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Abstract

This  project explores computational
approaches for solving the New York
Times (NYT) Connections puzzle, a word-
categorization challenge where players group
16 words into 4 thematic clusters. Using a
dataset of 500+ puzzles, we evaluate models’
performance on this task, ranging from tradi-
tional clustering algorithms to large language
models (LLMs). Initial experiments using
K-means clustering with word embeddings
produced suboptimal results, underscoring
the limitations of static word representations.
Advanced approaches such as prompting the
LLaMA-3.1-70b (Dubey et al., 2024) LLM
showcased significantly better performance
achieving a success rate of 25.5% compared to
K-means’ 1.5%. We explored the T5 model
and conducted experiments to evaluate the
impact of incorporating priors into TS5 model
(Raffel et al., 2019), which resulted in a
reduction in accuracy from 15.5% to 13%.
To investigate the cause of this decline, we
performed further error analysis to identify the
underlying factors.

1 Introduction

This project investigates computational strategies
for solving the New York Times Connections puz-
zle, a daily word categorization challenge. In this
puzzle, players group sixteen words into four the-
matic categories, each containing four words. The
four categories are color-coded to indicate increas-
ing levels of difficulty: yellow for the most straight-
forward themes, followed by green, blue, and fi-
nally purple for the most complex connections. To
solve a Connections puzzle, players need to grasp
both the literal meanings of the 16 words and the
nuances of their contextual usage.

Our objective is to evaluate how effectively lan-
guage modeling algorithms can solve this puz-
zle and to explore whether incorporating puzzle-
specific prior knowledge improves their perfor-
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mance. We begin by establishing a baseline us-
ing a constrained K-Means model on PCA-reduced
word2vec embeddings. However, the static nature
of word embeddings resulted in poor performance,
underscoring their limitations in capturing contex-
tual meaning and polysemy.

To address these shortcomings, we shifted our fo-
cus to Large Language Models (LLMs), leveraging
their contextual understanding and ability to handle
polysemy. Prompting the LLaMA-3.1-70b (Dubey
et al., 2024) LLM yields significant improvements
over the K-Means baseline but still falls short of
human-level performance, establishing the task as
inherently challenging for existing models.

To better understand the nature of the problem,
we analyze a dataset of 500+ puzzles, identify-
ing recurring patterns and thematic categories us-
ing tools such as NLTK and CMUdict. Building
on these insights, we incorporate domain-specific
prior knowledge into a fine-tuned T5 model (Raffel
et al., 2019), reframing the task as text generation.
Initial experiments using category labels as priors
yield performance comparable to LLMs, demon-
strating the potential of prior knowledge integra-
tion.

However, subsequent results using domain-
specific priors were less promising compared to
those using only category labels. Through error
analysis, we observed that priors consuming a sig-
nificant portion of the training space led to over-
fitting, causing them to dominate the predictions
across all labels during testing. In contrast, priors
that were infrequent in the training data failed to
appear in the test set predictions. This imbalance in
the training data negatively affected the inference
results, limiting the effectiveness of incorporating
domain-specific priors.



2 Related Work

In our project, we use WordNet, a lexical database
by Miller et al. (1990), to explore connections be-
tween English words through their semantic rela-
tionships, such as synonymy and hypernymy. This
foundational tool aids in categorizing words for
the New York Times Connections puzzle, enhanc-
ing our understanding of word associations, and
improving word embedding models.

We build on recent research, including
Samadarshi et al. (2024), which evaluated the rea-
soning abilities of large language models (LLMs)
such as Claude 3.5 Sonnet and GPT-4 (Achiam
etal., 2023) on Connections puzzles. Their findings
indicated that while LLMs could partially solve
these puzzles, they significantly lagged behind ex-
pert human players, with Claude 3.5 achieving only
18% perfect solutions.

Earlier studies by Allaway and McKeown (2021)
highlight that LLMs excel in character-based puz-
zles but struggle with abstract tasks that require
associative thinking. Our approach investigates
whether integrating domain-specific knowledge
within word embeddings can enhance Connections
puzzle performance, aiming to bridge the reasoning
gaps of LLMs through enriched embeddings.

Saha et al. (2024) explores the use of Large Lan-
guage Models (LLMs) for solving crossword puz-
zles. The authors develop a search algorithm that
enables LLMs to solve complete crossword grids,
achieving 93% accuracy on New York Times Cross-
words puzzles. Their results challenge previous
findings that LLMs lag behind human experts, sug-
gesting a narrower performance gap. This work
is closely related to our project, as both the Cross-
word Puzzle and the Connections puzzle require
advanced language understanding, reasoning, and
world knowledge. Similar to the research in this
paper, we aim to formulate methods to improve pre-
viously observed performance of Language models
in solving word games, in our case incorporating
priors to solve New York Times Connections.

The T5 (Text-to-Text Transfer Transformer)
model, introduced by Raffel et al. 2019, provides
another perspective on leveraging pre-trained lan-
guage models for tasks requiring reasoning and se-
mantic understanding. It reframes every NLP task
as a text-to-text problem, offering flexibility in han-
dling diverse tasks, including reasoning-based ones.
Although TS5 (Raffel et al., 2019) has achieved state-
of-the-art results on various benchmarks, its per-

formance on associative reasoning tasks, such as
the Connections puzzle, remains an area of explo-
ration. Studies such as Agarwal et al. 2023 demon-
strated that fine-tuning T5 (Raffel et al., 2019) with
domain-specific data can improve its performance
in specialized tasks. Howeyver, its reliance on large-
scale pretraining may limit its ability to generalize
to puzzles that require deep semantic connections
unless fine-tuned with carefully curated datasets en-
riched with external knowledge such as WordNet
(Miller et al., 1990).

3 Methodology
3.1 Dataset

We gather our dataset from an external API !, cov-
ering puzzles from June 2023 to October 2024. The
dataset consists of 503 puzzles, each containing 16
words grouped into 4 thematic categories. Each
group includes a label (e.g., "WET WEATHER,"
"NBA TEAMS"), a level indicating the difficulty,
with level O being the easiest and level 3 being
the most difficult, and a list of members that are
semantically related words. For example, one
group labeled "WET WEATHER" contains the
words "HAIL," "RAIN," "SLEET," and "SNOW,"
while another labeled "NBA TEAMS" includes
"BUCKS," "HEAT," "JAZZ," and "NETS." Each
puzzle also comes with a unique identifier and a
creation date. The dataset structure can be seen in
Appendix A. After excluding emoji-based puzzles,
we retained 499 puzzles and split them into train,
validation, and test sets using an 80-10-10 split.
This structured dataset, with clear labels and word
groupings, forms the basis for evaluating models
on tasks involving word associations and semantic
reasoning.

3.1.1 Data Composition

We used NLTK’s direct POS tagger to perform
word-level POS tagging and retrieved the most
common synset sense for each word from Word-
Net. Next, we performed a group-level POS in-
tersection, identifying the number of groups with
common POS tags across all four words in each
category. Initially, 294 words had no entries in
WordNet (Miller et al., 1990), and using only the
most common sense resulted in 485 groups with-
out intersections. By considering all possible POS
tags from WordNet, we improved the intersection
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POS Word-level Category Level Intersection
NLTK tagger | WordNet | NLTK tagger | WordNet
Noun 5761 5646 1150 1110
Adjective 288 188 0 0
Adverb 82 73 0 0
Verb 159 233 0 1
Other 94 0 3 0
None 0 294 443 485
Table 1: POS Tagging Results
count to 322, effectively grouping words using less Category count
common senses (see Appendix D), showing the Synonym 840
effective grouping of words using less common Hypernym 533
senses. Contextual Relation 1039
Phonology 4
3.1.2 Data Categories Homophones 13
Based on the words’ functions, forms, and mean- Collocation 146
ings, we categorized the dataset into three main Rhyming 13
groups: Semantic Association, Word Forms, and Cultural References 23
Word Forms + Meanings. Pop-culture References 19
Miscellaneous 418

3.1.3 Semantic Association

Most NYT Connection puzzles employ on seman-
tic associations. We categorized the data into sev-
eral semantic relation categories, see Appendix D.
Synonymy: Words sharing overlapping synsets
were identified using WordNet and grouped to-
gether

Hypernymy: Words sharing common hypernyms
(excluding the five most common ones) were iden-
tified using WordNet and grouped together
Contextual Relation: We used WordNet similarity
scores, grouping together words when the vector
similarity exceeded a predefined threshold.

3.1.4 Word Forms

This category focuses on the phonological and mor-
phological aspects of the words in the puzzle:
Phonology: Words sharing same silent letters were
identified using category labels

Homophones: We used CMUdict to identify ho-
mophones and analyzed their relationships.
Rhyming: Words with similar rhyming patterns
were grouped using pronunciation data from CMU-
dict.

3.1.5 Word Form + Meaning

Here, words are grouped based on their colloca-
tional and cultural relevance:

Collocation: Phrases in the category labels that
commonly co-occur with a shared term often in

Table 2: Semantic relation categories

a fill-in-the-blank style format were grouped to-
gether.

Cultural References: We identified words related
to specific cultural contexts (e.g., horror movies).
In our analysis, we specifically focused on movie
references by searching for the term movie within
the category labels

Pop-culture References: Slang terms with similar
meanings were grouped together by searching for
slang terms within the category labels.

3.1.6 Miscellaneous

We explored additional relations that did not fit into
the previously identified classifications by looking
into the category labels for such groups. Some no-
table relations identified were as follows:
Character Modifications: Identified semantic re-
lationships established by adding or removing char-
acters from words

Acronyms: Identifying relationships through
acronyms.

App-Related Terms: Terms related to app func-
tionalities (e.g., Microsoft fonts, dating app ac-
tions).

Common Origins: Words derived from common
linguistic origins (e.g., Latin or Greek).



Cultural or Regional Words: Words related to
specific cultures or regions (e.g., Chinese or Mexi-
can references).

3.1.7 Data Exploration Results

The dataset analysis results summarized in Tables
1 and 4 revealed key insights into the distribution
and challenges of the puzzle data. Nouns were the
most frequent POS, appearing 5761 times, while
adjectives and adverbs were less common. Notably,
294 words had no POS tags assigned in WordNet
(Miller et al., 1990), indicating challenges in POS
mapping. By considering all possible POS tags, the
intersection of WordNet senses improved, reducing
uncategorized groups from 485 to 322. Semantic
associations, particularly Synonymy and Contex-
tual Relations, were most prevalent, while cate-
gories like Phonology, Homophones, and Rhyming
occurred less frequently. These insights highlight
the importance of semantic relationships in solv-
ing the Connections puzzle and guide our efforts
to enhance Language Model performance in such
tasks.

3.2 Solving task using K-means clustering

3.2.1 Data Preprocessing

We initiated our analysis using the adarsh-
sng/googlenewsvectors dataset, which comprises
word2vec embeddings for 3 million words, pre-
trained on a 3 billion word corpus from Google
News 2. These pre-trained embeddings will facili-
tate the clustering of words in a single Connections
puzzle based on their semantic similarity.

To reduce the computational load associated
with 300-dimensional vectors, we applied Principal
Component Analysis (PCA), reducing each word
embedding to 2 dimensions. This dimensionality
reduction aids visualization (Appendix B) and opti-
mizes clustering performance for the puzzle.

3.2.2 Experiment Setup

With the PCA-reduced word2vec embeddings
ready, we applied the constrained K-means cluster-
ing algorithm to predict solutions for each puzzle
in our test dataset. This algorithm ensures that each
cluster contains exactly four words.

Clustering was performed using a similarity ma-
trix created by calculating the cosine similarity
between the 16 PCA-reduced embeddings. The
model outputs a 4x4 matrix of words, where each

2h'ctps ://www.kaggle.com/datasets/adarshsng/
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row represents a cluster of four closely related
words identified for grouping.

3.3 Solving task using LLAMA
3.3.1 Data Preprocessing

To prepare the data, we first process the puzzle data
received from the API, constructing an array of size
16, where each element represents a single word.
Each array thus corresponds to a "16-word connec-
tions puzzle," forming part of the input instruction
for the LLama model. We access the Llama-3.1-
70b model through the Groq API to leverage its
large language model capabilities for word cluster-

ing.
3.3.2 Experiment Setup

We used prompting technique as outlined in
Samadarshi et al. (2024), the prompt is available
in Appendix C, we applied to our test dataset of
16 words, guiding the model to generate predic-
tions in the form of a 4x4 matrix. Each row of
this matrix represents a cluster, with each cluster
containing four words that the model associates
based on latent semantic or categorical relation-
ships. This clustering approach provides insight
into the model’s interpretative capabilities for word
association tasks in structured puzzles.

3.4 Solving task using T5 Model
3.4.1 Data Preprocessing

In this experiment, we begin incorporating priors
into the models to evaluate their effect on perfor-
mance. To leverage TS5 model (Raffel et al., 2019),
we transform our task into a text generation prob-
lem by constructing structured input-output pairs
for each puzzle in the dataset. We design two ver-
sions of the task: one without priors and another
with priors (see Appendices E and F for examples).
In the without priors version (Appendix E), the
input instructs the model to cluster the 16 words
into 4 groups with proper reasoning but does not
provide any hints regarding relationships or group
categories. The model must deduce these connec-
tions independently. In the with priors version (Ap-
pendix F), the input explicitly provides possible
relationships, such as hypernyms, homophones, se-
mantic similarity, or shared connections to pop
culture, among others. This additional prior knowl-
edge serves as a guide, enabling the model to focus
on specific linguistic or semantic clues during the
clustering task. The expected output for both ver-
sions includes the four solution groups, along with
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a corresponding label or reasoning for each group.
By comparing performance on both tasks, we aim
to analyze the impact of integrating prior knowl-
edge into the training data and its effectiveness in
improving prediction accuracy during the testing
phase.

3.4.2 Experiment Setup

We fine-tuned the TS5 model (Miller et al., 1990) on
the training data in both setups (with and without
priors) to produce the desired output, then evalu-
ated its performance on the test data. To compare
performance, we tested three variants of the T5
model: T5-small (Raffel et al., 2020), T5-large
(Raffel et al., 2020), and T5-Flan (Chung et al.,
2024).

Fine-tuning was conducted with a learning rate
of le-4 using the AdamW optimizer, where the
weight decay was set to 0.01 and the adam epsilon
to le-6 to ensure stable convergence. Training
was conducted over 100 epochs for the T5-Small
model and 40 epochs for the T5-Large and T5-Flan
models.

During inference, we employed beam search
with num_beams = 5 to consider multiple can-
didate outputs. To reduce repetitive predictions,
we applied a repetition penalty of 5.0, with a
length penalty of 1.0 to balance the output length.
Early stopping was enabled to terminate decoding
once a complete solution was found. Additionally,
we incorporated sampling techniques by setting
do_sample = True, with a temperature of 0.8 to
encourage diversity and top-p (nucleus sampling)
at 0.9 to focus on the most probable tokens.

These hyperparameter choices ensured a balance
between output diversity, fluency, and accuracy

3.5 Evaluation

To evaluate prediction accuracy, we used the Suc-
cess Rate and Jaccard similarity metrics to compare
our generated clusters against the actual solutions
We define the two metrics in the context of our
project as follows:
Jaccard Similarity: A measure of similarity be-
tween the actual and predicted groups, averaged
across the best matches calculated as:

_ |Actual_grp N Predicted_grp|

Jacc (D

- |Actual_grp U Predicted_grp|
This score, ranging from O to 1, measures the over-
lap between predicted and actual groups, serving as
a partial accuracy metric that rewards predictions

with some correct words, even if the group is not
entirely accurate.

Jaccard similarity in this evaluation is calculated
using an optimal one-to-one matching between pre-
dicted and ground truth clusters. First, a 4x4 simi-
larity matrix is constructed, where each entry repre-
sents the Jaccard similarity score between an actual
(ground truth) group and a predicted group. To
determine which clusters to evaluate against each
other, the algorithm iteratively selects the maxi-
mum score from the matrix, corresponding to the
best match between one predicted group and one
ground truth group. Once a match is chosen, the as-
sociated row (ground truth) and column (predicted)
are removed from further consideration. This pro-
cess continues until all clusters are paired, ensuring
each predicted group is matched to at most one
actual group. The selected Jaccard scores are then
averaged to provide the final similarity measure.
Success Rate: Proportion of correctly predicted
groups, calculated as:

No.of ExactMatch
SuccessRate = o-0f xa40 atehes 2)

This score measures how many of the 4 groups the
model predicted perfectly, serving as a strict accu-
racy metric that awards points only for fully correct
group predictions.

We assess the overall model performance by aver-
aging the success rate and Jaccard similarity on a
test dataset of 50 random puzzles and found the
following results in Table 3.

3.6 Results

The baseline K-means clustering model achieved
a Jaccard Similarity of 0.3733 and a Success Rate
of 1.5%, highlighting its limited ability to identify
relationships between words. Interestingly, the T5-
Small model (Raffel et al., 2020) underperformed
compared to K-means, likely due to its smaller
size. This hypothesis is supported by the trend ob-
served across the T5 models, where performance
improved as model size increased. The T5-Flan
model (Chung et al., 2024) delivered the best re-
sults among the TS5 variants, achieving a Jaccard
Similarity of 0.4960, comparable to the state-of-
the-art LLaMA-3.1-70b model (Dubey et al., 2024).
While LLaMA-3.1-70b had a higher Success Rate
(25.5%), the T5-Flan model (Chung et al., 2024)
excelled in Jaccard Similarity, reflecting a balance
between partial and exact group predictions.



Model Jaccard Similarity Success Rate

K-means clustering 0.3733

T5-Small 0.3438
T5-Large 0.4650
T5-Flan 0.4960
T5-Flan(All priors) 0.4745
LLama 3.1-70b 0.4641

0.015
0.01
0.10
0.155
0.11
0.255

Table 3: Comparison of results produces by LLama, K-means clustering and TS5 model.

Jaccard  Success

Priors Similarity ~ Rate
Synonym 0.4495 0.11
Hypernym 0.4597 0.11
Contextual Relation 0.4989 0.135
Phonology 0.4932 0.155
Homophones 0.4762 0.14
Collocation 0.4900 0.13
Rhyming 0.4856 0.16

Cultural References 0.5221 0.16
Pop-culture References 0.5218 0.165
No priors 0.4960 0.155

ALL priors 0.4745 0.11

Table 4: Ablation study comparing the performance of
the model with no priors, all priors, or only specific
priors, alongside reason labels.

3.6.1 Ablation Study

We expected the results to improve with the in-
corporation of priors; however, surprisingly, the
performance degraded. To understand this, we con-
ducted an ablation study with several setups for T5
fine-tuning.

First, we fine-tuned the TS model while freezing
all the weights except for the final layer weights. In
this experiment, we observed that even with many
epochs, the model failed to produce the expected
output. Additionally, when the outputs were gener-
ated, they were neither grouped into four distinct
categories nor consistently placed within the cor-
rect group, with some repetition occurring within
the same group. This suggests that fine-tuning only
the final layer is insufficient, highlighting the im-
portance of fine-tuning all layers in the network.
Fine-tuning all layers allows the model to adjust its
internal representations and capture more complex
relationships, improving its overall performance.

Second, we fine-tuned the model by incorporat-
ing the priors individually, one at a time, instead
of using all priors in the output. This experiment

revealed that very frequent priors, such as hyper-
nyms, synonyms, and contextual references, often
appeared in the output, even when the cluster was
not intended to belong to the prior category. This
behavior can be attributed to the heavy occurrence
of these priors in the training data, which caused
confusion between the prior sentence and the out-
put format. Instead of generating reasoning, the
model mistakenly treated the prior information as
part of the output, indicating that the model was
not fully understanding the significance of these
priors.

On the other hand, including less frequent priors
performed better than having no priors at all, as
shown in Table 4. This can be attributed to the
model recognizing them as part of the reasoning
process rather than the output structure, although
these priors were still underrepresented in the fi-
nal output since they were not predicted during
generation.

In conclusion, the study suggests that we need
to restructure the dataset to balance the frequency
of priors. This would involve increasing the repre-
sentation of less frequent priors to ensure they are
adequately captured, while reducing the occurrence
of more frequent priors to prevent them from being
treated as part of the output structure.

4 Future Work

Moving forward, the importance of generating
more data cannot be overstated, as our current
dataset consists of only 500 puzzles, which lim-
its the model’s ability to generalize effectively. To
address this, we plan to generate synthetic data to
augment our training set, thereby enhancing the
model’s robustness. Furthermore, we recognize
the need to balance the representation of priors in
the dataset. By increasing the presence of less fre-
quent priors and reducing the occurrence of more
frequent priors, we can better capture nuanced se-
mantic relationships and avoid over-reliance on



dominant priors. We also plan to explore reinforce-
ment learning approaches or auxiliary losses to
ensure that priors are treated as reasoning cues and
not part of the output.

Additionally, we aim to integrate external ency-
clopedic datasets and knowledge graphs to provide
richer contextual understanding, which will aid in
improving the model’s reasoning capabilities. We
also intend to explore ensemble methods that com-
bine large language models (LLMs) with heuristic
algorithms, enabling more sophisticated reasoning
and enhancing overall performance. Through these
efforts, we aim to refine the model’s ability to make
more accurate associations, ultimately improving
its performance on the NYT Connections puzzle.

Another key observation from the current
model’s outputs is its tendency to place words in
multiple groups or assign random words not part
of the original 16 to a group. This disrupts the
clustering process and results in incorrect outputs.
To address this, we plan to explore techniques to
better handle repetitions and random words in the
model’s output. This will be coupled with tweaking
the loss function to heavily penalize these kinds of
errors, encouraging the model to produce more ac-
curate and logically consistent groupings. Through
these efforts, we aim to refine the model’s ability
to make more accurate associations and ultimately
improve its performance on the NYT Connections
puzzle.
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5 Appendices
A Dataset Structure

Figure 1 shows the structure.

B Visualization of PCA-reduced
embedding vectors

A scatter plot of the reduced embeddings for a sam-
ple puzzle, as seen in Figure 2 shows no obvious
clustering patterns among words that belong to the
same solution group, likely due to the embeddings’
general-purpose nature, which does not capture
task-specific group memberships.

C Prompt

Find groups of four items that share something in
common.

Category Examples:

FISH: Bass, Flounder, Salmon, Trout

FIRE ___: Ant, Drill, Island, Opal

Categories will always be more specific than
‘S-LETTER-WORDS’, ‘NAMES’, or ‘VERBS"’
Example 1:

Words: [‘DART’, ‘HEM’, ‘PLEAT’, ‘SEAM’,
‘CAN’, ‘CURE’, ‘DRY’, ‘FREEZE’, ‘BITE’,
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‘EDGE’, ‘PUNCH’, ‘SPICE’, ‘CONDQO’, ‘HAW’,
‘HERO’, ‘LOO’]

Groupings:

1. Things to sew: [‘DART’, ‘HEM’, ‘PLEAT",
‘SEAM’]

2. Ways to preserve food:
‘DRY’, ‘FREEZE’]

3. Sharp quality: [‘BITE’, ‘EDGE’, ‘PUNCH’,
‘SPICE’]

4. Birds minus last letter: [‘CONDQO’, ‘HAW’,
‘HERO’, ‘LOO’]

Example 2:

Words: ["COLLECTIVE’, ‘COMMON’, ‘JOINT’,
‘MUTUAL’, ‘CLEAR’, ‘DRAIN’, ‘EMPTY’,
‘FLUSH’, ‘CIGARETTE’, ‘PENCIL’, ‘TICKET",

[‘CAN’, ‘CURE’,

‘TOE’, ‘AMERICAN’, ‘FEVER’, ‘LUCID’,
‘PIPE’]

Groupings:

1. Shared: [‘COLLECTIVE’, ‘COMMON’,

‘JOINT’, ‘MUTUAL’]
2.  Rid of contents:
‘EMPTY’, ‘FLUSH’]
3. Associated with “stub”:
[‘CIGARETTE’,’PENCIL’, ‘TICKET’, ‘TOE’]

4. __ Dream: ['"AMERICAN’, ‘FEVER’, ‘LUCID’,
‘PIPE’])

Example 3:

Words: ['THANGAR’, ‘RUNWAY’, ‘TARMAC’,
‘TERMINAL’, ‘ACTION’, ‘CLAIM’, ‘COM-
PLAINT’, ‘LAWSUIT’, ‘BEANBAG’, ‘CLUB’,
‘RING’, ‘TORCH’, ‘FOXGLOVE’, ‘GUMSHOE’,
‘TURNCOAT’, “WINDSOCK’]

Groupings:

1. Parts of an airport: [ ' HANGAR’, ‘RUNWAY",
‘TARMAC’, ‘TERMINAL’]

2. Legal terms: [‘ACTION’, ‘CLAIM’, ‘COM-
PLAINT’, ‘LAWSUIT’]

3. Things a juggler juggles:
BAG’,’CLUB’, ‘RING’, ‘TORCH’]
4. Words ending in clothing: [‘FOXGLOVE’,
‘GUMSHOE’, ‘TURNCOAT’, “‘WIND SOCK’]

[‘CLEAR’, ‘DRAIN’,

[‘BEAN-

Categories share commonalities:

* There are 4 categories of 4 words each

* Every word will be in only 1 category

* One word will never be in two categories

* As the category number increases, the connec-
tions between the words and their category become
more obscure. Category 1 is the most easy and
intuitive and Category 4 is the hardest

* There may be a red herrings (words that seems
to belong together but actually are in separate

# Taxanomies Count
0 418

1 261
2 384
3 516
4 16

5 1

Table 5: The table provides information on how each
sample can be categorized into different categories.

POS WordNet (All senses)
(noun) 828

(noun, verb) 269

(verb) 102

(others) 75

(None) 322

Table 6: Effective grouping of words using less common
senses

categories)

* Category 4 often contains compound words with
a common prefix or suffix word

* A few other common categories include word and
letter patterns, pop culture clues (such as music
and movie titles) and fill-in-the-blank phrases You
will be given a new example (Example 4) with
today’s list of words.

Give your final answer following the struc-
ture below [[word1, word2, word3, word4],[word5,
word6, word7, word8],[word9, word10, word11,
word12],[word13, word14, word15, word16]]

Remember that the same word cannot be re-
peated across multiple categories, and you need to
output 4 categories with 4 distinct words each.
Also do not make up words not in the list. This is
the most important rule. Please obey

Today’s list of words are:

D Table

Table 5 and Table 6 provides more details.

E Input-Output Example for TS Model
without priors

Input:-
Instruction:
Cluster the following 16 words into 4 groups with



no repetition. Provide proper reasoning for the clus-
tering, specifying if they fall under hypernyms, ho-
mophones, or other linguistic relationships. Words
are: [words 1-16]

Output:- example

Groupl: article, essay, paper, report

Reasonl: The words are writing assignments
Group?2: bubble gum, carnation, eraser, flamingo
Reason2: The words are things that are pink
Group3: foxtrot, hotel, victor, yankee

Reason3: The words are nato phonetic alphabet
Group4: deputy, derek jeter, pencil, silver medal
Reason4: The words are associated with 2

F Input-Output Example for TS Model
with priors

Input:

Instruction:

You are tasked with clustering the following 16
words into 4 distinct groups. Each word must
belong to only one group, and no repetition of
words is allowed. The clustering should be based
on specific linguistic or semantic relationships. For
each group, provide:

The cluster name or the relationship type (e.g.,
hypernyms, homophones, synonyms, etc.).

The reasoning behind why the words in the group
belong together.

When clustering, consider the following possible
relationships among the words:

Words that have hierarchy relationship (a broader
category they fall under).

Words that have a shared homophone. (sound the
same but have different meanings/spellings).
Words that often appear with common preceding
or succeeding words.

Words that serve as similar fillers in blanks (e.g.,
in a sentence or phrase).

Words with the same rhyming pattern.

Words that are semantic modifications of others
(e.g., plural/singular, prefixes, antonyms).

Words with the same silent letters in their spelling.
Words with connections to movies or pop culture.
Words that are slang terms for the same or similar
concepts.

Words that are synonyms (mean the same or nearly
the same).

Words that exhibit semantic vector similarity (close
in meaning in a computational model).

Words are: [words 1-16]

Output: example

Groupl: cooler, lantern, sleeping bag, tent
The words have hierarchy relationship.

The words exhibit semantic vector similarity.
Reasonl: The words are camping supplies
Group?2: barb, dig, diss, jab

The words are synonyms.

Reason2: The words are insult

Group3: good, impossible, nothing, warren
Reason3: The words are ____ burger

Teh words are similar fillers for the blanks.
Grou4: gnat, gnaw, gnocchi, gnome

The words have same silent letters.

Reason4: The words are silent “g”

All possible priors:- The words have hierarchy
relationship.

The words have a shared homophone.

The words follow common predecessors.

The words are followed by common successors.
The words are similar fillers for the blanks.

The words have same rhyming pattern.

The words are plus or minus modifications of other
semantics.

The words have same silent letters.

The words have a connection to movies.

The words are slang terms for a common word.
The words are synonyms.

The words exhibit semantic vector similarity.

G Group Contributions

G.1 Ideas

1. Solving the NYT Connections puzzle using
LLMs — Nupoor, Neelam

2. Dataset identification — Xusheng, Taraj

3. Creating prompts for Llama — Taraj, Harshavard-
han

4. Structuring input and output for T5 fine-tuning —
Harshavardhan, Nupoor

5. Steps for conducting the ablation study —
Xusheng, Neelam, Taraj, Nupoor

6. Jaccard similarity and success rate design — Nee-
lam, Xusheng

G.2 Data Analysis

1. Performing POS tagging using WordNet and
NLTK - Neelam

2. Using WordNet for hypernyms, synonyms, and
contextual relationships — Harshavardhan

3. Using CMUdict to analyze word forms, includ-
ing pronunciations — Nupoor

4. Exploring additional analyses, such as automatic



identification of slang and identification of silent
letters using modules. (Note: These methods did

not work as expected — despite having one cluster, [
only 2-3 words from it were identified, so these
results were not included in the report.) — Taraj

5. Using labels to identify the remaining priors —
Xusheng

6. Creating pipelined data for Llama and K-means 1
— Nupoor, Neelam

7. Creating a pipelined structured dataset for TS —

Harshavardhan, Taraj

"id": 1,
"date™: "2023-86-12",
"answers™: [

"level™: @,
"group": "WET WEATHER",

"members™: [

"HAIL",
G.3 LLAMA "RAIN",
1. Creation of the Groq API and coding for the "SLEET",
entire baseline model — Harshavardhan " ShiCK™
2. Jaccard similarity and success rate metrics im- ]
plementation — Taraj PCA and K-means: by
3. Loading GoogleNews-vectors-negative300 to en- i
code all the words in the dataset into word embed- “level®: 1,

dings and record all unrecognized words — Xusheng “group™: "NBA TEAMS",

4. Applying K-means clustering algorithm to clus- “members®: [

ter 16 words into 4 groups based on the cosine “BUCKS",
similarity of word embeddings — Nupoor THEATY,
5. Using PCA to address the curse of dimension- "IALZY,
ality and analyze how this affects clustering. This “HETS®
analysis helps decide how many top components to ]
remove from the embeddings, making the remain- bs
ing components more discriminative — Neelam i
6. PPA Implementation (though not used later) — “level®: 2,
Xusheng "group”: "KEYBOGRD KEYS",
"members™: [
G4 T5 "OPTION",
1. Initial experimental setup for T5 — Nupoor "RETURN",
2. Implementing the model on CARC and setting “SHIFT®,
up training — Harshavardhan "TAB™
3. Handling training issues, such as CUDA mem- ]
ory errors, and working on new techniques to man- T
age memory constraints — Taraj, Harshavardhan {
4. Implementing error analysis techniques, such as “level®: 3,
using only priors and freezing layers — Neelam “group”: "PALINDROMES®,
"members™: [
G.5 Code Structuring "KAYAK®,
Organizing code into a single file for improved "LEVEL",
structure and manageability — Xusheng “HOM®,
"RACECAR"
G.6 Slides, Reports, and Paper Reading ]
All team members h
G.7 Brainstorming Ideas 1 :
Brihi _
Figure 1

10



kayak 0z mom
gleet
enow
racecar Lucks
&in
e @ets
b
@ deat
option
level ghift et

Figure 2: Embedding values for the 16 words in the
Connections puzzle visualized on a scatter plot.
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