Project Final Report: MagicRecipe

Siyi He
siyih@usc.edu

Abstract

The MagicRecipe project aims to create a per-
sonalized dish recommendation system that
leverages advanced language models to gen-
erate recipes and shopping lists tailored to user
preferences and available ingredients. The sys-
tem uses natural language processing to in-
terpret user inputs and produce customized
recipes. The project’s goal is to develop a
prototype model, specifically fine-tuning GPT-
2, to address the challenge of automating the
creative process of recipe development. The
model’s performance will be evaluated using a
mixed-method approach, including automated
metrics like ROUGE score, Ingredient Cover-
age and Relevance, and Diversity Score, as well
as human evaluations on reasonableness, cre-
ativity, and coherence. The final report will
document the development process, evaluation
framework, and analysis of results, showcasing
the model’s ability to transform basic ingredi-
ent lists and dish names into detailed cooking
instructions, as demonstrated in the provided
example.

1 Introduction

Our project is centered on the challenge of gener-
ating accurate and creative recipes from specific
inputs such as a list of ingredients and a recipe title.
This task intersects the culinary arts and natural lan-
guage processing (NLP), aiming to automate the
creative process of recipe development. In the digi-
tal era, there is an increasing demand for personal-
ized cooking experiences, with individuals seeking
creative recipes tailored to their dietary preferences
and the ingredients they have on hand. However,
the ability to generate new, personalized recipes
remains a significant challenge. For example, pop-
ular models such as GPT2.0 and TS5 fail to gener-
ate detailed instructions for certain dishes. This
gap underscores the need for advanced NLP mod-
els capable of understanding culinary context and
generating suitable recipes, enhancing the cook-
ing experience for both amateurs and professionals.
Addressing this problem is not only beneficial for
meeting the immediate needs of cooking enthusi-
asts but also serves as a catalyst for innovation in

Minhao Li
minhao@usc.edu

Yitian Yan
yitianya@usc.edu

Input:
"Hey, can you give me a recipe for Savoury Baked Eggs with potatoes and eggs?"

Output:
"Of course! Here's a quick Savoury Baked Eggs recipe:
1. Preheat oven to 325°F.

2. Boil peeled potatoes until tender, mash with some milk, salt, paprika, Tabasco, and
nutmeg.

. Hard boil 6 eggs, cool, peel, and halve.

. Fry onions and pork in butter, add flour, cook 3 mins.

. Layer mashed potatoes in a dish, top with pork, then cucumber slices.
. Arrange tomato and egg halves around the edge.

. Mix remaining eggs, milk, salt, parsley, pepper, pour over, bake 40 mins.

L U N

. Rest a few mins, slice into wedges, and serve. Enjoy your meall”

Figure 1: Our model’s expected sample input and output

NLP, expanding the landscapes of creative content
generation.

With the mentioned context, our primary objec-
tive is to develop a prototype model that is capable
of producing coherent and creative recipes from
a given title and list of ingredients. We present
sample inputs and outputs in Figure 1. Given that
both the input and output generate text sequences
formatted in a dialogic style, we classify this as
a sequence-to-sequence task, similar to question
answering model. To realize our project goals, we
propose a two-fold strategy focusing on the devel-
opment of a recipe recommendation system and its
subsequent evaluation.

In this paper, we aim to generate suitable and cre-
ative recipes by fine-tuning existing pre-trained
models. We explore the current landscape of main-
stream language models and evaluate their capa-
bilities in text generation based on specific instruc-
tions. Preliminary investigations suggest that mod-
els such as GPT-2.0, Google Gemma, Bart, and
Flan-T5 are good starting points. Specifically, GPT-
2.0, a decoder-only model, can generate the next
word based on preceding words within the same
text, making it a suitable baseline for this question-
answering task. In addition to GPT-2.0, models
like Gemma, Bart, and Flan-T5, which are trained
for handling a wide array of tasks including ques-
tion answering, can be better candidates than GPT-
2.0. These models, pre-trained on both supervised

and unsupervised tasks, and Bart, which incorpo-
rates a bidirectional encoder and an autoregressive
decoder, are expected to outperform the simpler
architecture of GPT-2.0 in terms of their capabil-
ity of generating text!. Consequently, we use the
un-fine-tuned GPT-2.0 as our baseline model. Al-
though the other three models are better at general
question-answering tasks, they still encounter diffi-
culties in generating detailed cooking instructions,
largely due to the fact that they are trained on di-
verse datasets intended for broad domain knowl-
edge rather than specialized domains such as recipe
generation. To improve their ability in understand-
ing user inquiries and generating understandable
instructions, we fine-tune these models on a dataset
specifically tailored for recipe generation. We ex-
pect that the fine-tuned models will yield outputs
that are more aligned with the ingredients specified
in the input, as opposed to passively producing ran-
dom words associated with cooking, as observed
with the non-fine-tuned models.

The results of the fine-tuned models are evaluated
against the evaluation data using various evaluation
metrics and test sets, focusing on perplexity. In ad-
dition to these metrics, we also seek human evalua-
tions by distributing questionnaires for individuals
to evaluate text generation across four dimensions—
reasonability, coherence, creativity, and concise-
ness. Overall, our results underscore how fine-
tuning pre-trained models to learn specific domain
knowledge can improve a model’s performance in
generating detailed and instructive recipes.

2 Related Work

The concept of utilizing language models for culi-
nary applications aligns with an emerging interest
in applying natural language processing (NLP) to
diverse and practical tasks. In the realm of com-
putational creativity in gastronomy, several works
have demonstrated the utility of language models.

The introduction of advanced techniques in Al-
driven culinary applications is exemplified by the
work of Yu, Zang, and Wan in their study, "Rout-
ing Enforced Generative Model for Recipe Genera-
tion." (Yu et al., 2020) This paper pioneers the use
of a routing algorithm to enhance recipe generation
by modeling the intricate relationships between in-
gredients. Their approach effectively mitigates the

1https://huggingface.co/docs/transformers/
model_doc/bart

complexity of ingredient interactions, enabling the
generation of recipes that are not only creative and
feasible but also tailored to user preferences. The
model’s ability to handle ingredient complexities
and generate high-quality recipes is demonstrated
through improvements in BLEU scores, F1 metrics,
and human evaluations. This research sets a signif-
icant benchmark for our project. While our project
does not directly employ the routing algorithm pro-
posed by Yu, Zang, and Wan, the principles of han-
dling complex ingredient interactions and focusing
on user-specific recipe generation are highly perti-
nent. Our approach builds on the idea of ingredient-
based personalization, aiming to enhance user en-
gagement by generating cooking ideas that are both
innovative and closely aligned with users’ available
resources and dietary constraints.

Majumder et al.(Majumder et al., 2019) address
the challenge of generating personalized recipes
by incorporating users’ historical culinary prefer-
ences and partial knowledge of dishes. Their model
uniquely applies an attention mechanism to merge
technique- and recipe-level representations from a
user’s recipe history, effectively tailoring the recipe
generation process to align with individual tastes
and prior interactions. Their experiments, con-
ducted on a substantial dataset of 180K recipes and
700K user interactions, demonstrate the model’s
capability to produce recipes that are not only plau-
sible and coherent but also distinctly personalized,
outperforming non-personalized baselines. This ap-
proach is particularly relevant to our project, which
also seeks to personalize cooking ideas based on
the ingredients users currently have at their dis-
posal. While Majumder et al. focus on expanding
recipe instructions from incomplete inputs using
historical data, our project similarly aims to adapt
recipe suggestions to fit the user’s available pantry
items and dietary preferences. By integrating in-
sights from their methodology, we can enhance our
system’s ability to generate creative and person-
ally relevant cooking ideas, thereby improving user
engagement and satisfaction.

3 Dataset

For our project, MagicRecipe, we opted to utilize
the Kaggle dataset "Recipe Recommendations" cu-
rated by Goombal6®. This dataset serves as the

2https://www.kaggle.com/datasets/
wilmerarltstrmberg/recipe-dataset-over-2m/data

dir

d cook on low for 4

ine alingr v an
through and cheese is melted. Stir well before serving. cheese’,

i3 cups”] water]

Figure 2: The first five tuples in the complete dataset,

"non:

including four key attributes: "title," "directions," "in-
gredients," and "NER"

cornerstone of our model development and evalu-
ation. It encompasses four key attributes: "title,"
"directions," "ingredients," and "NER" (Ingredients
without amounts and brand information), which are

pivotal for our model training and testing phases.

3.1 Dataset Cleaning and Splitting

In addition to the core attributes, the dataset in-
cludes supplementary information such as "link"
(URL to the respective dish) and "site" (the domain
from which the data was gathered). While these
details enrich the dataset, our primary focus lies
on leveraging the fundamental attributes to drive
our model’s performance and efficacy. So, these
supplementary attributes were dropped as the first
step of data cleaning, resulting in data with shape
(2231142, 4).

We made the strategic decision to downsize our
dataset, motivated by the necessity to optimize com-
putational resources and streamline model training
and testing processes. By randomly discarding
half of the dataset’s tuples, our aim is to achieve a
harmonious equilibrium between data volume and
computational feasibility, all while ensuring that
the reduced dataset retains the essential character-
istics of the original corpus. As a result of this
curation process, our complete dataset now boasts
a shape of (1231142, 4). The first five tuples in
the complete dataset are shown in Figure 2 as an
example.

With the complete dataset in hand, we employed
the widely-used 80-10-10 splitting technique to
partition our data for training, development, and
testing purposes. Accordingly, the first 80% of the
dataset, amounting to (984913, 4) tuples, was al-
located for the training dataset. Similarly, 10% of
the dataset, totaling (123114, 4) tuples, was ear-
marked for development, while the remaining 10%,

comprising (123115, 4) tuples, was set aside for
testing. After splitting, we facilitated ease of access
and convenience by exporting all sets to CSV files.
This step ensures seamless integration with various
data processing and analysis tools. Each CSV file
corresponds to its respective dataset—training, de-
velopment, and testing—providing a structured and
accessible format for further model development
and evaluation.

Due to our limited GPU and RAM resources, we
reduce the size of the training set by selecting only
the first 10,000 examples, resulting in a new train-
ing set of size (10,000, 4). Similarly, the test set
is downsized to include the first 1,000 examples.
During training, the training set is further divided
into two subsets, one used for actual training and
the other for evaluation, maintaining an 8:2 ratio.
Consequently, 8,000 examples are passed into our
pre-trained models for fine-tuning, and the remain-
ing 2,000 examples are used to evaluate model per-
formance after each epoch throughout the training
process.

To train a model that can generate dish recom-
mendations and cooking instructions, we further
preprocess our training, development, and test
sets to make sure each dataset contains just two
columns—one corresponds to the user’s question
which is our input text, and the other corresponds to
the answer to the user’s question which is our target
text. We craft prompts for different scenarios.

In the first scenario, users may ask for recipes based
on their available cooking ingredients. For this
case, the input text should be structured as "I have
<NER>. Can you give me some cooking ideas?"
and the target text as "You can make <title>. Here’s
the instruction: <directions>", where NER, title,
and directions are placeholders to be populated
with data from the original dataset.

The second scenario addresses requests for specific
dishes, where the input text is "How to make <ti-
tle>?" and the target text follows the same format
as the first scenario: "You can make <title>. Here’s
the instruction: <directions>".

To accommodate both scenarios, we split each
dataset evenly. One half follows the format of
the first scenario, and the other half is structured
according to the second scenario. This approach

overall food catagories

dessert

soups or stews

salad or dip

main course

Figure 3: Pie chart representing the proportions of
recipes within categories: ’soups or stews, ’salad or
dip,” 'main course,” and ’dessert’

allows our model to handle a variety of user input
regarding recipes and cooking instructions.

Once the model is fine-tuned with the training set
and optimized with a set of hyper-parameters, its
performance is assessed against the test set—a set
of unseen data which contains up to 1,000 exam-
ples. With this test set, perplexity is calculated and
compared across different models.

3.2 Exploratory Data Analysis

In our preliminary analysis, we focused on two
key aspects of the dataset: recipe categories and
protein content distribution. The objective was to
gain insights into the distribution and composition
of recipes across different categories and protein
types, with the intention of better understanding
our dataset and its distribution. By examining these
aspects, we aimed to uncover underlying patterns
and trends that could inform subsequent model
development and refinement in the MagicRecipe
project.

3.2.1 Recipe Categories Analysis

We analyzed the distribution of recipes across var-
ious categories, including ’soups or stews,” ’salad
or dip, 'main course,” and ’dessert” The pie
chart (Figure 3) illustrates the proportion of recipes
within each category, providing a visual representa-
tion of recipe distribution. Our analysis reveals that
over half of our recipes belong to the main course
category, underscoring its prominence within our
dataset and highlighting potential areas for focused
development and refinement.

3.2.2 Protein Content Distribution

Furthermore, we categorized recipes based on their
protein content, distinguishing between ’recipes

recipes: meat vs seafood vs others

others

recipes with meat

recipe with seafood

Figure 4: Pie chart representing the proportions of
‘recipes with meat,” ’recipes with seafood,” and ’oth-
ers’

with meat,” ’recipes with seafood,” and ’others’.
The pie chart (Figure 4) showcases the distribution
of recipes across these protein categories, allowing
for a comprehensive understanding of protein us-
age within the dataset. Our analysis indicates that
general meat, excluding eggs, constitutes 37.8% of
the recipes, emphasizing its prevalence and signifi-
cance in recipe composition.

3.2.3 Recipe with Popular Meat Analysis

Following the protein content distribution, we ex-
tended our analysis to focus on recipes containing
popular meat types. We examined recipes featur-
ing pork, lamb, chicken, and beef and compared
them with recipes containing eggs. The resulting
comparison is depicted in the bar graph (Figure 5),
where we observe a significant presence of recipes
with eggs (95832), followed by chicken (60452),
beef (9832), pork (7069), and lamb (1832). Under-
standing the distribution of recipe categories and
protein content can provide insights into users’ cui-
sine preferences. Also, recognizing the popularity
of certain ingredients or categories can enable the
model to offer customization options. Users could
input their dietary preferences, allergies, or ingre-
dient preferences, and the generator could tailor
recipes accordingly.

4 Initial Result

We developed two baseline models for our inves-
tigation: a basic string matching algorithm and a
more advanced GPT-2.0 model, each tailored to
work with our collection of recipes.

4.1 String-match model

The preliminary model operates on a simple prin-
ciple of keyword matching. It identifies key ingre-

recipes contain popular poteins
100000 35832

80000 -

60000

40000 -

number of recipes

20000 4

pork beef
opular poteins types

chicken lamb egg

Figure 5: Bar graph showing number of recipes with
popular meat types

dients in a user’s query—for instance, "what dish
can I make with tomato, potato, and egg?"—and
matches these keywords against the ingredients
listed under the "ingredients" attribute. If a dish’s
ingredient list contains all mentioned keywords,
the model considers it a viable option and outputs
its title and recipe. This model, while basic and
not requiring training, offers a quick method for
navigating the dataset but often suggests recipes
that might require unavailable ingredients from the
user.

4.2 GPT-2.0 model

The second model explores the capabilities of pre-
trained models, specifically using GPT-2.0 as the
starting point for our recipe generator. We evaluate
the model’s performance with the test set. Since
GPT-2.0 is a decoder-only model that replicates the
input as the output during training, it requires an
additional data preprocessing procedure to tackle
sequence-to-sequence tasks. The data preparation
procedure includes combining the question (input)
and the answer (target) into a single sentence, sepa-
rated by special tokens to distinguish between the
input and target. Additionally, each sentence is
marked with a beginning-of-sentence token and
concluded with an end-of-sentence token to differ-
entiate between different examples. After these
data preprocessing steps, the data is tokenized us-
ing the built-in tokenizer from Hugging Face. Upon
evaluating the model across 64 batches, the calcu-
lated perplexity we get is 7.7742¢29, which indi-
cates GPT-2.0’s non-ideal performance in generat-
ing recipes and cooking instructions. Although this
model offers faster inference compared to the string
matching approach, it tends to yield less accurate
dish recommendations and repetitive cooking in-
structions. This can be explained by its decoder-

only architecture that limits the model’s ability to
understand the input before generating an output;
furthermore, this vanilla model has not been fine-
tuned with a domain-specific dataset that would
enable it to generate more detailed and reasonable
recipes and cooking instructions.

S Experiments

5.1 Gemma

Gemma is a family of lightweight, state-of-the-art
open models developed by Google, built using the
same research and technology as the Gemini mod-
els. These versatile text-to-text models are avail-
able in English, with open weights, pre-trained
variants, and instruction-tuned variants. Gemma
models come in two sizes: 2B and 7B parame-
ters, each designed for different applications and
hardware requirements. The 2B models are suit-
able for mobile devices and laptops, while the
7B models are intended for desktop computers
and small servers. The Keras 3.0 multi-backend
feature enables seamless compatibility with JAX,
TensorFlow, and PyTorch, empowering develop-
ers to effortlessly choose and switch frameworks
depending on the task at hand. Given Gemma’s
lightweight architecture, impressive performance,
and flexibility for fine-tuning, it is well-suited for a
wide range of natural language processing tasks.

To fine-tune the Gemma 2B model, we utilize
the Keras 3.0 framework and load the pre-trained
model weights from Kaggle. We employ the Low-
Rank Adaptation (LoRA) technique, which effi-
ciently adapts the model to new tasks by training
only a small set of additional parameters. Specifi-
cally, we set the LoRA rank to 4, striking a balance
between model performance and computational ef-
ficiency. The learning rate is set to 5e-5, and a
weight decay of 0.01 is applied to prevent overfit-
ting.

During the fine-tuning process, we use top-k sam-
pling with k=5 to generate diverse and coherent
responses. The model’s performance is evalu-
ated using three metrics: loss (sparse categorical
cross-entropy), perplexity, and sparse categorical
accuracy. These metrics provide insights into the
model’s learning progress and its ability to pre-
dict the next token in a sequence. The fine-tuning
dataset consists of 8,000 examples, evenly split be-
tween two prompt structures (4,000 each). This

approach ensures that the model learns to respond
to a variety of input patterns. The fine-tuning pro-
cess is conducted for a single epoch, considering
the dataset size and the model’s quick adaptation
capabilities.

The training is performed on an NVIDIA V100
GPU, which provides the necessary computational
power to efficiently fine-tune the Gemma 2B model.
The entire fine-tuning process takes 3,501 seconds,
which is equivalent to 58 minutes and 21 seconds.

By leveraging the LoRA technique, carefully se-
lecting hyperparameters, and using a diverse fine-
tuning dataset, we successfully adapt the Gemma
2B model to perform specific tasks while main-
taining its lightweight architecture and impressive
performance.

After fine-tuning the Gemma 2B model using the
aforementioned techniques and hyperparameters,
we evaluate its performance on a held-out test
set. The model yields an evaluation loss of 0.716,
indicating that it has effectively learned to min-
imize the difference between its predictions and
the ground truth. However, the perplexity value
of 2,590,969.25 appears to be unusually high, sug-
gesting that the model may be struggling to assign
high probabilities to the correct next tokens in the
sequence. This could be due to the complexity of
the task or the need for further optimization of the
model architecture and hyperparameters.

Despite the high perplexity, the model achieves
a sparse categorical accuracy of 0.6287, which
means that it correctly predicts the next token in
the sequence approximately 62.87 percent of the
time. This accuracy score demonstrates that the
fine-tuned Gemma 2B model has learned to gen-
erate relevant and coherent responses to the given
prompts, albeit with room for improvement.

To further enhance the model’s performance, we
could explore techniques such as increasing the size
of the fine-tuning dataset, adjusting the learning
rate and weight decay, or experimenting with dif-
ferent prompt structures. Additionally, analyzing
the model’s outputs and error patterns could pro-
vide valuable insights into areas where the model
struggles and guide future fine-tuning efforts.

5.2 Bart

Developed by Facebook Al, BART (Bidirectional
and Auto-Regressive Transformers) combines au-
toencoder and autoregressive elements in a Trans-
former architecture. Described by Lewis et al.
(Lewis et al., 2019), it is pre-trained via a denois-
ing process to excel in tasks like text generation,
translation, and comprehension. This robust model
reconstructs the original text from corrupted ver-
sions, showcasing its versatility across various lan-
guage processing applications. BART’s denoising
pre-training equips it to handle incomplete inputs
effectively, crucial for generating recipes from par-
tial ingredient lists. Its autoregressive decoder pro-
duces linguistically fluent and structurally coherent
recipes, ideal for transforming simple ingredients
into detailed culinary instructions. The adaptabil-
ity and strong pre-trained base of BART allow for
efficient fine-tuning on our culinary dataset, en-
hancing its capability to generate personalized and
innovative recipes.

In our project, we choose to fine-tune the
facebook/bart-base model instead of its larger coun-
terpart, facebook/bart-large. Although bart-large
generally yields better training performance, its
high resource consumption significantly impacts
usability. Specifically, bart-large demands exten-
sive RAM and CPU memory, making it impractical
for our computing environment. By using bart-
base, we can efficiently manage memory resources
while maintaining a good balance between perfor-
mance and operational feasibility. This model al-
lows for a larger batch size of 4 during training and
evaluation, compared to only 1 for the bart-large
under the same hardware constraints.

In configuring the training parameters for our
model, we utilize the Seq2SeqTrainingArguments
from the Hugging Face Transformers library to
optimize our training process. We direct the out-
put of our training sessions to ./results and stored
logs in ./logs, updating every 10 steps to monitor
progress. The model trains for three epochs, with
each training and evaluation batch set to four sam-
ples per device, balancing efficiency with our com-
putational limits. To ensure a smooth adjustment
to the optimal learning rate of 3e-4, we incorporate
500 warm up steps, which also aids in model con-
vergence. We implement a weight decay of 0.01
for regularization to prevent overfitting. To han-
dle our GPU memory constraints while effectively

increasing the training batch size, we use eight gra-
dient accumulation steps. Additionally, enabling
mixed precision training (fp16=True) allows us to
speed up the training without significantly impact-
ing model accuracy. Finally, setting the evaluation
accumulation steps to one allows for more frequent
updates during model evaluation, ensuring more
immediate feedback on performance adjustments.

In the training of our BART model, we achieve
a training loss of 1.628 and an evaluation loss of
0.719 after three epochs, demonstrating effective
learning and strong generalization capabilities. The
lower evaluation loss underscores the model’s abil-
ity to generalize to new data, essential for its practi-
cal deployment in generating accurate and coherent
recipes. These results validate our training strategy
and the efficiency of our computational resource
management. Additionally, we employ specific
generation parameters to refine the text output, set-
ting max length at 200, enabling sampling with do
sample, and using controls ‘temperature‘ at 0.72,
and a repetition penalty of 1.4 to enhance the qual-
ity and variety of the generated recipes. This com-
prehensive approach highlights the effectiveness of
our model configuration in balancing performance
with computational efficiency, proving its suitabil-
ity for the recipe generation task.

5.3 Flan-T5

TS5 is an encoder-decoder model pre-trained on a
mix of supervised and unsupervised tasks, where
each task is transformed into a text-to-text format®.
T5 can be utilized for various applications includ-
ing translation, summarization, and question an-
swering. Flan-T5 is an enhanced version of T3,
fine-tuned on thousands of additional tasks. By
incorporating instruction fine-tuning, Flan-T5 has
demonstrated a better performance compared to
TS5 in both zero-shot and few-shot settings (Chung
et al., 2022). Additionally, Flan-T5 allows devel-
opers to fine-tune the model for specific needs due
to its highly customizable design. Given Flan-T5’s
encoder-decoder architecture, which makes it suit-
able for sequence-to-sequence tasks, and its flexi-
bility for fine-tuning, we believe Flan-T5 is ideally
suited for the question-answering scenario. We
expect it to generate sensible recipes and cooking
instructions that align with the user input.

3https://huggingface.co/docs/transformers/en/
model_doc/t5

We start our experiment by loading the pre-trained
Flan-T5 model from Google, which offers variants
including Flan-T5-small, Flan-T5-base, and Flan-
T5-large. Considering the capabilities of our hard-
ware, specifically the GPU and RAM, we select
Flan-T5-base, which contains 250 million parame-
ters and requires 990 MB of memory, which can be
accommodated by the NVIDIA A100 GPU (Chung
et al., 2022). The model is then fine-tuned using
our preprocessed and tokenized training set, which
includes 8,000 examples and an evaluation set of
2,000 examples. For performance evaluation, we
utilize the ROUGE metric, which measures the sim-
ilarity between the reference text and the generated
text, aligning well with our dataset that includes

ground-truth references®.

In addition to the ROUGE score, the training pa-
rameters such as learning rate, batch size, and the
number of epochs are carefully selected to opti-
mize the model’s learning. We find that a learning
rate of 3e-5, a batch size of 8, and two epochs re-
sult in a reduction in training loss, and a weight
decay of 0.01 helps prevent overfitting. Over the
course of two training epochs, we observe that the
training loss decreases from 1.4610 to 1.3430, the
validation loss from 0.9487 to 0.9389, and rouge
score from 0.1753 to 0.1758, indicating progressive
improvement in the model’s ability to understand
user’s question and generate recipes.

H Training Loss ‘ Validation Loss ‘ Rougel H
| 1343000 | 0938856 | 0.175800 |

Once fine-tuning of the Flan-T5-base model is com-
plete, the model is saved and subsequently reloaded
for testing purposes to generate recipes and instruc-
tions based on user input. To ensure the model’s
output is detailed, coherent, and readable, we in-
corporate several inference parameters. Instead of
selecting the most likely next token, the model is
configured to sample from a probability distribu-
tion. To further improve coherence and readabil-
ity, we implement top-k sampling, restricting the
sample pool to the k most likely tokens. Addition-
ally, to motivate creativity in the outputs, we adjust
the temperature setting to control the randomness
of the output. We also notice that the generation
can be repetitive without enforcing the repetition
penalty. Therefore we set repetition penalty to 1.3
to stop the text from repeating itself. The specific

*https://en.wikipedia.org/wiki/ROUGE_(metric)

parameters used for recipe generation are detailed
in the following table:

[do_sample [top_k | temperature | repetition_penalty |
[Te [50 | 07 | 13]

6 Evaluation

6.1 Auto-evaluation

To compare the performance of our fine-tuned mod-
els, we employ an automated evaluation metric:
perplexity. Perplexity is a widely used measure in
natural language processing that assesses the qual-
ity of a language model by quantifying how well
it predicts the next token in a sequence. A lower
perplexity value indicates that the model is more
confident in its predictions and better captures the
patterns and structure of the language.

We choose to use perplexity as our primary evalua-
tion metric instead of other common metrics such
as ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) or BLEU (Bilingual Evaluation Un-
derstudy). While ROUGE and BLEU are effective
for evaluating the quality of generated text against
a set of reference texts, they are more suitable for
tasks with a limited range of correct answers, such
as machine translation or text summarization. In
contrast, generative language models like our fine-
tuned models are designed to generate diverse and
open-ended responses. The inherent creativity and
variability in the model’s outputs make it challeng-
ing to define a fixed set of reference texts for com-
parison. Perplexity, on the other hand, directly
measures the model’s ability to predict the next
token in a sequence, which is a fundamental aspect
of language modeling. By assessing how well the
model has learned the patterns and structure of the
language, perplexity provides a more appropriate
evaluation metric for generative models.

In our evaluation, we calculate the perplexity scores
for out fine-tuned Gemma 2B model, Flan-T5 Base
model, and BART model. By comparing the per-
plexity values across these models, we can gauge
the effectiveness of our fine-tuning process and de-
termine whether our model has improved upon the
pre-trained version.

H gemma 2b ‘ Bart ‘ flan t5 base H
[20458 [2.0914] 26158 |

The perplexity scores for the three models - Gemma

2B (2.0458), BART (2.0914), and Flan-T5 Base
(2.6158) - provide insights into their language mod-
eling capabilities. Gemma 2B and BART demon-
strate strong performance, with Gemma 2B being
slightly more confident in predicting the next token
in a sequence. Flan-T5 Base, on the other hand,
exhibits a higher perplexity score, suggesting it
may struggle more in generating coherent and con-
textually relevant responses compared to the other
two models. While these perplexity scores offer a
comparative measure, they should be considered
alongside other evaluation metrics and human judg-
ments to comprehensively assess the models’ per-
formance in specific natural language processing
tasks.

By using perplexity as a consistent metric across
the three models, we aim to provide a standardized
comparison of their language modeling capabilities.
This comparison will help us identify the strengths
and weaknesses of our fine-tuned models and guide
future improvements to enhance its performance in
various natural language processing tasks.

6.2 Human Evaluation

To assess the quality of recipes generated by our
model, we implement a human evaluation system.
This evaluation is crucial as recipe generation does
not have objective right or wrong answers, making
standard automated metrics insufficient for fully
capturing the nuances of recipe quality. Our ap-
proach involves a Recipe Rating Form, which is
distributed to evaluators who are asked to rate gen-
erated recipes based on four specific criteria:

* Reasonability: whether the recipe appears log-
ical and reasonable, including the appropriate-
ness of the ingredients and steps.

* Coherence: whether the recipe is well-
organized and easy to follow, with steps that
logically flow from one to the next.

* Creativity: rate the creativity and originality
of the recipe, looking for interesting variations
on existing recipes.

* Conciseness: determine the conciseness of the
recipe, focusing on the utility of the informa-
tion provided and the absence of redundancy.

Each recipe is rated on a scale from 1 to 5 for these
criteria, with multiple models’ outputs being com-
pared to gauge performance. This human-centric

reasonability

conciseng oherence

Gemma

5 creativity

Figure 6: Comparative Evaluation of Gemma, Bart, and
TS5 Models on Recipe Generation: Scores are averaged
across two prompts and evaluated on reasonability, co-
herence, creativity, and conciseness

approach ensures a comprehensive evaluation of
our model’s ability to generate practical, innovative,
and user-friendly recipes.

We test three models—Gemma, Bart, and
T5—on two prompts: "How to make a cookie?’
and ’I have salmon. Give me some ideas and in-
structions, please.” Each model generates responses
that are evaluated based on reasonability, coher-
ence, creativity, and conciseness by 20 college stu-
dents who are independently living on their own
and cooking on a daily basis. The results, depicted
in the radar chart (Figure 6), represent the average
scores across these dimensions.

In the human evaluation of recipe generation,
each model showcased distinct strengths and weak-
nesses. Gemma performed consistently well across
all criteria, scoring highest in coherence (4.125)
and conciseness (4.1), and showing strong reason-
ability (4.025), but lagging slightly in creativity
(3.075). This suggests that while Gemma is ex-
cellent at producing logical and well-structured
recipes, it may be less innovative compared to the
others. Bart, on the other hand, displayed a bal-
anced profile with its highest score in creativity
(3.5), reflecting its ability to generate novel and
varied culinary ideas. However, it scored lower
in coherence (3.3), conciseness (2.9), and reason-
ability (3.425), indicating some challenges in pro-
ducing consistently clear and logical recipes. T5
presented a varied performance, excelling in con-
ciseness (3.75) and scoring well in coherence (3.7)
and creativity (3.225), but it was slightly behind
in reasonability (3.4). This profile suggests that
TS5 is effective at generating coherent and compact
recipes, although it may occasionally struggle with

logical structuring compared to Gemma.

These detailed scores, illustrated in the radar
chart, underline the unique capabilities and areas
for improvement of each model in the complex task
of automated recipe generation.

7 Conclusion

In conclusion, the MagicRecipe project success-
fully developed a personalized dish recommenda-
tion system that leverages advanced language mod-
els to generate recipes and shopping lists tailored
to user preferences and available ingredients. By
fine-tuning pre-trained models such as Gemma 2B,
BART, and Flan-T5, the system demonstrated its
ability to interpret user inputs and produce cus-
tomized, coherent, and creative recipes.

The evaluation of the fine-tuned models using per-
plexity scores revealed that Gemma 2B and BART
outperformed Flan-T5 in terms of language mod-
eling capabilities. However, human evaluations
provided a more comprehensive assessment, con-
sidering factors such as reasonability, coherence,
creativity, and conciseness. Gemma showcased
strengths in coherence and conciseness, while Bart
excelled in creativity, and T5 demonstrated a bal-
anced performance across all criteria.

The implications of this research are significant for
both the culinary and NLP domains. The Magi-
cRecipe system offers a novel approach to automat-
ing the creative process of recipe development,
catering to the growing demand for personalized
cooking experiences. Moreover, the project’s suc-
cess in fine-tuning language models for a specific
domain highlights the potential for applying similar
techniques to other creative and practical applica-
tions.

Future research could focus on further optimizing
the models’ performance, expanding the dataset,
and incorporating additional features such as di-
etary preferences and nutritional information. Ulti-
mately, the MagicRecipe project lays the ground-
work for innovative NLP solutions that can trans-
form the landscape of culinary creativity and en-
hance the cooking experience for users worldwide.

8 Code and Data

We put all our code in a google drive. Here is the
link to google drive:
https://drive.google.com/drive/folders/

TURI9vOtsnKXOcfgZaQGna8mCu9jaHT49?usp=
sharing

We get the dataset from Kaggle. Here is the link to
the dataset:

https://www.kaggle.com/
datasets/wilmerarltstrmberg/
recipe-dataset-over-2m/data

References

Hyung Won Chung et al. 2022. Scaling instruction-
finetuned language models. https://doi.org/10.
48550/arxiv.2210.11416.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer.
2019. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 2019 Con-
ference of the Association for Computational Linguis-
tics (ACL).

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni,
and Julian McAuley. 2019. Generating personalized
recipes from historical user preferences. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Zhiwei Yu, Hongyu Zang, and Xiaojun Wan. 2020.
Routing enforced generative model for recipe gen-
eration. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 3797-3806, Online. Association for
Computational Linguistics.

10

	Introduction
	Related Work
	Dataset
	Dataset Cleaning and Splitting
	Exploratory Data Analysis
	Recipe Categories Analysis
	Protein Content Distribution
	Recipe with Popular Meat Analysis

	Initial Result
	String-match model
	GPT-2.0 model

	Experiments
	Gemma
	Bart
	Flan-T5

	Evaluation
	Auto-evaluation
	Human Evaluation

	Conclusion
	Code and Data

