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Abstract

It is well-known that pseudocode is useful for
learning purposes and comprehension of exist-
ing code. However, pseudocode has yet to be
considered for applications beyond code com-
prehension, such as debugging functionality.
Theoretically, an accurate code-to-pseudocode
translation of broken code can easily reveal or
rule out logical flaws within the program, expe-
diting the debugging process. In this paper, we
use the methods of transformers, RNNs with
and without attention, and prompting and fine-
tuning existing LLMs to approach Python code-
to-pseudocode translation. By approaching the
problem with varying solutions, we aimed to
find the benefits of each architecture and de-
termine an optimal approach to the code-to-
pseudocode translation problem. Ultimately,
we found that [more about results here].

1 Introduction

1.1 Motivation
Having a reliable model for code-to-pseudocode
translation enhances clarity, collaboration, and
learning in software development environments.
It aids in comprehension and documentation of
complex algorithms or pieces of code by provid-
ing a clear and concise representation in natural
language. This simplification is especially help-
ful for individuals who may not be proficient in a
particular programming language but need to un-
derstand the logic behind the code. Additionally,
it facilitates collaboration among developers by
bridging the gap between different programming
backgrounds, allowing team members to communi-
cate and review code more effectively. Automated
translation to pseudocode can serve as a valuable
educational tool, helping students grasp program-
ming concepts by breaking down code into more
easily understandable steps.

Additionally, there is great potential for pseu-
docode to be useful for debugging purposes. Espe-

cially for those who outline their code with some
general pseudocode, having the ability to translate
their code to pseudocode could help reveal logical
erros within the code when compared against the
intended functionality.

1.2 Task Definition

Our language models will receive Python code as
input and produce pseudocode as output. See Table
1 for an example. We will have 3 separate models:
an RNN with and without attention, transformers,
and prompting and fine-tuning an existing large-
language model. This comparative analysis aims
to shed light on how each model navigates the chal-
lenges of translating code into pseudocode. It is not
our intention to seek a singular "best" model but
to understand the relative strengths and practical
applications of these models in the domain of code
translation.

2 Related Work

There is a significant amount of research on the
code-to-pseudocode and pseudocode-to-code prob-
lem. With Python specifically, one of the largest
Python code to pseudocode datasets, Django, was
created for the research paper Learning to Gener-
ate Pseudo-Code from Source Code Using Statisti-
cal Machine Translation (Oda et al., 2015). Other
Python code to pseudocode models have been cre-
ated and researched, but are moreso line-by-line
translations and lack explanations of the purpose of
the code. Additionally, the research paper "SPoC:
Search-based Pseudocode to Code" (Kulal et al.,
2019) performed C++ code-to-pseudocode trans-
lation. Especially notable is their concession that
BLEU may not be comprehensive enough of a met-
ric for code-to-pseudocode translation, which we
will discuss later.
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Input Output
def sort(arr): in function sort, which takes an array of integers arr
n = len(arr) let n be the length of arr
for i in range(n): for every i in [0, n)]:

for j in range(0, n - i - 1): for every j in [0, arr-i-1):
if arr[j] > arr[j+1]: if value of arr at j > value of arr at j+1

arr[j], arr[j+1] = arr[j+1], arr[j] swap value at j with value at j+1

Explanation: Implementation of Bubble Sort Algorithm.

Table 1: Example input and output for our LLM.

3 Hypothesis

A specially trained language model for code to
pseudocode translation and explanation will per-
form better than general purpose language models.

4 Datasets

In this project, we will leverage two primary
datasets: the Django Dataset and the CoNaLa
(Code Natural Language) Dataset. Both datasets
consist of Python code snippets paired with their
corresponding English pseudocode annotations,
which are crucial for training our model to un-
derstand and generate accurate pseudocode and
explanations.

4.1 Django Dataset

The Django Dataset was originally created for the
research paper "Learning to Generate Pseudo-Code
from Source Code Using Statistical Machine Trans-
lation" (Oda et al., 2015), which was discussed in
the "Related Work" section. It consists of 18,805
annotations, divided into 16,000 training, 1,000 de-
velopment, and 1,805 test annotations. Each anno-
tation consists of a line of Python code and its cor-
responding manually written natural language de-
scription. For ease-of-use, we specifically used the
Django dataset on Hugging Face by AhmedSSoli-
man, as the original Django dataset in the Github
repository is written as two text documents (one
of code and another of pseudocode). By using this
Hugging Face dataset, we can expedite our process
by removing the need to parse and categorize the
data ourselves.

4.2 CoNaLa Dataset

The CoNaLa Dataset, or The Code/Natural Lan-
guage Challenge dataset, was developed by two
Carnegie Mellon University labs to provide a cor-
pus for code generation from natural language de-
scriptions (Yin et al., 2018). The dataset crawled

from Stack Overflow and curated by annotators
contains 2,879 total examples, split into 2,379 train-
ing and 500 test examples. While a larger dataset
of 600,000 automatically-mined code examples is
also available, it is not filtered and does not contain
proper code-to-pseudocode annotations for each
example, which is necessary for our purpose.

4.3 Creating a Single Dataset

Given the structural similarity between these two
datasets—where each data point is a line of Python
code matched with an English pseudocode anno-
tation—we plan to combine them to enhance the
diversity and volume of our training material. This
merged dataset will provide a more robust founda-
tion for developing our language model, enabling
it to handle a wider range of code-to-pseudocode
translation tasks.

To begin, we adopted a (90/5/5) data split for
training, validation (inferencing), and testing pur-
poses. Accordingly, we allocated 18,300 examples
for training, 1,140 for validation, and another 1,141
for testing. This distribution aims to ensure com-
prehensive coverage and effective learning while
leaving room for adjustments.

4.4 Tokenization

To tokenize the data, we use two Hugging Face
BPE (Byte-Pair Encoding) tokenizers for Python
code and pseudocode respectively. The tokenizers
are trained on their respective complete datasets,
comprising the training, validation, and test data
from both the Django and CoNaLa datasets for
Python code or pseudocode, with the follow-
ing special tokens: "[UNK]" for the unknown
token, "[BOS]" for the beginning-of-sentence
token, "[EOS]" for the end-of-sentence token,
"[PAD]" for the padding token. A maximum
length of 70 is set for the tokenizers for both trun-
cation and padding, based on the average sentence
length in the dataset.
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5 Evaluation Framework

Our project adopts a comprehensive evaluation
framework designed to assess the performance of
various models in code-to-pseudocode translation.
This framework is structured to provide insights
into how effectively each model handles the task,
focusing on accuracy, linguistic fidelity, and the
models’ ability to generalize across different code
snippets. Given the exploratory nature of our re-
search, our evaluation criteria are geared towards
understanding the strengths and areas for improve-
ment of each model rather than establishing a hier-
archical ranking.

To test the models’ generalization capabilities,
we will evaluate their performance across a diverse
set of code examples, including those with varying
levels of complexity and from different domains.
This will help us understand how well the models
can adapt to new, unseen code snippets.

Our evaluation framework consists of 3 evalua-
tion metrics: BLEU, ROUGE, and Semantic Simi-
larity.

5.1 BLEU Scores

BLEU, or Bilingual Evaluation Understudy, is an
algorithm for evaluating the acccuracy of text trans-
lation from one natural language to another by us-
ing n-grams (Papineni et al., 2002). Addressed in
"SPoC: Search-based Pseudocode to Code" (Kulal
et al., 2019), BLEU may not be the best metric for
evaluating code-to-pseudocode translation because
it fails to account for whether or not code is func-
tionally correct. However, upon further analysis of
related work on LLM code-to-pseudocode transla-
tion, we found that most research on this problem
used BLEU as an evaluation metric. Thus, while
BLEU may not be a comprehensive evaluation of
translation quality, we thought it still appropriate to
include due to its usage in related work, as it would
allow us to compare our results with that of other
research.

5.2 ROUGE Scores

ROUGE, or Recall-Oriented Understudy for Gist-
ing Evaluation, is another set of metrics that is used
to evaluate text summarization tasks by looking at
overlapping n-grams between generated and ref-
erence texts (Lin, 2004). We found it appropriate
to calculate ROUGE scores because the code-to-
pseudocode translation task is not just a machine
translation task but also a summarization task. To

elaborate, unlike natural language to natural lan-
guage translation tasks, there is no one "correct"
translation. Therefore, we include ROUGE Scores
to evaluate the summarization capabilities of our
models when translating code-to-pseudocode.

5.3 Semantic Similarity

Finally we use Semantic Similarity, a metric that
uses the similarity between concepts and terms
from prior knowledge sources to estimate the simi-
larity between text (Slimani, 2013). Our two other
metrics, ROUGE and BLEU, use n-grams to eval-
uate the quality of generated text against the ref-
erence or ground truth text. While this is useful,
as discussed earlier, we know that in the code-to-
pseudocode translation problem, a translation does
not have to use the same words or phrases as the
ground truth to still be an effective and correct trans-
lation. Previous research has tried to address this
problem with various approaches. For instance, in
"SPoC: Search-based Pseudocode to Code" (Kulal
et al., 2019), Kulal et al. created their own eval-
uation framework to evaluate the functional cor-
rectness of translations. In "Learning to Generate
Pseudo-Code from Source Code Using Statistical
Machine Translation" (Oda et al., 2015), Oda et
al. had two forms of human evaluation, from both
experienced and beginner programmers, to eval-
uate both comprehensiveness and readability of
generated translations. However, methods such as
these require resources beyond our scope, and thus
we attempted to address this problem in a simpler
manner, by calculating Semantic Similarity.

6 Approach

In attempt to identify the strengths of particular
architectures in the code-to-pseudocode translation
task, we employed 3 main approaches: Recurrent
Neural Networks (RNNs) with and without atten-
tion, transformers, and fine-tuning and prompting
an exsisting pre-trained model, CodeLlama.

6.1 Recurrent Neural Networks (RNN) with
and without Attention

Given their efficacy in handling sequential data,
RNNs represent a fundamental approach for our
task. We aim to explore their capacity to capture
the temporal dependencies characteristic of code
syntax and structure.
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6.2 Transformers

Given their state-of-the-art performance in various
natural language processing tasks, including trans-
lation, we anticipate that Transformer models will
offer significant improvements in translating code
to pseudocode. Their self-attention mechanisms
can handle long-range dependencies more effec-
tively than conventional RNNs, potentially leading
to more accurate and coherent translations.

6.3 CodeLlama

After our creation and evaluation of the prior two
models, we quickly realized that our dataset was
not nearly robust enough to enable the models to
properly comprehend code. Therefore, we wanted
to perform similar evaluations on a model pre-
trained to understand code and code-related lan-
guage, and compare its efficacy to that of our cus-
tom models.

As a model specifically designed for program-
ming language tasks, CodeLlama presents an in-
triguing option for fine-tuning. We expect its pre-
existing knowledge of code structures and syntax
to be beneficial for our code-to-pseudocode trans-
lation task.

7 Experiments and Results

7.1 RNNs

The RNN model used for this task is an encoder-
decoder model where both the encoder and de-
coder are RNN networks. The intuition for us-
ing this encoder-decoder structure is that this is a
translation task between two languages, in which
the source and the target vocabulary are different.
Therefore, the encoder takes the source vocabulary
(Python code) into concern when encoding, while
the decoder calculates the probabilities over the
target vocabulary (pseudocode).

In this part of the experiment, the question is
that whether the use of attention mechanism will
improve the performance of the RNN model. The
answer is yes, but the improvement is not signifi-
cant. Our speculation is that since the sentences in
the translation task between Python code and pseu-
docode are short, the power of attention mechanism
is not fully demonstrated. Moreover, because the
insignificant difference between the two models,
the additional time added by attention layers during
training and inference time may not be worth it.

7.2 Transformers

In our experiments, we specifically focused on test-
ing how the size of embeddings and feedforward
neural networks (ff neural nets) within the Trans-
former architecture affect performance. Our results
confirmed that increasing the size of embeddings
consistently improves the model’s performance.
This enhancement likely stems from the model’s
increased capacity to capture and process a wider
array of syntactic and semantic nuances present in
the source code.

Conversely, augmentations to the size of the feed-
forward neural networks did not yield significant
changes in performance. This suggests that once
a sufficient capacity to handle the sequential logic
of code is reached, simply expanding the ff neural
nets does not contribute additional benefits. This
finding aligns with the hypothesis that the critical
factors for code-to-pseudocode translation lie more
in capturing relationships and dependencies than
in processing capacity alone.

Moreover, our testing with different generation
strategies revealed that greedy generation often
resulted in degenerate behavior, characterized by
repetitive or irrelevant pseudocode outputs. In con-
trast, temperature-based sampling produced more
varied and contextually appropriate translations.
This discrepancy likely arises from the limited vo-
cabulary size and the insufficient training dataset
size used in our experiments. The greedy ap-
proach’s tendency to favor higher probability se-
quences exacerbates these limitations.

To illustrate, consider the following example
comparing temperature-based sampling and greedy
generation outputs:

Another interesting observation was the heavy
influence of variable names on the translations
produced by our Transformer models. This phe-
nomenon indicates that our models, which have
not undergone pre-training specific to program-
ming languages, are overly reliant on direct as-
sociations between variable names and their usage
contexts. This suggests a potential area for further
research and model refinement, possibly through
pre-training on a more diverse coding corpus to
reduce the models’ sensitivity to variable naming
and improve their generalization capabilities.

7.3 CodeLlama

For prompting and fine-tuning, we specifically used
CodeLlama-7b-Instruct, part of Meta’s Code Llama
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Sampling Output
return a list of the object ‘to
self.py‘ lst ‘to object‘ y ‘to
self.py‘ of the self.loader to a
list of the object ‘to a list of
the object‘ that ‘in descending to
string

Greedy Output
return a list of the class ‘to a
list of the class‘ using ‘using
‘using ‘using ‘using ‘using ‘using
‘using ‘using ‘using ‘using ‘using
‘using ‘using ‘using ‘using ‘using
‘using ‘using

Table 2: Comparison of pseudocode outputs using tem-
perature sampling (t = 0.5) and greedy generation strate-
gies.

family of pretrained and fine-tuned generative text
models with varying parameter sizes and purposes.
CodeLlama-7b-Instruct is a CodeLlama Instruct
model trained on 7 billion parameters and fine-
tuned to perform instruction and chat-based tasks.
While the Code Llama Python models also ex-
ist, we chose this model over the other models in
the CodeLlama family because the Instruct model
would be able to take in our custom prompts for
prompting evaluation. For fine-tuning, we contin-
ued to use CodeLlama-7b-Instruct for consistency
and accuracy of comparison between prompting
and fine-tuning.

Due to computational limitations, CodeLlama-
7b-Instruct was fine-tuned only on the Django
dataset. However, both fine-tuned and prompted
generations were evaluated based on their genera-
tions on both the Django and CoNaLa test sets.

7.3.1 Prompting CodeLlama

In evaluating CodeLlama-7b-Instruct’s ability
to perform code-to-pseudocode translation with
prompting, we took two approaches: zero-shot
prompting and few-shot prompting. In both ap-
proaches, we modified the prompt until the model
generated the most desirable translation, based on
both our evaluation metrics and human evaluation.

For zero-shot prompting, the optimal prompt we
found followed the format:

"[INST]\nWrite the following Python code
as one line of natural language
pseudocode\n" + code + "\n[/INST]"

where the [INST][/INST] tags are the tags used
by CodeLlama to differentiate user input and gen-
erated output, and code is the line of Python code
to be translated. Using this prompt format, we ran
all lines of code in our test set through CodeLlama-
7b-Instruct, then ran our evaluation metrics on the
generated translation against our test set of human-
annotated pseudocode translations. See Table 3 for
results.

For few-shot prompting, the optimal prompt we
found followed the format:

"""[INST]
Write the following Python code as one line
of pseudocode:
s.split(' ', 4)
[/INST]
Split a string `s` by space with `4` splits
[INST]
Write the following Python code as one line
of pseudocode:
text.split()
[/INST]
split string `text` by space

Write the following Python code as one line
of pseudocode:
<code>
[/INST]"""

where the [INST][/INST] tags are the tags used
by CodeLlama to differentiate user input and gener-
ated output, and <code> is the line of Python code
to be translated. Similarly to zero-shot prompting,
we ran all lines of code in our test set through
CodeLlama-7b-Instruct with the above prompt,
then ran our evaluation metrics on the generated
translation against our test set of human-annotated
pseudocode translations. See Table 3 for results.

7.3.2 Fine-Tuning CodeLlama
We utilized PEFT (Parameter-Efficient Fine-
Tuning) and SFT (Supervised fine-tuning) to fine-
tune CodeLlama-7b-Instruct. As mentioned previ-
ously, computational limitations placed limitations
on our ability to fine-tune CodeLlama-7b-Instruct.
Using PEFT helped us train our model efficiently,
though we also had to reduce some parameters.

CodeLlama-7b-Instruct was fine-tuned on the
Django dataset train split with the following param-
eters:

learning_rate = 5e-4
train_epochs = 1
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save_steps = 500
logging_steps= 250
per_device_train_batch_size=2

To compare the performance of the fine-tuned
model against prompting, we used the exact same
zero-shot and few-shot prompts described earlier
but on our fine-tuned model. See Table 3 for results.

As expected, Few-Shot prompting performed
better than zero-shot prompting, in both pure
prompting and fine-tuning. Surprisingly, though,
while fine-tuned zero-shot had the best ROUGE-L
score, it had significantly lower BLEU and Seman-
tic Similarity scores. However, this could be a
result of our scaled-down fine-tuning, which was
only one epoch and had a very minimal batch size,
which could have effected the quality of fine-tuning.
This could also be the case for few-shot fine-tuning,
but we were unable to obtain ROUGE scores for
this test case due to some empty outputs.

8 Conclusions

Although this is a perfect use case of the encoder-
decoder model in machine translation, the result is
not ideal, which is probably due to the nature of
the task itself and the small dataset size.

First, although the task is a translation task, it is
not a typical natural language to natural language
translation task. It deals with Python code, which,
empirically, is more similar to English than other
programming languages, and pseudocode is repre-
sented by natural language but the actions that it
describes are highly structural and relate highly to
the programming language. These characteristics
of our source and target languages are the probable
causes to the poor performance with our traditional
approaches to machine translation

Second, the small dataset size limits the ability
for our models to generalize, as there are many
variables like variable names, function names, error
messages, etc. that confuses our model when the
data is not sufficient.

9 Future Considerations

Informed by our findings, we may explore addi-
tional strategies to enhance model performance,
including but not limited to:

1. Implementing advanced evaluation metrics for
a more nuanced understanding of translation
quality.

2. Exploring data augmentation techniques to
improve model robustness and training effi-
ciency.

3. Investigating hybrid models that combine the
benefits of different architectures.

4. Finding ways to generalize variable names
before translation to pseudocode, as various
variable names can have equivalent meaning
in code.
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BLEU ROUGE-l Semantic Similarity
Prompting: Zero-Shot 0.1519 0.2646 0.7232
Prompting: Few-Shot 0.1651 0.3119 0.7481
Fine-Tuning: Zero-Shot 0.1223 0.3388 0.6239
Fine-Tuning: Few-Shot 0.1411 N/A 0.6393

Table 3: Evaluation metrics on outputs of CodeLlama-7b-Instruct
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