLM-driven recommendation sys-
tems and exploring more robust optimization tech-
niques.



8 Future Works

Future work will explore advanced personalization
techniques inspired by Reinforcement Learning
with Personalized Human Feedback (RLPHF), par-
ticularly the personalized soups (Jang et al., 2023)
framework. This approach introduces a scalable
parameter-merging mechanism to align indepen-
dently trained policy models with diverse user pref-
erences, eliminating the need for retraining and
enabling linear scalability as preferences evolve.

Incorporating personalized soups into our
project would facilitate handling conflicting or
multidimensional user objectives, such as varying
genre preferences, by dynamically merging poli-
cies at inference. This could significantly improve
personalization and adaptability, supporting the ad-
dition of new preferences without retraining the
model.

Further directions include contextual personal-
ization through temporal dynamics, session-based
interactions, and user mood, as well as hybrid mod-
els combining collaborative filtering, content-based
methods, and large language models. Improving
interpretability and explainability will remain a pri-
ority to build user trust and satisfaction.

References
Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang,

Fuli Feng, and Xiangnan He. 2023. Tallrec: An ef-
fective and efficient tuning framework to align large
language model with recommendation. In Proceed-
ings of the 17th ACM Conference on Recommender
Systems, pages 1007–1014.

Wei Chu and Seung-Taek Park. 2009. Personalized rec-
ommendation on dynamic content using predictive
bilinear models. In Proceedings of the 18th interna-
tional conference on World wide web, pages 691–700.

Nathan Van Gheem and Boris Verkhovskiy. 2020.
pyzipcode. https://github.com/vangheem/
pyzipcode.

F. Maxwell Harper and Joseph A. Konstan. 2015. The
movielens datasets: History and context. ACM Trans-
actions on Interactive Intelligent Systems (TiiS).

Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong
Wang, Jack Hessel, Luke Zettlemoyer, Hannaneh
Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu.
2023. Personalized soups: Personalized large lan-
guage model alignment via post-hoc parameter merg-
ing. Preprint, arXiv:2310.11564.

Andre Leite and Hugo Vaconcelos. 2024. Rapid-
fuzz: String similarity computation using ’rapid-

fuzz’. https://CRAN.R-project.org/package=
RapidFuzz.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web,
pages 285–295.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gal-
louédec. 2020. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl.

Jie Wang, Alexandros Karatzoglou, Ioannis Arapakis,
and Joemon M Jose. 2024a. Reinforcement learning-
based recommender systems with large language
models for state reward and action modeling. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 375–385.

Ziyan Wang, Yingpeng Du, Zhu Sun, Haoyan Chua,
Kaidong Feng, Wenya Wang, and Jie Zhang. 2024b.
Re2llm: Reflective reinforcement large language
model for session-based recommendation. arXiv
preprint arXiv:2403.16427.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang
Xiang, Nicholas Jing Yuan, Xing Xie, and Zhenhui
Li. 2018. Drn: A deep reinforcement learning frame-
work for news recommendation. In Proceedings of
the 2018 world wide web conference, pages 167–176.

A Appendix

A.1 Individual Contributions
The project was a collaborative effort, with each
team member contributing to distinct components
to ensure its successful completion.

• Fanyu You: Developed the SFT pipeline, per-
formed hyperparameter tuning, contributed to
the overall framework design, and conducted
the literature survey.

• Rishabh Agrawal: Developed the DPO
pipeline, designed the preference data creation
methodology, performed hyperparameter tun-
ing, contributed to the overall framework de-
sign, and conducted the literature survey.

https://github.com/vangheem/pyzipcode
https://github.com/vangheem/pyzipcode
https://arxiv.org/abs/2310.11564
https://arxiv.org/abs/2310.11564
https://arxiv.org/abs/2310.11564
https://CRAN.R-project.org/package=RapidFuzz
https://CRAN.R-project.org/package=RapidFuzz
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/trl


• Mingxi Wang: Developed the RLHF pipeline,
performed hyperparameter tuning, contributed
to the overall framework design, and con-
ducted the literature survey.

• Rutik Yerunkar: Conducted the literature
survey, performed model testing to identify
models compatible with the available hard-
ware, and carried out exploratory data analysis
(EDA).

• Yash Gawankar: Handled data preprocess-
ing, implemented item-space mapping using
fuzzy search, developed the preference data
creation pipeline, developed the evaluation
pipeline, participated in the overall framework
design, and conducted the literature survey.


	Introduction
	Related Works
	Methodologies
	Data Preparation
	Item Space Mapping
	Supervised Fine-Tuning (SFT)
	Preference Data
	RLHF with PPO
	Direct Preference Optimization (DPO)

	Experiments
	Datasets
	Baseline Model
	Experimental Setups
	Evaluation Metrics

	Results
	Discussion
	Conclusion
	Future Works
	Appendix
	Individual Contributions


