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Abstract

Code generation has been an exciting and in-
teresting application of large language mod-
els (LLM). While researchers have tried to in-
crease the robustness and accuracy of the gener-
ated code, prior work in quality diversity (QD)
optimization suggests that structurally and se-
mantically diverse programs may obtain better
performance in downstream code generation
tasks. To this end, we combine insight from
prompt optimization and reinforcement learn-
ing (RL) to search for human-readable prompts
that elicit diverse and high-accuracy programs
from an LLM. Our empirical experiments in-
dicate that our method empowers LLM to gen-
erate more diverse code that achieves higher
accuracy than sequentially sampling an LLM.
Our work sheds insight into the role of diversity
in high-quality LLM generation.

1 Introduction

As computer science students, one of the most ex-
citing applications of large language models (LLM)
is code generation. LLM has impressive code
generation capabilities and can solve many pro-
gramming problems (Jiang et al., 2024; Rozière
et al., 2024). A recent study demonstrates that
repeatedly prompting (with the same prompt) a
high-temperature LLM increases the number of
programming problems that the LLM can solve
(Brown et al., 2024). This is because, while the
prompt remains the same, the high-temperature
parameter induces slight variations in the code gen-
erated by the LLM. The key insight to our project
is that stronger variations (or increased diversity)
among the generated code can improve the LLM’s
capacity to solve programming problems.

This insight is echoed in quality diversity opti-
mization (QD), where the goal is to produce a set
of high-performing solutions that are also diverse.
QD algorithms are powerful in domains where sub-
optimal solutions act as “stepping stones” that miti-

gate convergence to local optima (Lee et al., 2024).
A classic example is the problem of training an
agent to reach a target position in a deceptive maze
(Lehman and Stanley, 2011). There, directly mini-
mizing the distance between the agent’s final posi-
tion and a target goal causes the agent to get stuck.
On the other hand, the problem can be solved by
ignoring the objective of directly reaching the tar-
get and instead attempting to find a diverse range
of agents, each of which reaches a different region
of the maze.

We utilize the exploration power of QD algo-
rithms to empower LLM to generate diverse solu-
tions to coding problems. However, we encoun-
tered difficulties in utilizing QD algorithms for
prompt optimization as the dimensionality of the
embeddings is too high. Thus, we considered re-
inforcement learning (RL) for learning prompts.
RL works well in non-differentiable settings and
can handle complex spaces through trial and feed-
back. We treat the prompt as a parameterized ac-
tion space and learn how to adjust it to improve
accuracy and diversity through Proximal Policy
Optimization (PPO) (Schulman et al., 2017). PPO
can find prompts that produce more accurate and
diverse code solutions by repeatedly evaluating the
rewards and using them to guide its next actions.

A problem with optimizing the continuous
prompt embeddings is the deviation from natu-
ral language. This means that the LLM has to
be queried in a way that bypasses the encoding
layer, limiting our options to open-weight LLMs.
However, performing discrete optimization on the
vocabulary of the LLM is extremely difficult (Wen
et al., 2024). To address this issue, we leverage the
work of (Wen et al., 2024), which enables us to per-
form continuous optimization on the embeddings
while maintaining the readability of the prompt.

We report our experimental results on two base-
line algorithms, batched and sequential LLM sam-
pling. Sequential sampling exhibits superior per-

1



formance over batched sampling on all recorded
metrics, including accuracy and diversity metrics
(Fig. 4). We show that our RL methods induce
better perturbations than the baselines and outper-
form them in code accuracy and diversity. We
provide the code for our algorithm and experiment
at https://github.com/LLM-QD.

2 Related Work

We describe the related work on prompt optimiza-
tion and the code similarity metric CodeBLEU.

2.1 Quality Diversity Optimization

QD problems assume an objective function f :
Rn → R and a vector-valued feature function
ϕ : Rn → Rm. The goal is to find a set of so-
lutions S that collectively maximize the objective
function f(·) and whose features ϕ(·) are suffi-
ciently diverse. Formally, for solution θ ∈ Rn,
QD assumes an objective function f : Rn → R
and m feature functions, jointly represented as a
vector-valued function ϕ : Rn → Rm.

Various methods address the QD problem by
relaxing it finding an archive (i.e., a set) A of repre-
sentative solutions. A nominal work utilizing this
insight is Covariance Matrix Adaptation MAP-
Annealing (CMA-MAE) (Fontaine and Nikolaidis,
2023), a state-of-the-art QD algorithm that has
shown superior performance on many QD do-
mains. The key idea of CMA-MAE is to opti-
mize archive improvement with Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen,
2016). CMA-ES is a state-of-the-art derivative-free
optimizer that maintains a population of solutions
represented by a multivariate Gaussian N (µ,Σ).

During each iteration, CMA-MAE draws λ solu-
tions from CMA-ES. Based on the rankings (rather
than the raw objectives) of the solutions, CMA-ES
adapts the covariance matrix Σ to regions of higher-
performing solutions. The solutions are ranked
based on how much they improve the archive, e.g.,
solutions that found new cells in the archive are
ranked high, while those that were not added at all
are ranked low. The ranking is further annealed by
an archive learning rate α. As the learning rate
increases, CMA-MAE will focus more on solutions
that explore the feature space over solutions that
optimize the objective function. With this ranking,
CMA-ES adapts the Gaussian to sample solutions
that will further improve the archive.

2.2 Prompt Optimization
Prior works (Brown et al., 2020) have shown that
prompting or instruction tuning is a powerful tool
to improve the task-adaptive capabilities of pre-
trained language models. Programmatically gener-
ating suitable task-specific text prompts through op-
timization in the continuous embedding space faces
issues of interpretability and portability across var-
ious models (Khashabi et al., 2022). To overcome
these issues, we shall utilize intuitions from Wen
et al. (2023) to optimize in the discrete token space.

2.3 CodeBLEU
CodeBLEU (Ren et al., 2021) is an evaluation
metric originally devised for code synthesis. It’s
based on comparing the synthesized code with the
ground-truth code. CodeBLEU absorbs the n-gram
matching algorithm used by its predecessor, BLEU
(Papineni et al., 2002), and further compares the
abstract syntax trees (AST) and data flow of the
two programs to capture structural and semantic
similarities. To this end, the CodeBLEU score is
expressed as a weighted sum of four components
as shown in Eq. 1.

CodeBLEU = α · BLEU+ β · BLEUweight

+ γ ·Matchast + δ ·Matchdf (1)

where Matchast is the syntactic AST match and
Matchdf is the semantic data-flow match.

Matchast counts the number of matching sub-
trees between the AST of the two programs, de-
noted TA and TB (Eq. 2).

Matchast =
Match(TA, TB)

Count(TB)
(2)

where Match(TA, TB) is the number of subtrees
in TA that matches with subtrees in TB and
Count(TA) is the total number of subtrees in TA.

Similarly, Matchdf measures the number of
matching subgraphs between the data flow graphs
of the two programs, denoted DFA and DFB , with
normalized variable names (Ren et al., 2021).

Matchdf =
Match(DFA,DFB)

Count(DFB)
(3)

where Match(DFA,DFB) is the number of
matched data-flows between the two programs and
Count(DFB) is the total number of data-flows in
program B.

For our experiments, we are interested in utiliz-
ing Matchast and Matchdf to capture the structural
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and semantic diversity of our code, respectively.
More details are provided in Sec. 4.1.

3 Research Questions

In this section, we describe the research questions
of this project. A central goal of this project is
to build an algorithm based on LLM and QD that
generates high-performing and diverse solutions to
coding problems.
R1: Can LLMs be combined with Prompt Opti-
mization to generate high-performing and diverse
solutions to coding problems?

Furthermore, we want to motivate our algorithm
by showing that increased diversity correlates with
higher-quality code. This is supported by literature
in QD, where searching for diversity helps mitigate
local optima (Lehman and Stanley, 2011).
R2: Does diverse code generation enable LLMs to
solve more coding problems?

4 Metrics and Evaluation

To answer R1 and R2, we measure the diversity and
functional correctness of the generated programs
for each algorithm.

4.1 Structural and Semantic Diversity

The definition of diversity is an important anchor in
this project. How do we quantify diversity in a set
of programs? Programs can exhibit structural and
semantical differences, capturing the difference in
program syntax and program logic, respectively. To
this end, we say that two programs are structurally
diverse if their ASTs are different and that they are
semantically diverse if their underlying logic is
different.

We utilize the CodeBLEU (Ren et al., 2021) li-
brary to measure the semantic and structural diver-
sity between a pair of code solutions. We define the
structural diversity and semantic diversity of two
programs as the inverse of Matchast and Matchdf ,
respectively.

StructDiv = 1−Matchast (4)

SemDiv = 1−Matchdf (5)

4.2 Average and Maximum Accuracy

The accuracy of each generated program is the
percentage of passed test cases. While average
accuracy represents the overall quality of the gener-
ated solutions, in code generation settings we may
only care about the most accurate solution, so we

also note the maximum accuracy of the generated
programs.

5 Experiment Settings

We will compare our algorithm, to the baseline
sequential LLM sampling, using the metrics and
evaluation described in Sec. 4. Each algorithm is
expected to output m = 4 Python programs for
each programming problem.

5.1 Dataset

Following prior work (Brown et al., 2024), we
will use the CodeContests dataset (Li et al., 2022),
a competitive programming benchmark. It con-
sists of programming problems with text descrip-
tions and test cases to evaluate our generated codes.
CodeContests consists of a versatile set of problems
collected from competitive programming websites
such as Aizu, AtCoder, CodeChef, Codeforces, and
HackerEarth.

For our experiments, we will only evaluate our
models on Codeforces1 dataset in the test set of
CodeContests. Codeforces problems include more
precise difficulty scores and include more test cases
(Li et al., 2022). We removed all problems that
were missing test cases and evaluated our algo-
rithms on the first 50 Codeforces problems with
non-empty test cases.

5.2 Base LLM Model

We leverage Meta’s instruction-tuned Llama 3
model with 8 billion parameters (AI@Meta, 2024)
as our base model.

5.3 Baseline

We evaluated the following two baselines and com-
pared our proposed algorithm with the stronger
one.

For batched LLM sampling, we prompt the
LLM to generate m = 4 distinct solutions in one
single response for each problem. For sequential
LLM sampling, we prompt it m times with the
same prompt used by Brown et al. (2024). The
exact prompts are included in Appendix A. For
both baselines, we set the parameters temperature
to 0.6 and max_tokens to 4096.

Fig. 4 shows the average and maximum passing
rate and the structural and semantic diversity for
each problem. The metrics are averaged over ten
trials with 50 problems per trial, and the bars are

1https://codeforces.com
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Figure 1: Framework of our proposed method: Prompt learned through repeated iteration of optimization and
projection

sorted based on the models’ performance. Addi-
tionally, the mean for each metric is indicated with
a horizontal red line.

Our preliminary results demonstrate that sequen-
tial sampling slightly outperforms batched sam-
pling in terms of both accuracy and diversity. Com-
pared to batched sampling, sequential sampling
achieves a higher mean and a higher maximum on
every metric. Both methods achieved low test case
accuracy but demonstrated decent diversification
capabilities, achieving structural and semantic di-
versity around 50%. Henceforth, we use sequential
sampling as our baseline for comparison with our
proposed method.

6 Proposed Methods

We propose a modular framework, Large Language
Model with Quality and Diversity (LLMQD), that
optimizes the input prompt in discrete token space
to increase diversity and accuracy, which is illus-
trated in Fig. 1. LLMQD utilizes an RL or QD
algorithm to update the prompt’s embedding vector
based on diversity and accuracy. Inspired by Wen
et al. (2023), LLMQD re-aligns the embedding to
the vocabulary with a nearest neighbors projection
function. This way, we maintain interpretable nat-
ural language prompts after every update to the

embedding.
A central challenge is that the metrics described

in Sec. 4 are non-differentiable, and thus cannot be
directly optimized. Thus, we leverage derivative-
free optimizers like PPO from RL and CMA-ES
from QD. The optimizer interacts with an evalua-
tion function that measures how well a particular
APrompt leads to solutions that pass test cases and
exhibit diversity.

6.1 Alignment with Vocabulary
To create a hard prompt from continuous embed-
dings, we utilize the work of Wen et al. (2024) to
project each token to its nearest vocabulary token
in the embedding space. This is done by comput-
ing the dot products between the candidate embed-
ding and the vocabulary embeddings and searching
for the nearest neighbor. This nearest-neighbor
projection ensures that the prompt remains within
the model’s vocabulary, allowing us to prompt the
LLM directly, without bypassing the embedding
layer.

6.2 Optimizing with CMA-MAE
We experiment with leveraging CMA-MAE from
QD to elicit diverse output from LLM. As illus-
trated in Fig. 2, CMA-MAE samples new embed-
dings from CMA-ES, records those prompts in an
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Figure 2: An algorithm that leverages CMA-MAE to search for prompts that elicit diverse outputs from LLMs.

archive, and evaluates the accuracy and diversity
of the code generated by those prompts. Impor-
tantly, all the embeddings generated by CMA-ES
are projected to tokens in the vocabulary. Then,
CMA-ES adapts the multivariate Gaussian distribu-
tion N (µ,Σ) that it generates samples from.

We encounter memory constraints when imple-
menting this algorithm with prompt optimization.
CMA-ES maintains a covariance matrix Σ that has
quadratic space complexity in terms of the dimen-
sionality of the samples. Since we are sampling
embeddings of a prompt, the dimension of the sam-
ples is a product of the embedding dimension and
the length of the prompt. This far exceeded the
memory capacity of the machines we were using
and we were unable to conduct experiments on this
method.

We propose several ideas to address this limita-
tion in discussion.

6.3 Optimizing with PPO

We leveraged PPO to iteratively augment k ad-
ditional tokens, denoted as APrompt, that are ap-
pended to the original prompt. The APrompt is
initialized with random embeddings and alters the
output of the LLM in subtle ways during optimiza-
tion. After each iteration, the APrompt is re-aligned
with the vocabulary by projecting each token to its
nearest token in the vocabulary in the embedding
space.

We define the state space (s) as the embedding
space, the action space (a) consists of continuous
perturbations on the embeddings, and the reward
function (r) is a weighted combination of average
accuracy and structural and semantic diversity eval-

uated on the code generated by the LLM with the
updated prompt (Eq. 6).

r = α ·Acc + (1− α)

(
StructDiv + SemDiv

2

)
(6)

We choose α = 2
3 to focus more on optimizing the

accuracy scores.
PPO learns a policy π(a|s) that maps states s

to actions a. In this setting, the policy is param-
eterized by a neural network that takes the flat-
tened embeddings of the APrompt as input and
outputs a continuous action distribution. We use
MLP-Policy, a multilayer perceptron that processes
continuous inputs and outputs continuous actions.
As the training progresses, PPO refines the policy
to produce perturbations that move the APrompt
embeddings toward configurations yielding higher
rewards. This process optimizes the APrompt em-
beddings and leads the base LLM to generate code
solutions with better accuracy and diversity.

7 Results

We apply the sequential sampling and RL approach
to programming problems from the CodeContests
dataset. For each problem, both methods generate
m = 4 code solutions, on which we evaluate the
mean accuracy, maximum accuracy, mean struc-
tural diversity, and mean semantic diversity. The
metrics are recorded in Table 1.

Analyzing the box plot on Fig. 3, we observe an
improved performance across both diversity and ac-
curacy metrics for our proposed method compared
to the baseline. The improvement in mean accuracy
shows that the programs generated by our method
passed more test cases on average. There is also
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Baseline Our (RL)
Mean Accuracy 0.060 0.139
Max Accuracy 0.092 0.200
Mean Structural Div. 0.207 0.417
Mean Semantic Div. 0.228 0.458

Table 1: Average results across problems

a significant jump in max accuracy, which implies
that the number of test cases passed by the best-
performing programs was higher for our method.
Additionally, our method produces programs that
are more structurally and semantically diverse from
each other than the programs generated by the base-
line.

Figure 3: Box plots comparing sequential sampling
and our (RL) method on mean accuracy, max accuracy,
mean structural diversity, and mean semantic diversity

8 Conclusion

We leverage insight from QD to introduce a novel
method that elicits diverse and high-quality code
generation from LLM via prompt optimization. We
experiment with our framework with QD and RL
algorithms, achieving improved performance with
PPO.

Although our initial attempt with QD failed, we
can try to address the limitations by having QD
optimize on a single token of the prompt instead
of the entire prompt. Moreover, we can combine
our RL method with QD by using an algorithm
that adapts PPO to QD in RL domains (Batra et al.,
2023).

We hope to extend our work to more general

domains beyond code generation. Our work sheds
insight into how eliciting diverse behaviors from
LLM may improve performance. This may be ap-
plied to more human-LLM collaboration settings,
where the expectations of the human are often am-
biguous and hard to determine. In such cases, of-
fering diverse options to the human may improve
satisfaction and streamline collaboration. How-
ever, diversity might be difficult to quantify in these
cases so we will require a robust metric based on
human evaluation.
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For our experiments, we use the following prompt
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following coding problem that obeys the
constraints and passes the example test
cases. The output code needs to read
from and write to standard IO. Please
wrap your code answer using ˋˋˋ: [problem
description]

B Baseline Results

We illustrate our baseline comparison results in
Fig. 4.
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Figure 4: Accuracy and Diversity metrics of batched sampling and sequential sampling. The x-axes are problem
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mean performance for each metric.
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