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Abstract

MixRx uses Large Language Models (LLMs)
to classify drug combination interactions as
Additive, Synergistic, or Antagonistic, given
a multi-drug patient history. We evaluate the
performance of 4 models, GPT-2, Mistral In-
struct 2.0, and the fine-tuned counterparts. Our
results showed a potential for such an applica-
tion, with the Mistral Instruct 2.0 Fine-Tuned
model providing an average accuracy score on
standard and perturbed datasets of 81.5%. This
paper aims to further develop an upcoming area
of research that evaluates if LLMs can be used
for biological prediction tasks.

1 Introduction

Motivation for the proposed research stems from
the recognition of the limitations inherent in ex-
isting one-to-one drug interaction checkers. The
National Institutes of Health (NIH) (NIH, 2024) re-
cently published work that marks a significant mile-
stone in this domain: CancerGPT (Li et al., 2023).
This research focused on cancer drug cocktails to
reveal the potential of LLMs to revolutionize how
we approach combination therapies in oncology.
However, the scope of such research remains nar-
rowly focused on oncological and rare-tissue ap-
plications, leaving a vast landscape of multi-organ,
multi-system, and multi-disciplinary areas unex-
plored.

Our ambition is to extend the efforts of Can-
cerGPT beyond the confines of cancer treatment
to encompass a broader range of general medi-
cal conditions in an emergency medicine domain.
The project will ultimately serve as an assistive
tool for first responders and emergency department
physicians. This advancement would not only in-
crease the efficiency and confidence with which
treatments are prescribed, but also significantly en-
hance patient outcomes by tailoring drug combi-
nations to the specific needs of individuals, taking
into account the multifaceted nature of their condi-
tions.

1.1 Purpose

In their exploration of cancer drug cocktails, Li
et al. emphasized the importance of understand-
ing the synergy between drugs to infer biological

reactions that are not directly observable. They
noted that "while structured databases hold a lim-
ited amount of biological knowledge, the vast ma-
jority resides in free-text literature, which can be
utilized to train large language models" (LLMs)
for predicting biological outcomes (Li et al., 2023).
The team at the NIH supports the use of LLMs,
particularly in scenarios "where structured data and
sample sizes are limited," proposing these mod-
els as "innovative tools for biological prediction
tasks" (Li et al., 2023). Furthermore, Li et al. high-
lighted that the application of LLMs to broader,
more complex fields remains an emerging area of
research. They expressed an eagerness to expand
this research to encompass more general tasks in-
volving multiple organs and systems across vari-
ous disciplines, specifically targeting Emergency
Medicine.

Ultimately, in this new area of research, the ini-
tial phase involves assessing how effectively mod-
els can determine drug combination synergy. This
understanding will enable us to evaluate a model’s
ability to handle and generalize from messy inputs.
Finally, testing the model’s capacity to predict un-
seen reactions will necessitate expert support to
ensure accuracy and reliability. In this paper, we
complete the first two steps.

1.2 Existing Methods

In the experience of the authors, the traditional
use of Look-Up Tables (LUTs) has proven to have
limitations in the area of drug interaction analy-
sis – especially in fast-paced medical environments
like emergency medicine. These tables are highly
dependent on the exactitude of inputs, requiring
not only perfectly spelled drug names but also a
comprehensive list that includes all possible syn-
onyms, acronyms, and hospital-specific slang. See
tables 1 and 2 for experimental LUT results on mis-
spellings and synonym usage. These dependencies
make LUTs less adaptable to the often chaotic and
hurried inputs typical in emergency settings, where
drug names might be misspelled or referred to by
general or brand names, descriptions, or even team-
specific slang. The interaction checkers based on
LUTs are inherently limited; they do not generalize
beyond their explicit entries and require constant



updates to remain useful, offering 100% accuracy
only with perfect inputs and no room for predicting
interactions of unseen drug combinations. Their
performance is bounded by the drugs listed and the
analyses provided, which could become a bottle-
neck in a setting where timely decision-making is
critical.

Table 1: Performance of the Look-Up Table for Perfect
Inputs

Perfect Inputs Performance

Condition Accuracy
Known drug combinations 100%

Table 2: Performance of the Look-Up Table for Messy
Inputs

Messy Inputs Performance

Input Type Condition Accuracy
Synonyms /
Acronyms

Exist in Pub-
Chem

100%

Do not exist in
PubChem

0%

Spelling Mis-
takes

Exact matches 0%

Partial-
substring
matching

20%

On the other hand, LLMs present a more dy-
namic alternative. LLMs are inherently more flex-
ible and can handle messy inputs typical in emer-
gency scenarios, such as misspellings or descrip-
tions. This is a feature that can help reduce Medical
Malpractice and the common error if misspelling
and confusing drug names for similarly spelled
alternatives. Unlike LUTs, LLMs have the capac-
ity to generalize from the data they are trained
on, making them capable of predicting drug inter-
actions even for drug combinations that have not
been explicitly observed before. They can utilize
the extensive information stored in free-text med-
ical literature to provide comprehensive analysis,
not limited merely to quantitative data but also con-
textual insights based on multi-drug histories and
patient information. Once trained, these models
can be efficiently distributed, reducing the need for
continual upkeep. This adaptability and depth of
analysis position LLMs as a potentially more ef-
fective tool in emergency medical settings, where
the variety and complexity of scenarios require a

robust and flexible system that can quickly adapt
to new information.

2 Method

Our codebase can be found at the following Github
repository: (Surana et al., 2024).

We evaluate the model on its ability to predict
the compatibility of a new drug with existing ones
using a defined synergy metric and terminology.
This involves assessing if a new medication would
synergize well with the patient’s current regimen.
Second, the project assesses whether the model’s
predictions are based on sound reasoning, incorpo-
rating both broad medical knowledge and specific
input data from the patient’s drug history. The final
critical aspect is the model’s ability to recommend
a new, additive drug in complex multi-drug scenar-
ios that would positively interact with the existing
treatment plan. This final recommendation aspect
is left for future work.

3 Data

We use 3 datasets in this evaluation: 1. SynergxDB
2. SynergxDB, Messy 3. NIH Drug Encounter
Data

We also build a ground truth dataset used to
evaluate our model outputs for accuracy and other
metrics during Evaluation.

3.1 Dataset 1: SynergxDB

We use SynergxDB (Lab, 2020), a database which
contains 16,525 synergistic drug-pair combinations
for biomarker discovery, each with 4 forms of syn-
ergy calculations such as BLISS, LOEWE, HSA,
ZIP. These drug-pairs exist based on combina-
tions that often overlap (harmoniously and com-
petitively) in both research and medical practice,
so they are a good representation of patient data.

To convert this database into a dataset, we have
extracted out the drugs pairs that have existing syn-
ergy scores and built a dataset with 10,000 valid
drug combinations of randomly varying lengths
of 2 to 5 drugs. Our data is split into a 80/10/10
train/test/validation set. For a drug combination
list to be considered valid, for each pair of drugs
in each combination, there is a corresponding ar-
ray of synergy scores. This ensures that we can
easily verify that the model output is correct using
our Python-based synergy validation pipeline that
verifies if an answer is correct by checking the 4



synergy scores for each pair of drugs in any given
combination.

Using our pre-processing pipeline, our data is
then transformed from a tabular input to a string-
based model prompt using the following template.

Example Input Prompt

Given the following set of drugs, decide if the synergy
of the drug combination is synergistic or antagonistic:
Sepantronium Bromide, Crizotinib, Pictilisib.

"Pictilisib and Sepantronium Bromide have
a Loewe score of: -0.3191, HSA
score of: -0.4446, and ZIP score of:
-0.7671. Crizotinib and Sepantronium
Bromide have a Loewe score of... Generate
a prediction on whether the overall
drug combination is synergistic or
antagonistic. Provide a quantitative
synergy score based on the weighted
average of Loewe, HSA, and ZIP scores,
qualitative reasoning supporting your
prediction, and a confidence level in your
prediction. Format your answer as specified
below: { \"Prediction\": \"Antagonistic\",
\"Qualitative Reasoning\": \"This...", }

This format allows us to fine train the model
on accurate data relating to drug Additivity, Syn-
ergy, and Antagonism, as well as easily and quickly
verify our answers.

3.2 Ground Truth Data

Our ground truth, to be used in the Evaluation of
our model outputs, is generated at this step for each
valid drug combination in our dataset. It consists
of the calculated prediction label (Synergistic, An-
tagonistic, or Additive) and a template-generated
string reasoning that performs a step-by-step chain-
of-thought pairwise analysis. This reasoning is
later compared to the reasoning generated by the
model in Evaluation. In order to determine the
correct prediction label, we performed extensive
literature review on the 4 provided synergy scores
(Loewe, Bliss, ZIP, and HSA) for each drug pair
in the combination. We looked at how they are uti-
lized in lab experiments, what they represent, and
the functions to calculate the values.

We then built an algorithm that analyzes the
interactions of drug pairs using different scoring
methods (Loewe, Bliss, ZIP, and HSA) to classify
their synergistic, antagonistic, or additive effects.
The function aggregates these classifications to de-
termine an overall interaction result for each pair,
takes outlier data into account, and concludes with
a final analysis based on the presence of signifi-

cant synergy, antagonism, and the relative counts
of synergistic versus additive interactions.

3.3 Dataset 2: SynergxDB, Messy

Our SynergxDB Dataset is easily converted into
our "Messy Dataset" using input perturbation mod-
ifications to our prompt templates.

Our first modification imitates a spelling error
by order. For a given example, one drug listed in
the input prompt was modified such that two let-
ters were swapped. This represents the commonly
encountered errors of swapping an "i" or "e" while
spelling, for instance.

Our second modification imitates a spelling error
by silent letters. Here, we removed the last letter
of a word. This represents a common mistake of
missing the last letter while a medical professional
is spelling in a rush, or if there is a silent letter
at the end of the word that is not pronounced and
hence not remembered in spelling.

We then take our SynergxDB dataset and apply
one of the two perturbations to each example, cho-
sen at random. This forms our final Messy Dataset.

3.4 Dataset 3: NIH Data

The NIH (NIH, 2024), using private repositories,
provides access to patient symptoms, histories, rec-
ommended treatments, and outcomes. We select
a specific subset of patient encounters at clinics,
ambulances, and ERs to compile our NIH Dataset.
This dataset offers a detailed view into the real-
life decisions made by doctors, EMTs, paramedics,
and other medical professionals in the context of
emergency medication. It specifically limits the in-
formation to medications used in emergency situa-
tions. This data has a size of 73,252 unique medical
events, such as emergency room visits and general
outpatient visits, that warranted a drug exposure.

We run two experiments with this dataset. First,
although no corresponding synergy data is avail-
able at the NIH, this limitation allows the model
to infer relationships based on factors such as the
time of use, duration of use, and side effects. Al-
ternatively, we have cross referenced the drugs in
our SynergxDB database to the drugs listed in the
NIH data to evaluate the decisions made by real
medical professionals. This allows us to get a sense
of how synergistic is the average drug combination
prescribed by a medical professional, in order to
set an upper-bound for model performance. The
experiments relevant to this dataset are currently



in-progress, and shall serve as the next steps for
this project.

4 Models

We use GPT-2 (Radford et al., 2019) and Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023) in our exper-
iments. We then finetune both the GPT-2 and
Mistral-7B-Instruct-v0.2 model.

Developed by OpenAI, GPT-2 is a large lan-
guage model with 1.5 billion parameters, pretrained
on the WebText dataset derived from text across 45
million website links. As a simple and lightweight
model, it serves as an excellent baseline due to its
ease of use and the minimal resources required for
fine-tuning. This model provides valuable insights
into how large language models (LLMs) function
and offers a practical understanding of how to effec-
tively prompt a model while managing limitations
related to its size, which caps at 1024 tokens includ-
ing the prompt. However, GPT-2 has its drawbacks;
it is not specifically pretrained for medical tasks
and often produces incoherent or degenerative out-
puts, highlighting some of the challenges when
using it in specialized domains like healthcare.

MistralAI’s model, Mistral-7B-Instruct-v0.2,
boasts 7 billion parameters and is specifically fine-
tuned for conversation and question answering. As
a larger model, comparable to LLama, Mistral is
notably well-suited for and easy to fine-tune for a
variety of applications, including those that require
handling messy inputs. Its ability to be fine-tuned
for QA tasks allows it to potentially generalize
to the medical field, despite not being pre-trained
for medical tasks. However, the larger size of
the model means it is more expensive to fine-tune,
which could be a consideration for those weighing
the costs against the benefits of using this advanced
model.

4.1 Fine-Tuning

The hardware requirements and performance for
running and fine-tuning GPT-2 (Radford et al.,
2019) and Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023) models vary significantly. For GPT-2 and
its fine-tuned version, we utilized NVIDIA RTX
A6000 GPUs with CUDA version 10.1. The stan-
dard GPT-2 required 48 GB of memory, which
matches the capacity of the A6000, and it took ap-
proximately 90 minutes for a complete run. The
fine-tuned version of GPT-2, despite also needing
48 GB, ran considerably faster, completing training

in 45 minutes and additional processes in just 14
minutes.

On the other hand, Mistral-7B-Instruct-v0.2 and
its fine-tuned counterpart were handled differently.
The base version of Mistral operated on the same
NVIDIA RTX A6000 with 48 GB of memory and
completed its run in 60 minutes. The Mistral model
utilized modifications such as torch.float16 to en-
hance performance efficiency during its operation.
To fine-tune the model, we implemented LORA
(Low-Rank Adaptation), a technique that helps op-
timize the model’s adaptability while maintaining
a balance between performance and computational
efficiency. This approach allowed us to achieve
more precise fine-tuning with less memory over-
head, thus enhancing the model’s ability to handle
complex question-answering tasks without signifi-
cantly increasing runtime. Fine-tuning lasted 120
minutes.

5 Evaluation Framework

To assess the effectiveness of MixRx, our evalua-
tion framework is centered on a comprehensive set
of key performance metrics alongside some base-
line comparisons. These metrics are necessary to
accurately and effectively understand the model’s
capability to predict multi-drug interactions.

The metrics employed to evaluate our model’s
performance include a focus on both synergy ac-
curacy and synergy reasoning. First, we assess
whether the model can accurately predict the effec-
tiveness of a new drug combination using existing
drug history and synergy metrics. This involves
using Precision, Recall, and F1 Score. Addition-
ally, the model’s overall correctness is evaluated
through Accuracy, calculated as the ratio of correct
predictions to total predictions.

For synergy reasoning, we examine if the
model’s conclusions are based on valid general
knowledge and the input data. Here, text simi-
larity metrics such as ROUGE-1, ROUGE-L, and
BLEU are utilized (Lin, 2004; Papineni et al.,
2001). ROUGE-1 measures the overlap of uni-
gram words between the candidate and reference
text, while ROUGE-L assesses the longest com-
mon sequence of words using longest common
sub-sequence statistics, ensuring that the model’s
reasoning aligns closely with expert human judg-
ments.

Overall, Mistral Fine-Tuned (FT) performed the
best across the board.



Table 3: Model Output Comparison for Drug Combination Analysis

Prompt Context: BML-190 and Temozolomide have a Loewe score of:
-0.0841. The drug combination to analyze is: Temozolomide,
BML-190... According to the rule, if Loewe > 0.1, the outcome
is Antagonistic; if Loewe < -0.1, it is Synergistic; otherwise, it is
Additive... Decide if the combination is synergistic, antagonistic,
or additive.

Additive

Model Output Correctness
GPT-2 Sent through the Full Disclosure mailing list

https://nmap.org/mailman/listinfo/fulldisclosure Web Archives
& RSS: http://seclists.org/fulldisclosure/ By Date By Thread
Current thread: BML-190 (B) - (C) 2018-09-27T00:00:00Z -
(D) 2018-09-27T00:00:00Z - (E) 2018-09-27T

Incorrect

GPT-2 Fine-tuned Addition Additives Additionally, Synergy is additive;
Symitriptyline and BMS-387064 have synergism scores of -
1.0641. Additonib and Symetinib have

Correct

Mistral-7B-
Instruct-v0.2

Based on the given Loewe score of -0.0841, the drug combi-
nation is additive. Since the Loewe score is less than -0.1 but
greater than 0.1, it falls into the additive category. Antagonistic
combinations have Loewe scores greater than 0.1, and synergis-
tic combinations have Loewe scores less than -0.1."

Correct

Table 4: SynergxDB Dataset: 1000 drug combination
results

TP, TN, FP, FN

Metric GPT-2 GPT-2 FT
True Positives 11 693
True Negatives 19 0
False Positives 305 2
False Negatives 1 37
Unknown 664 268

Metric Mistral Mistral FT
True Positives 52 243
True Negatives 465 579
False Positives 199 16
False Negatives 145 98
Unknown 140 65

Precision and Recall: We evaluated our models
on precision and recall, with Mistral Fine-Tuned
(FT) achieving scores of 1.00 and 0.82 on the stan-
dard dataset, respectively. Precision measures the
reliability of the model in predicting synergistic
interactions among drug combinations, indicating
that 100% of the model’s positive predictions were
correct, and the recall score suggests that the model
identified 82% of all actual synergistic interactions,
showcasing a relatively high effectiveness for our

Table 5: Messy SynergxDB Dataset: 1000 drug combi-
nation results

TP, TN, FP, FN

Metric GPT-2 GPT-2 FT
True Positives 2 442
True Negatives 49 1
False Positives 887 14
False Negatives 0 22
Unknown 62 521

Metric Mistral Mistral FT
True Positives 171 14
True Negatives 31 577
False Positives 580 235
False Negatives 65 99
Unknown 154 76

model.

F1: Next, we evaluated our models using F1
score. Mistral FT scored the highest, resulting in
a score of 0.90. This is a balanced metric that con-
siders both precision and recall, which is important
in the medical domain, where both false positives
and false negatives carry significant implications
for patient health. Our model’s high F1 score indi-
cates it has the capability to balance accuracy and
completeness very well.



Table 6: SynergxDB Dataset: 1000 drug combination
results

Precision, Recall, F1

Metric GPT-2 GPT-2 FT
Precision 0.00 0.71
Recall 0.02 0.49
F1 0.01 0.58

Metric Mistral Mistral FT
Precision 1.00 1.00
Recall 0.66 0.82
F1 0.80 0.90

Table 7: Messy SynergxDB Dataset: 1000 drug combi-
nation results

Precision, Recall, F1

Metric GPT-2 GPT-2 FT
Precision 0.00 0.74
Recall 0.05 0.36
F1 0.01 0.49

Metric Mistral Mistral FT
Precision 1.00 1.00
Recall 0.61 0.81
F1 0.76 0.90

Accuracy: To check the model outputs, our
Python-based validation pipeline utilizes a pairwise
evaluation of multi-drug synergy, taking into ac-
count existing synergy calculations such as BLISS,
LOEWE, HSA, ZIP. The overall accuracy of the
Mistral FT model was determined to be 0.82, re-
flecting the proportion of both synergistic and an-
tagonistic interactions that were correctly predicted.
This metric underscores the model’s general perfor-
mance across all predictions but also highlights its
success and high reliability.

ROUGE-1: We evaluated our model reasoning
with ROUGE-1 because it provides a straightfor-
ward measure of lexical similarity, crucial for en-
suring that the model’s output employs relevant
terminology. For our evaluation of Mistral FT, we
achieved a ROUGE-1 score of 0.5288, which in-
dicates that over half of the words that the model
generated were also found in the reference text.
This suggests that our model has a good grasp of
the relevant vocabulary, though it could still be im-
proved to enhance the exactness of its word usage.

ROUGE-L: We used ROUGE-L to assess the
quality of sentence-level structures of our model,

Table 8: SynergxDB Dataset: 1000 drug combination
results

Accuracy, ROUGE, BLEU

Metric GPT-2 GPT-2 FT
Accuracy 0.02 0.49
ROUGE-1 0.0111 0.0253
ROUGE-L 0.0111 0.0253
BLEU 0.0502 0.0000

Metric Mistral Mistral FT
Accuracy 0.66 0.82
ROUGE-1 0.3769 0.5288
ROUGE-L 0.2721 0.4664
BLEU 0.0081 0.3614

Table 9: Messy SynergxDB Dataset: 1000 drug combi-
nation results

Accuracy, ROUGE-1, ROUGE-L

Metric GPT-2 GPT-2 FT
Accuracy 0.05 0.36
ROUGE-1 0.0297 0.0165
ROUGE-L 0.0297 0.0165
BLEU 0.4578 0.0000

Metric Mistral Mistral FT
Accuracy 0.61 0.81
ROUGE-1 0.3693 0.5175
ROUGE-L 0.2695 0.4515
BLEU 0.0116 0.3489

ensuring that outputs not only contain accurate
terms but also maintain a natural flow. We achieved
a score of 0.4664 for Mistral FT, which highlights
our model’s ability to maintain sequences that are
structurally coherent with the reference text. This
suggests our model has a decent competency in
structuring sentences that logically flow between
one another, preserving an essential human-like
reasoning in its output.

BLEU: BLEU allowed us to evaluate the ac-
curacy and completeness of our model in gen-
erating clinically relevant phrases, which is vi-
tal for reliability and usability in practical scenar-
ios. Mistral FT achieved a BLEU score of 0.3614,
which demonstrates its capability to recreate spe-
cific phrases and expressions that are critical when
properly conveying how drugs interact with one
another. Our score indicates that the model can rea-
sonably align itself with the reference text verbiage
but also shows that we can improve our model’s



ability to capture longer and more complex sen-
tence structures.

5.1 Analysis

Model Output Example

Field Model Output
Prediction Antagonistic
Qualitative Reasoning (see caption)

Table 10: "This drug combination is classified as an-
tagonistic due to the negative combined synergy score,
indicating that the drugs interfere with each other’s ef-
fectiveness. The Loewe score, which measures the addi-
tive effect, and the ZIP score, indicating non-interaction,
both support this conclusion. The HSA score, repre-
senting the highest single agent, further confirms that
the combination is less effective than the most effective
drug alone."

Our findings support our hypothesis that a fine-
tuned large language model is able to perform well
on Drug Interaction tasks. Our fine-tuned Mistral
model was able to successfully provide consistent
accuracy scores across the messy and unaltered
dataset, proving that a LLM is capable of handling
the messy inputs expected in an emergency set-
ting, and superior to a look-up table. Further, our
accuracy values of 0.815 on average across both
datasets for the Mistral fine-tuned model, is close
to the average accuracy score from the CancerGPT
paper, which ranged from 0.6 to 0.88 (Li et al.,
2023). This tells us that this line of work has the
potential to predict unseen reactions well, given
extensive quality training.

5.2 Limitations and Qualitative Analysis

(Yin et al., 2014) highlights that positive interac-
tions (i.e. synergistic and additive) among drugs
are far more likely than negative ones (i.e. antago-
nistic). The paper’s findings implies that the pop-
ulation prior for positive drug interaction is in the
area of 95% (95% of 18000 combinations). This
poses two considerations. First, a model should
theoretically be able to avoid the antagonist label
and achieve an accuracy score closer to the priors
of the positive classes. Second, what is a good
balance among class sample counts for the training
set? As to the first consideration, the deviation of
our two pre-trained models and GPT2 FT accuracy
from that of the positive interaction prior brings up
questions of why and how can our models can do
better. One reason for the deviation may be that

pre-trained models are good at generating tokens
from learned distributions, not predicting a class.
If so, we may benefit from a set of additional feed-
forward (FF) layers with non-linearities trained to
aid in classification. The first consideration remains
open. On the second consideration, we chose not to
balance our training dataset, favoring a sample dis-
tribution that is representative of the population as
estimated by the work in (Yin et al., 2014) and the
outcome of our data processing pipeline. In future
work, we plan to balance sample count from the
three classes and comparison results. The model
may better learn the profile of an antagonistic com-
bination when the training set is evenly split, which
is an important consideration given the dangers of
antagonistic combinations.

6 Related Work

Cancer drug synergy: CancerGPT (Li et al.,
2023) has achieved a measure of success in pre-
dicting the synergy of drug pairs in cancer rare
tissue with limited sample size. We build on their
few-shot learning work and attempt to generalize
to synergy predictions among two or more drugs in
general settings – e.g. epilepsy medication.
Two and three drug combinations: We draw on
prior drug combination research (Łuszczki et al.,
2021; Luszczki et al., 2020) to identify key safety
and performance objectives in both synergy and
additive drug prediction.
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