
FAQ Generation using Language Models
Dheeraj P Anikar

University of Southern California
Department of Electrical Engineering

anikar@usc.edu

Sudarshana S Rao
University of Southern California

Department of Electrical Engineering
ssudheen@usc.edu

Rbhu Gandhi
University of Southern California
Department of Computer Science

rbhugand@usc.edu

Abstract

Large Language Models (LLMs) have become
a household word nowadays. LLMs have com-
pelling applications, and this project explores
the effectiveness of Large Language Models
(LLMs) in generating Frequently Asked Ques-
tions (FAQs) solely from graduate school’s ad-
mission requirements for Master of Science
in Computer Science. T5-large, BART-large,
LLaMA-2, and LLaMA-3 performances were
investigated, employing a tailored dataset to
examine their capabilities in an FAQ gener-
ation context. Each model was fine-tuned
with data specifically oriented towards eliciting
admission-related inquiries, aligning closely
with the real-world information needs of
prospective students.

To enhance the adaptation of the LLaMA mod-
els to this task Q-LoRA, a parameter-efficient
approach for fine-tuning was used, which al-
lowed the training of these huge models on a
single GPU. Additionally, the transformation
of admission texts into a prompt-style input for-
mat was experimented with. This modification
was designed to explicitly guide the models in
generating relevant questions by framing the
input text as a source for potential FAQs. An
example of the instruction prompt is, "Below is
the admission text of a university; what are the
possible FAQs that can be asked?"

The findings of this project indicate variations
in performance across the models, with nu-
anced differences in the quality and relevance
of the questions generated. These results con-
tribute to understanding each model’s appli-
cational boundaries and strengths and suggest
that framing input texts as explicit prompts can
significantly influence the output, enhancing
the practical utility of LLMs in educational set-
tings. This research advances the field of NLP
in an educational setting and provides insights
for deploying LLMs to create supportive infor-
mational tools for academic institutions.

1 Introduction

The admissions process for graduate programs, par-
ticularly in highly competitive fields like Computer
Science (CS), can be daunting and complex for
prospective students. Navigating each university’s
specific requirements, deadlines, and expectations
often demands extensive research and can lead to
numerous FAQs. Traditionally, universities address
this need through static FAQ sections on their web-
sites or by contacting dedicated admissions staff for
information. However, these resources might not
always be exhaustive or easily searchable, leaving
students with unresolved questions.

Recent advancements in LLMs present a com-
pelling opportunity to streamline the process of gen-
erating common admission-related queries. LLMs,
with their remarkable capacity for understanding
and generating natural language, have the potential
to automate the creation of comprehensive and in-
formative FAQs. This project aims to investigate
the effectiveness of different LLMs in generating
FAQs directly from graduate CS university admis-
sions texts.

1.1 Problem Statement

Applying to graduate programs, particularly in
competitive fields like CS, can frustrate prospec-
tive students due to the lack of readily available
answers. The need to decipher differing admissions
requirements, deadlines, and expectations across
universities leads to many FAQs.

1.2 Research Questions

• Can LLMs be effectively fine-tuned to gener-
ate relevant and accurate FAQs directly from
graduate CS university admissions texts?

• Which LLM architectures demonstrate the
highest performance in this specific FAQ gen-
eration task?

1

• Does framing the input texts as explicit
prompts for FAQ generation improve the qual-
ity and relevance of the generated questions?

1.3 Motivation
This research aims to streamline the admissions
process, reduce the workload for admissions staff,
and ensure information consistency. Automating
the creation of comprehensive FAQs with LLMs
has the potential to reduce the cognitive burden
placed on prospective CS students, making the ad-
missions process more transparent. Additionally,
LLM-powered FAQ systems could alleviate some
of the workload for admissions staff, allowing them
to focus on more complex student inquiries. Fi-
nally, universities can promote consistent and accu-
rate information for all applicants by centralizing
and automating FAQ generation with LLMs.

1.4 Related Work
In order to better understand the fundamental prin-
ciples involving question generation, it is imper-
ative to look into some of the researcher’s work
such that can develop a baseline of metrics and
procedural steps that can be included in this work:

• In the article "A deep learning based end-to-
end system (F-Gen) for automated email FAQ
generation" by S. Jeyaraj and R. T. mentioned
summarization techniques of the text that can
be useful in determining the context of the
dataset, which we firmly believe will be use-
ful in our process of FAQs for admission pro-
cess.[1] Moreover, in the paper, it was also
found that for the evaluation of the model,
the metrics used were ROUGE scores, which
were implemented in the evaluation process
as well.

• In the research process of finding a dataset
of universities, it was found that there is no
dataset available online or in any database to
suffice the need for admission text and FAQs.
So, the authors used a method adapted from
"Generative Language Models for Paragraph-
Level Question Generation" by Asahi Ushio
et al., in which datasets like SQuAD are used.
Thereby, it was decided to look into SQuAD
and decided to build a dataset in a similar
format.[2]

• It was researched that the Large Language
Models have a wide variety of hyperparame-
ters that impact the results in the generation

process. Given this approach, the authors an-
ticipated that they would run into issues of cer-
tain discrepancies, which they believe can be
minimized by using fine-tuning techniques.[4]

• After the progress report, the authors of this
article chose to test the efficacy of our ap-
proach by using Large Language Models such
as Llama-2 & Llama-3. However, the training
process is highly computationally intensive
and will not be able to withstand GPU com-
puting power itself. To resolve this, an article
talks about Q-LoRa, which is an example of
PEFT(Parameter Efficient Fine-Tuning Tech-
niques), which are mainly used for these large
models.[5]

2 Dataset

A list of the top 150 US universities for the CS
program based on USNews rankings was com-
piled. The university names and website URLs
were stored in a CSV file. Using the Beautiful-
Soup library, web scraping on each URL was per-
formed, extracting admission requirements and ex-
isting FAQs. This collected data was then struc-
tured into a JSON file for compatibility with the
language model training process. The dataset was
split into training, validation, and testing sets as per
the ratio 80%:10%:10%. The JSON file format is
shown as follows.

"Stanford University": { "FAQs": ["Do you
have to be a Computer Science undergraduate ma-
jor to apply?", "If I already have an M.S. or PhD
degree in Computer Science from another institu-
tion, may I apply to the M.S. or PhD program at
Stanford?",],

"AdmissionText": ["Email forwarding for
@cs.stanford.edu is changing on Feb 1, 2024. More
details here", "The MS program is excellent prepa-
ration for a career as a computer professional or
for future entry into a Ph.D. program at Stanford
or elsewhere. Individual programs can be struc-
tured to consist entirely of coursework or to involve
some research. Students who are more interested
in research may pursue a M̈.S. degree with distinc-
tion in researcḧ. See the R̈esearch or Project Re-
quirements̈ection of the Stanford Bulletin for more
information."] },

3 Data Pre-Processing

Data pre-processing is critical in any data-driven
project, significantly when leveraging large lan-

2

guage models (LLMs) for generating FAQs. Pre-
processing aims to clean and organize raw data into
a structured format that enhances the quality of the
inputs for model training or analysis. This step
involves dealing with missing data, transforming
text data, and aggregating information to align with
this project’s objectives.

Two ways of data structuring were explored,
which are the inputs to fine-tuning the Language
models. The two data pre-processing techniques
are called Method-1 and Method-2.

3.1 Method-1
This method is minimal and only does the funda-
mental transformations to the dataset. The steps
followed are as follows.

• Loading the data: Import the dataset from a
CSV file into a pandas DataFrame, providing
a flexible structure for tabular data manipula-
tion.

• Handling missing values: Replace all miss-
ing values in the dataset with the string ’No
data available’ to ensure no entries are left
empty and to indicate missing information.

• Transforming the FAQs: Modify the FAQ
entries, initially separated by "|", by splitting
each string on this delimiter and joining the
results into a continuous string. This prepares
the text for better processing as a cohesive
block.

• Aggregating data by university: Group the
dataset by ’University Name’ and aggregate it
to consolidate each university’s data

3.2 Method-2
Method-2 is more comprehensive, extends on the
data pre-processing done in Method-1, and does
much more in cleaning and processing the scrapped
data than Method-1. This method integrates ad-
vanced text processing and summarization tech-
niques using GPT-3.5 to pre-process university ad-
mission texts and FAQs. The goal is to generate
clean, well-structured inputs that enhance the train-
ing and performance of a language model tasked
with FAQ generation. The below steps were fol-
lowed.

• Text summarization with GPT-3.5: GPT 3.5
was leveraged to summarize the lengthy ad-
mission texts. The summarization focuses

on retaining content relevant to frequently
asked questions, thus eliminating unneces-
sary details and reducing data size. This re-
sults in a distilled version of the admission
texts, referred to as the "Summary" column,
which contains the essence of the information
needed for effective FAQ generation. Figure 1
illustrates the process of text summarization.

Figure 1: Admission Text Summarization

• Text cleaning: The following steps were in-
volved in data cleaning:

– Removal of HTML tags: Clean HTML
content using BeautifulSoup, ensuring
that only text content is retained.

– Normalize unicode characters: Con-
vert characters to their closest ASCII rep-
resentation to maintain text uniformity
and avoid encoding issues.

– URLs and emails: Replace URLs and
email addresses with placeholders to pre-
vent model confusion and protect pri-
vacy.

– Non-ASCII character removal: Strip
out non-ASCII characters to standardize
text for model processing.

– Punctuation handling and whitespace
normalization: Clean up the text by re-
moving unnecessary punctuation and re-
ducing multiple spaces to a single space,
creating cleaner, more readable text.

• FAQs parsing and formatting: Modify the
FAQ entries, initially separated by "|", by split-
ting each string on this delimiter and joining
the results into a continuous string. This pre-
pares the text for better processing as a cohe-
sive block.

• Training prompt generation: Combine the
cleaned, summarized admission text and the
structured FAQs to complete the training

3

prompt. This is done to give the model more
direction as to what to do for the given input
text.

Figure 2 depicts the text summarization by GPT
3.5 and example prompt instruction.

Figure 2: Data Pre-Processing Method-2

4 Models

A total of four LLMs were experimented in this
project. Out of which, two were encoder-decoder
architectures, and the other two were decoder ar-
chitectures.

4.1 Encoder-decoder Models

Encoder-decoder models, a type of sequence-to-
sequence neural network architecture, excel at tasks
where the input and output have different lengths
or structures. They are a powerful tool for gener-
ating new FAQs directly from a knowledge base
or raw text data. The encoder analyzes the ex-
isting text corpus and relationships and identifies
patterns. The decoder then leverages this encoded
information to generate well-structured FAQs. In
this regard, T5-large and BART-large models were
chosen to generate FAQs.

T5 (Text-to-Text Transfer Transformer) has 770
million parameters. A key distinguishing feature
of T5 is its text-to-text framework, which reframes
the FAQ generation task as a single text input and
output problem.

BART (Bidirectional and Auto-Regressive
Transformer) has 406 million parameters. Built
on the Transformer architecture, it’s designed ex-
plicitly as a denoising autoencoder. T5 and BART
have been pre-trained on a massive text corpus
and can be fine-tuned for tasks like summarization,
question answering, and text generation.

4.2 Decoder Models

While encoder-decoder models are highly effective
in tasks where a transformation of information from

one form to another is required, they may not al-
ways excel in pure generation tasks to the same ex-
tent as decoder models. Thus, decoder models were
decided to explore, such as Llama-2 and Llama-3.
The autoregressive nature of decoder-only models,
where each token is predicted sequentially based on
all previous tokens, allows for a more focused gen-
eration process. This characteristic is particularly
beneficial for question generation.

Llama 2 is a family of pre-trained and fine-tuned
LLMs released by Meta AI in 2023. Llama 2 mod-
els can perform various NLP tasks, from text gener-
ation to programming code. Llama 2 models offer
a context length of 4,096 tokens, double that of
LLaMa 1. The model chosen to fine-tune is the
Llama-2 7 billion parameter-sized model.

The new 8B and 70B parameter Llama 3 models
are a significant leap over Llama 2 and establish
a new state-of-the-art for LLM models at these
scales. Thanks to improvements in pretraining and
post-training, Llama-3 pre-trained and instruction-
fine-tuned models are the best today at the 8B and
70B parameter scales.

Input to T5-large and BART-large is the dataset
obtained from method-1 pre-processing. Figure 3
shows the input and expected output for T5 and
BART.

Figure 3: Encoder-Decoder Models

On the other hand, the input to Llama-2 and
Llama-3 is the dataset obtained from method-2 pre-
processing. Figure 4 shows the input and expected
output for Llama-2 and Llama-3.

Figure 4: Decoder Models

4

5 Fine-Tuning

The four models, T5-large, BART-large, Llama-2
7b, and Llama-3 8b, were fine-tuned. The model’s
hyperparameters were experimented with for opti-
mal results.

5.1 T5 and BART

Table 1 shows the fine-tuned hyperparameter values
used for the T5-large model.

Hyperparameters Values
Learning rate 5e-5
Batch size 2
Epochs 5
Optimizer AdamW

Table 1: Hyperparameters used for T5

Table 2 shows the fine-tuned hyperparameter
values used for the BART-large model.

Hyperparameters Values
Learning rate 5e-5
Batch size 4
Epochs 5
Optimizer AdamW

Table 2: Hyperparameters used for BART

5.2 Llama-2 and Llama-3

Fine-tuning larger models like Llama-2 and Llama-
3 on a single GPU similar to T5 and BART isn’t
possible, as the model parameters are huge and take
up a lot of memory. The Llama-2 model used in this
project has 7 billion parameters. In contrast, the
Llama-3 model has 8 billion parameters, which is
enormous compared to the million parameter-sized
models such as BART and T5. Thus, Q-LoRA
(Quantized Low-Rank Adaptation), an extension
of LoRA (Low-Rank Adaptation), a Parameter Ef-
ficient Fine-Tuning technique, was leveraged.

5.2.1 Parameter Efficient Fine-Tuning
Parameter Efficient Fine-Tuning, also popularly
known as PEFT, allows for efficiently fine-tuning
large models on consumer hardware. This tech-
nique reduces the number of trainable parameters
in the model. It achieves this by fine-tuning only a
tiny number of (extra) tunable parameters by keep-
ing most of the model parameters fixed (frozen).
One of the drawbacks of regular fine-tuning is that

by updating the weights, which result from pre-
training, the model is used. However, it gets better
at the downstream task, which is fine-tuned and
might also lead to losing some of the understand-
ing it might have gained in pretraining. This is
known as catastrophic forgetting.

PEFT overcomes the problem of catastrophic
forgetting, often encountered during regular fine-
tuning of large language models. PEFT also works
well in low-data regimes. LoRA is the PEFT tech-
nique that was used in this project.

5.2.2 LoRA
Low-Rank Adaptation, popularly known as LoRA,
is a type of PEFT technique that is based on
Low-rank Matrix Factorization, AM*N = A1M*K
* A2K*N. If the matrix is not full rank, a matrix of
dimensions M*N can be factorized into two smaller
matrices, M*K and K*N. Here, the dimension ’k’
is the rank of the matrix.

After adapting to a downstream task, LLMs were
found to have low intrinsic dimensions, according
to A. Aghajanyan et.al in "Intrinsic dimensional-
ity explains the effectiveness of language model
fine-tuning". This implies that a less-than-full rank
matrix can represent the weight parameter space.
Thus, the weight matrix can be decomposed into
two matrices of M*K and K*N (where K is the rank
of the matrix). This K is a hyper-parameter cho-
sen during fine-tuning; the two new decomposed
matrices (say WA and WB) are learned through the
fine-tuning process via backpropagation.

These decomposed matrices WA and WB, which
are learned via backpropagation, are learned sep-
arately, i.e., the total tunable parameters become
M*K + K*N, which is much much lesser than M*N
(the range for K is around 16-64). This reduces the
number of tunable parameters by a factor of at least
1000, if not even more.

As K is the hyper-parameter chosen for fine-
tuning, it determines the rank. Low K implies the
decomposed matrices are of lower rank, which re-
sults in a lower quality fine-tuned model but much
fewer computational resources used. Thus, choos-
ing the correct value of K becomes an essential
consideration during LoRA.

5.2.3 Quantized - LoRA
Q-LoRA is an extension of LoRA. Typically, the
trained model parameters are of 32-bit precision;
this method quantizes the precision of weight pa-
rameters in the pre-trained LLM to 4-bit precision.

5

Thus saving memory even further.
After various trials and errors, the hyper-

parameters that yielded good results from Llama-2
and Llama-2 are shown in table 3.

Hyperparameters Values
Learning rate 5e-5
Batch size 2
Epochs 4
Optimizer AdamW
Rank(K) 16
Alpha 64
Temperature 1.1

Table 3: Hyperparameters used for Llama-2 & Llama-3

6 Results

The following subsections outline the four models’
evaluation metrics and loss curves.

6.1 T5-large

Table 4 depicts the BERT and ROUGE scores of
the T5.

Metric Values (F1 scores)
BERTScore -0.086
ROUGE-1 0.10318908708354294
ROUGE-2 0.009371644453146357
ROUGE-L 0.08980406630721782

Table 4: T5 Results

Figure 5 illustrates the training and validation
loss curve of the T5 model. Initially, training and
validation loss are high, gradually decreasing over
epochs.

Figure 5: Loss Curve of T5

Figure 6 shows the output of the T5-large model.

Figure 6: T5 Generated FAQs

6.2 BART-large

Table 5 depicts the BERT and ROUGE scores of
the BART.

Metric Values (F1 scores)
BERTScore 0.225
ROUGE-1 0.29364804888577556
ROUGE-2 0.09333228748923009
ROUGE-L 0.20378157768427876

Table 5: BART Results

Figure 7 illustrates the BART model’s training
and validation loss curve. Initially, training and
validation loss are high, gradually decreasing over
epochs.

Figure 7: Loss Curve of BART

Figure 8 shows the output of the BART-large
model.

Figure 8: BART Generated FAQs

6

6.3 Llama-2
Table 6 depicts the BERT and ROUGE scores of
the Llama-2.

Metric Values (F1 scores)
BERTScore 0.83948094
ROUGE-1 0.22865427281133038
ROUGE-2 0.07720491898694384
ROUGE-L 0.16829442985815585

Table 6: Llama-2 Results

Figure 9 illustrates the training and validation
loss curve of the Llama-2 model. Initially, training
and validation loss are high, gradually decreasing
over epochs.

Figure 9: Loss Curve of Llama-2

Figure 10 shows the output of the Llama-2
model.

Figure 10: Llama-2 Generated FAQs

6.4 Llama-3
Table 7 depicts the BERT and ROUGE scores of
the Llama-3.

Metric Values (F1 scores)
BERTScore 0.83694977
ROUGE-1 0.19798938538277866
ROUGE-2 0.060723281389197734
ROUGE-L 0.16688194707468773

Table 7: Llama-3 Results

Figure 11 illustrates the training and validation
loss curve of the Llama-3 model. Initially, training
and validation loss are high, gradually decreasing
over epochs.

Figure 11: Loss Curve of Llama-3

Figure 12 shows the output of the Llama-3
model.

Figure 12: Llama-3 Generated FAQs

6.5 Zero-shot prompting of Llama-2 and
Llama-3

The results of Llama-2 and Llama-3 obtained by
zero-shot prompting were very similar. Hence,
only one tabular column containing the BERT and
ROUGE scores and one image depicting the gener-
ated FAQs are shown.

Table 8 depicts the BERT and ROUGE scores of
zero-shot prompting.

7

Metric Values (F1 scores)
BERTScore 0.858526
ROUGE-1 0.24188042631490989
ROUGE-2 0.07603239677051529
ROUGE-L 0.21875964758276956

Table 8: Zero-Shot Prompting Results

Figure 13 shows the output of zero-shot prompt-
ing.

Figure 13: Zero-Shot Prompted FAQs

BERT scores clearly reflect the performance of
each model for FAQ generation as it focuses on
semantic matching (cosine similarity) rather than
lexical matching. ROUGE scores were calculated
for each model because every research paper re-
lated to this project had computed ROUGE scores.
Therefore, BERT and ROUGE scores were decided
as the evaluation metrics for this project.

7 Conclusions

The FAQs generated by T5-large and BART-large
will be considered for comparison as these two
models were fine-tuned using the dataset obtained
from method-1’s pre-processing technique. Also,
the architectures of these two models are similar,
and comparing the outputs of these two models
would make more sense. Conversely, the FAQs gen-
erated by Llama-2 and Llama-3 will be compared
with those obtained from zero-shot prompting of
Llama-2 and Llama-3.

It is evident that the FAQs generated by the
BART-large model are much better than those of
the T5-large. Moreover, the BERT and ROUGE
scores of BART-large are better than those of the
T5-large. BART was able to generate questions
(not necessarily FAQs) for every single university
in the testing dataset, whereas the T5-large did not
generate FAQs for every single university. One
reason for the better performance of BART is the
fact that BART has a denoising auto-encoder ar-
chitecture, while the T5 has an encoder-decoder
architecture. BART is explicitly trained to generate
from noisy input. Conversely, the T5 is found to
be useful in generic text-to-text generation. Also,
BART is bidirectional, meaning that BART can
read the input from both sides of the sentence. Fi-

nally, the dataset used in this project is small and
since BART is a smaller model compared to the T5,
BART was able to generate from a small dataset.

Although good results were achieved by fine-
tuning Llama-2 and Llama-3 models, these mod-
els also performed comparably even when they
were zero-shot prompted. This implies fine-tuning
Llama-2 and Llama-3 for this task might be un-
necessary. This is possibly due to the large scale
of these models, which imply a better general lan-
guage understanding, and their knowledge cut-off
being more recent. However, all four models were
able to generate FAQs in general, which were com-
parable with the FAQs in the ground truths. This
shows that LLMs can be fine-tuned for FAQ gen-
eration tasks provided with a larger dataset. It
is not unreasonable to expect models like BART
and T5 to give significantly better results (with
a larger dataset) than the results achieved with a
small dataset.

To encapsulate, this project was able to answer
all the research questions mentioned earlier. LLMs
can be effectively fine-tuned to generate relevant
and accurate FAQs directly from graduate CS uni-
versity admission texts. Llama architecture demon-
strated the highest performance in FAQ generation.
Framing the input admission texts explicitly as in-
struction prompts does improve the quality and
relevance of the generated FAQs.

8 Future Recommendations

• The use case of FAQs can extend way be-
yond the scope of the admission process to
any other industry that requires the formation
of FAQs based on the given text. For instance,
this project can be incorporated in any service-
based industry, which takes a lot of feedback
from users in the form of questions and con-
cerns, and based on user-specified metrics,
that text can be used to generate FAQs.

• Thus far, the validation of this method has
been tested only in English. But it can be used
in a multilingual setup as well.

• Moreover, the authors believe it can also be
accompanied by the generation of question-
and-answer pairs rather than generating just
questions themselves.

8

References

1. S. Jeyaraj and R. T., "A deep learning
based end-to-end system (F-Gen) for auto-
mated email FAQ generation," Expert Sys-
tems With Applications, vol. 187, 2022,
https://doi.org/10.1016/j.eswa.2021.115896.

2. AsahiUshio, Fernando Alva-Manchego,
and Jose Camacho-Collados, "Generative
Language Models for Paragraph-Level
Question Generation," Proceedings of
the 2022 Conference on Empirical Meth-
ods in Natural Language Processing,
pages 670-688 December7-11, 2022,
https://aclanthology.org/2022.emnlp-
main.42.pdf.

3. Best Computer Science Schools, U.S.News,
https://www.usnews.com/best-graduate-
schools/top-science-schools/computer-
science-rankings (accessed March 3, 2024).

4. A. Aghajanyan, L. Zettlemoyer, and S. Gupta,
“Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning”
arXiv.org, https://arxiv.org/abs/2012.13255
(accessed Apr. 30, 2024).

5. T. Dettmers, A. Pagnoni, and L. Zettlemoyer,
“QLORA: Efficient Finetuning of Quantized
LLMs.” https://arxiv.org/pdf/2305.14314 (ac-
cessed: April 30, 2024)

A Appendix

The GitHub repository of this project can be found
https://github.com/Rbhu376264/FAQGenerator/tree/main.

9

	Introduction
	Problem Statement
	Research Questions
	Motivation
	Related Work

	Dataset
	Data Pre-Processing
	Method-1
	Method-2

	Models
	Encoder-decoder Models
	Decoder Models

	Fine-Tuning
	T5 and BART
	Llama-2 and Llama-3
	Parameter Efficient Fine-Tuning
	LoRA
	Quantized - LoRA

	Results
	T5-large
	BART-large
	Llama-2
	Llama-3
	Zero-shot prompting of Llama-2 and Llama-3

	Conclusions
	Future Recommendations
	Appendix

