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Abstract

With the rise in availability of data for language learning, the role of lin-
guistic structure is under scrutiny. The underlying syntactic structure of lan-
guage allows for composition of simple elements into more complex ones
in innumerable ways; generalization to new examples hinges on this struc-
ture. We define a syntactic inductive bias as a signal that steers the learning
algorithm towards a syntactically robust solution, over others. This thesis ex-
plores the need for incorporation of such biases into already powerful neural
models of language.

We describe three general approaches for incorporating syntactic induc-
tive biases into task-specific models, under different levels of supervision.
The first method calls for joint learning of entire syntactic dependency trees
with semantic dependency graphs through direct supervision, to facilitate
better semantic dependency parsing. Second, we introduce the paradigm
of scaffolded learning, which enables us to leverage inductive biases from
syntactic sources to predict a related semantic structure, using only as much
supervision as is necessary. The third approach yields general-purpose con-
textualized representations conditioned on large amounts of data along with
their shallow syntactic structures, obtained automatically. The linguistic rep-
resentations learned as a result of syntactic inductive biases are shown to be
effective across a range of downstream tasks, but their usefulness is especially
pronounced for semantic tasks.
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Chapter 1

Introduction

The artificial intelligence revolution has put natural language processing in the lime-
light. NLP aims at facilitating seamless communication between humans and machines.
The central challenge therefore is taking into consideration the full expanse of natural
language, in its broad manifestation across domains (newswire, email, tweets), genres
(satire, fiction); and style (word choice, fluency). The key to understanding this diverse
expanse of natural language, whether by humans or machines, lies in the ability to nav-
igate complex mappings between words and meanings.

Deep learning (LeCun et al., 2015) which mimics the behavior of neurons in the
brain, has re-emerged as one viable solution to this challenge. The expressive power of
this learning paradigm has impacted several fields such as computer vision (Krizhevsky
et al., 2012), control (Mnih et al., 2015), robotics (Levine et al., 2016) and several subar-
eas within machine learning itself (Goodfellow et al., 2016). In particular, deep learning
has revolutionized NLP, ushering in large and unprecedented improvements across ma-
chine translation (Sutskever et al., 2014), generation (Graves, 2013), dialog generation
(Wen et al., 2015), and structured prediction (Collobert et al., 2011; Luong et al., 2015),
among many other applications.

Certain key advancements have been the primary drivers of modern NLP systems.
Words and concepts which were previously represented as a set of sparse discrete fea-
tures can now be represented as dense, real-valued vectors (Mikolov et al., 2013; Pen-
nington et al., 2014) under deep learning. Continuous representations can capture fine
grained similarities between objects, compared to discrete representations which are
sparser and can only attain characterize coarser relationships. The representations them-
selves are parametric, and can be updated via optimizing task-specific objective func-
tions. In aggregate, continuous representations have boosted all of NLP.

However, deep neural models depend on large amounts of computational power,
and tend to be data hungry. On the other hand, only limited amount of labeled data
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is available1 for NLP tasks, particularly those that are key to advancement of language
technologies. These include, but are not limited to, tasks such as semantic parsing which
delineate the complete semantics of text and provide salient information for a variety
of applications such as information extraction and question answering. What’s more,
the datasets for such tasks are almost exclusively in English and a handful of other lan-
guages. Without access to sufficient data, neural approaches tend to suffer by overfitting
to the available samples, and being unable to generalize to new, unseen data. In stark
contrast, humans easily comprehend anything from news to Gen Z2 slang to Faulkner,
given just a few examples (Saffran, 2003). The uniquely human ability to generalize in-
volves learning language in terms of a set of latent structures governing language that
are largely invariant across diverse usages (Chomsky, 1957).

How can we make our machines generalize the way we do? One solution is to incor-
porate this latent linguistic structure into our learning algorithms, as prior knowledge.
Before the advent of deep learning, machine learning approaches for language used lin-
guistic structure to guide the design of discrete features for words and concepts.3 In
an attempt to efficiently consume enormous amounts of data, however, deep models
often make simplistic assumptions about language (Vinyals et al., 2015), only capturing
surface-level phenomena. While the trend is to move towards more powerful deep learn-
ing models which can consume massive amounts of unstructured data (Radford et al.,
2018; Devlin et al., 2018), many have argued4 that true learning of natural language can
only be possible by additionally taking into account linguistic structure (Manning, 2015;
Dyer, 2016), which is necessary for generalization. Access to these structures would en-
sure our machines acquire the ability to generalize, emulating humans.

In this thesis, we try to address this very question—how to leverage existing sources
of rich, expert-annotated knowledge about the structure of language, along with the
power of deep learning methods to improve linguistic representation learning? The fo-
cus in this thesis is on one particular flavor of linguistic structure—syntax, under the
scope of single sentence structure.5 We will primarily discuss supervised learning ap-
proaches, with the exception of Chapter 5, where we discuss both supervised and unsu-
pervised learning. In most of our approaches, we consider two sources of supervision—
one being syntax. However, this can be generalized to multiple sources given syntax

1NLP has seen the proliferation of large datasets collected via crowd-source annotations (Bowman
et al., 2015; Williams et al., 2017; Rajpurkar et al., 2016). However, recent work has shown that these
datasets tend to contain a majority of trivially solvable examples (Gururangan et al., 2018), reducing the
impact of the scale.

2https://www.businessinsider.com/generation-z
3Even the early deep learning methods for language used discrete features converted into vector repre-

sentations (Täckström et al., 2015; Roth and Woodsend, 2014), but as more powerful models have emerged,
the trend is to move towards end-to-end models without reliance on structure (Zhou and Xu, 2015).

4Mirella Lapata. Translating from Multiple Modalities to Text and Back. https://bit.ly/2VAItTZ
5We address document-level relationships for coreference resolution in Chapter 4, however, our models

do not give differential treatment to documents and sentences. There exists sophisticated structure outside
of sentences, such as those evidenced in discourse analysis (Hearst, 1997); this thesis does not address
structure at that level.

2
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Bob ate four cakes that he bought
NNP VBD VBDPRPNNSCD IN

NPNP NP VP
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Figure 1.1: Syntactic formalisms. The phrase-syntactic tree of the sentence is shown
above it in brown, and a dependency tree below the sentence in red. Under the first
representation, terminal / leaf nodes in the tree denote the words in the sentence, and
pre-terminals indicate part-of-speech tags. Non-leaf nodes in the phrase-structured tree
correspond to syntactic constituents such as noun phrases (NP), and verb phrases (VP).
A special node S indicates the root of the tree. In the dependency tree, all the nodes
are words in the sentence. Edges are directed from the parent to the child node and are
labeled with relationships between them.

remains one of them.

1.1 Linguistic Structure: Syntax

Syntax provides a skeletal framework for the construction of the meaning of a sentence.
The structure of a sentence is characterized by the relationships between the words of
the sentence. Syntax provides the mechanism to group together words into phrases,
and those phrases into larger ones, recursively. Eventually this process yields a tree,
with words in the sentence as it leaves. Syntactic trees can either be phrase-structured or
dependency-based. Phrase-structured trees contain internal nodes for elemental phrases
or constituents; the Penn TreeBank (Marcus et al., 1993) is the definitive resource for
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Figure 1.2: Syntax and semantics are closely related. The phrase-syntactic tree is shown
in brown above the sentence. Semantic role labeling (SRL) structures from PropBank
(Palmer et al., 2005) are shown alongside, in green, blue and magenta. Under SRL, words
in the sentence that indicate stand-alone events are selected as predicates. These are
shown as highlighted leaf nodes—“encouraging”, “told” and “left”. Each predicate is
disambiguated to its relevant sense shown above it. Arguments to the predicates are
are annotated on top of syntactic nodes, with the role labels color-coded by the predi-
cate. SRL substructures (predicates, arguments) thus fully overlap with phrase-syntactic
nodes.

phrase-syntactic annotations. Syntactic dependency trees forgo the internal node annotations—
all the nodes (including non-leaf nodes) in a dependency tree are words in the sentence.
Such trees have been annotated in the Universal Dependency TreeBank (Silveira et al.,
2014).6 Fig. 1.1 shows both syntactic formalisms underlying an example sentence.

Syntax is governed by an enumerable set of rules that allow words and phrases to be
composed systematically. Chomsky (1957) postulated that given that a language has a
large but finite vocabulary, this results in an infinite set of possible constructions. Put
simply, any new idea can be represented in language, and we have the capacity to un-
derstand it based on the the same set of rules on a given vocabulary. Syntax provides a
key mechanism to facilitate generalization to new, unseen examples.

We argue for the need of syntax-aware models in NLP to aid generalization. Non-
syntactic models, in contrast, rely purely on statistical correlation in language. Not only
does this further complicate an already challenging task, but also makes syntax-agnostic
models vulnerable to errors via overreliance on co-occurrence patterns, ultimately ren-
dering them incapable of generalizing well. We aim to learn representations of language
which are explicitly aware of syntax, in order to leverage its compositionality, or the abil-
ity to combine smaller elements into larger ones on the fly.7

6There exist several other formalisms for syntax not explored in this thesis, such as lexical functional
grammars (Bresnan et al., 2015).

7One could argue that if children can learn language without explicit lessons in syntax, why can’t deep
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1.1.1 Syntactic Inductive Biases

The goal of learning syntax-aware models is to select a solution which is more syntacti-
cally plausible compared to others. A preference for one solution over its contenders is
referred to as an inductive bias (Mitchell, 1980) in machine learning. Inductive biases
act as soft constraint, and could be expressed as priors in a Bayesian setting, or as regu-
larizers in an optimization problem. Throughout this thesis, we will propose methods
which express preferences towards syntactically robust solutions via appropriate syn-
tactic inductive biases (Chapter 2). These biases will be incorporated in addition to the
primary learning objective. Our hope is that such a design promotes generalizability
towards unseen data.

In particular, the inductive biases that we employ come from joint learning, multi-
task learning, and stage-wise or pipelined learning. Under joint learning (Chapter 3), a
single objective is optimized towards predicting multiple structures for the same input.
Joint learning induces biases that prefer both structures. Multi-task learning (Caruana,
1997) simplifies the learning problem by optimizing multiple objectives (Chapter 4). It
involves sharing some parameters between the tasks, as well as retaining task-specific
parameters. As a result, the inductive bias offered by each task objective is weakened,
but this comes at the benefit of disentangling the inference. Finally, we use stage-wise
pretraining in Chapter 5, by optimizing two objectives in a pipelined fashion. This in-
duces a bias by encouraging the later model to rely on the predictions of the first training
phase explicitly. Under each of these settings, one of the objectives involves syntactic pre-
diction, hence inducing a syntactic bias. The other objective is task-specific, and will be
addressed next.

1.1.2 Semantics

The semantic structure of the sentence is typically given by a graph. Unlike syntactic
trees, semantic graphs contain several complexities, such as multiple parents, edge re-
entrancies and disconnected components. Moreover, semantic annotations vary greatly
across formalisms such as PropBank (Palmer et al., 2005), AMRBank (Banarescu et al.,
2012), FrameNet (Baker et al., 1998), UCCA (Abend and Rappoport, 2013), semantic
proto-roles (Reisinger et al., 2015) and broad-coverage semantic dependencies (Oepen
et al., 2014). Fig. 1.4 shows a sentence and its annotations under three different seman-
tic formalisms, as well as two syntactic formalisms. Efforts to collect annotations and
maintain resources, are labor-intensive, as well as fragmented across formalisms. The
total amount of available annotations for a supervised learning problem is thus sparser,
making semantic structured prediction an arduous learning challenge to date.

learning models? Cognitive linguistics for language acquisition has shown repeatedly that language-
awareness is a uniquely human trait (Pinker, 1993). Given that the artificial intelligence we have built is
far less sophisticated than the human brain, this is an extraordinary requirement for current models.
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Given that most applications ultimately care about the meaning of sentences in order
to understand, process and extract information from them, semantic analysis is core to
natural language processing. Throughout this thesis, we will be visiting several seman-
tic structured prediction tasks. In Chapter 3 we address a dependency-based semantic
role labeling task. In Chapter 4 we address three different span-based semantic tasks:
frame-semantic role labeling, PropBank semantic role labeling and coreference resolu-
tion. Finally, Chapter 5 centers around contextualized representations for word tokens,
which are general enough to have wide applicability, and hence need to be meaning-
preserving.

As algorithms for the semantic analysis of natural language sentences have devel-
oped, the role of syntax has been repeatedly revisited. Syntax offers an incomplete but
potentially useful view of semantic structure. Fig. 1.2 shows the syntactic tree and the
semantic predicate-argument graph for a sentence; notice the large overlap between the
two structures. Linguistic theories have argued for a very tight integration of syntactic
and semantic processing (Steedman, 2000; Copestake and Flickinger, 2000), and many
systems have used syntactic dependency or phrase-based parsers as preprocessing for
semantic analysis (Gildea and Palmer, 2002; Punyakanok et al., 2008; Das et al., 2014).
Because annotated training datasets for semantics will always be limited, we expect that
syntax will continue to offer useful inductive bias, encouraging semantic models toward
better generalization.

1.1.3 Contextualized Representation Learning

As syntax provides a blueprint for ascertaining what a valid sentence is, it bears an in-
timate relationship with language models, which answer the same question from a sta-
tistical perspective. Phrase-structure syntax, just like language models, also determines
how sentences can be generated. As a result, there has been a long history of syntacti-
cally structured language models which estimate the joint probability of sentences and
their underlying phrase-structure trees (Jelinek and Lafferty, 1991; Chelba and Jelinek,
2000; Roark, 2001; Emami and Jelinek, 2005; Dyer et al., 2016).

Language models have risen in importance as pretraining objectives. They result in
contextualized representations of word tokens (cwr) which are given by internal states of
language models trained at a large scale (Peters et al., 2018a; Radford et al., 2018; Devlin
et al., 2018). These representations have been immensely successful due to the represen-
tational power offered via large-scale unsupervised training. However, most language
models based on deep learning tend to treat language as a sequence of tokens. Given that
language is organized hierarchically as a tree, such sequential biases are inappropriate
for learning syntactic generalizations.

Inspired by syntactic language models, we want to investigate the role of syntax in
producing cwr. Towards this, we seek to incorporate syntactic inductive biases in addi-

6



tion to the sequential biases in language models. However, this introduces a challenge—
the success of cwr can be attributed to scale, and syntax can be expensive to produce
accurately. Hence, using syntactic language models for producing cwr would be com-
putationally prohibitive. In Chapter 5, we address this problem and suggest a trade-off
between large-scale language modeling and incorporation of rich syntactic structure.

Syntactic Supervision Throughout this thesis, we will take into account syntactic su-
pervision for different tasks, as outlined above. The syntax to take into consideration
should structurally correlate with the target structure of interest. In general, incorpo-
ration of any kind of linguistic structure is beneficial when it can be done efficiently,
possible when structures can be broken down into simple units which are learnable
when training deep models on large datasets. Full syntactic processing is computation-
ally expensive, however, and might not even be necessary. Our models are designed to
preserve efficiency of computation—hence, we select a syntactic representation which is
both closely related to the task, and hence useful, as well as cheap to acquire. We address
the central question: is there a way for semantic analyzers to benefit from syntax with
minimal computational cost of syntactic processing? In Chapter 3 we will discuss a task
guided by syntactic dependency trees, and in Chapter 4 phrase-structured trees. In the
latter, we only take into account parts of the syntactic tree which correspond highly to
the substructures we are interested in. In Chapter 5 we use a very simple approximation
of a phrase-syntactic tree given by shallow syntactic structure. The selection of these
sources of supervision is also motivated by the ease of procuring relevant data.

Thesis Goal The goal of this thesis is to study the role of syntactic inductive biases in
deep neural models of language. Towards this end, we will consider two broad applications—
semantic structure prediction and contextualized representation learning. For each task,
we will ask two broad questions:

• What is a good syntactic inductive bias for this task? This will involve designing
learning objectives which take into account syntax along with the task of interest.

• How can we leverage deep learning architectures to enable learning multiple struc-
tures such that there is an adequate amount of information sharing?

1.2 Road Map

This thesis is organized as follows.

First, we will visit some background on various syntactic inductive biases in Chap-
ter 2. Next, we will discuss the three major contributions of this thesis, each organized
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/ Chunks 
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Syntactic 
Encoder

Figure 1.3: Road map for this thesis. Each row summarizes a chapter—syntactic induc-
tive biases used for the tasks addressed, the supervision signal that allows incorporation
of the bias, and the architectural element that facilitates this integration. The source of
supervision can be full or partial, indicating how much of the full syntactic analysis of a
sentence is consumed. In Chapter 5, the pretraining task results in contextualized rep-
resentations, which could then be plugged into any downstream task.

as a chapter. See Fig. 1.3 for a diagrammatic plan for this thesis.

In Chapter 3, we will address the task of semantic dependency parsing, by taking
into account syntactic dependency trees. Our approach involves jointly learning the
entire syntactic dependency tree for a given sentence along with its semantic graph.
Joint models have frequently been proposed as a way to avoid cascading errors in NLP
pipelines. Unlike prior approaches, our approach involves learning intermediate con-
tinuous representations of syntactic and semantic structure jointly, where the syntactic
inductive biases are captured in continuous composed representations of syntax and
semantics. Our model surpassed the performance of all prior joint models, achieving
competitive performance overall with the state-of-the-art in seven different languages,
and two shared tasks. This work was published as Swayamdipta et al. (2016).
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In Chapter 4, we introduce a multi-task learning paradigm where one of the tasks is
prediction of a shallow approximation of syntax, for several span-based semantic struc-
tured prediction tasks. Here, we consider three different semantic tasks, each involv-
ing classification of spans of text as semantic arguments (see an example in Figure 2.2).
The key observation we made was that semantic argument spans almost always cor-
respond to valid syntactic phrases. The syntactic inductive biases are incorporated in
learning sentential span representations, which are also helpful for predicting semantic
arguments. We use a multi-task setting to learn the entire frame-semantic graph from
FrameNet annotations, and only relevant parts (constituents) of the syntactic tree from The
Penn TreeBank (Marcus et al., 1993), as a syntactic scaffold. Our experiments demon-
strate that the syntactic scaffold offers a significant boost to state-of-the-art baselines for
two flavors of semantic role labeling and a coreference resolution task. This work is
presented in Swayamdipta et al. (2017) and Swayamdipta et al. (2018b).

In Chapter 5, we explore the question of whether exposing language models to shal-
low syntactic biases is required for improved contextualized representations. We con-
struct a probe for these models by building a richer, syntax-aware language model. Here
we consider a very shallow approximation of syntax, given by base phrase chunks, which
can be predicted efficiently and with high accuracy on large corpora which we need
to train our language model. We use a hierarchical syntactic encoder, internal states
of which capture the syntactic inductive biases given by the shallow, predicted syntax.
We observe that while such a syntactic encoder does not hurt performance, it also does
not significantly improve performance across tasks, leading to the conclusion that large
language models already capture the information to be provided by shallow, predicted
syntax.

Overall, we demonstrate that syntactic biases are most helpful for tasks where the
desired output is closely aligned with syntactic structure. Throughout this thesis, we
will emphasize on carefully selecting the kind of supervision we want to exploit which
will be the most beneficial for higher task accuracy, without sacrificing model efficiency.
The methods presented throughout this thesis are general learning paradigms for incor-
porating structural biases, and are not limited solely to syntactic structure, nor are the
downstream applications limited to the ones discussed in this thesis. For instance, anal-
ogous semantic biases could be useful for capturing deeper phenomena as observed in
discourse and pragmatics.

Because of its ability to provide generalization to new, unseen examples, linguistic
structure has been and will remain a cornerstone in natural language processing. Even
as models of language become more sophisticated and powerful, we hypothesize this ca-
pability to be substantive in the years to come; linguistic structural biases will remain rel-
evant. However, the particulars of structural bias design and incorporation are still open
to exploration; we anticipate progress on this front. Perhaps the advancements will move
towards capturing structural biases implicitly. The work in this thesis is built around the
close relationship of linguistic structure to generalization—this central premise will con-
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tinue to hold even as we make huge strides of progress in NLP.
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Figure 1.4: Different semantic annotations for a sentence. Top Left: FrameNet (Baker
et al., 1998) (above) and PropBank (Palmer et al., 2005) (below) semantic graphs and for
an example sentence. PropBank dependency (Surdeanu et al., 2008) nodes are individ-
ual tokens of the sentence, Target words and phrases are highlighted in the sentence,
and their lexical units are shown italicized below. Frames are shown in colored blocks,
and frame element segments are shown horizontally alongside the frame. Top Right:
Abstract meaning representation graph (Banarescu et al., 2012) for the same sentence,
annotations from Gruzitis and Barzdins (2016). Bottom: Syntactic constituency tree in
grey above the sentence and (universal) dependency tree in red below.
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Chapter 2

Background: Structural Inductive Biases

Representation learning with linguistic structure necessitates special attention to selec-
tion of algorithms which can make the most of diverse structural resources. Algorithms
for such tasks could include traditional pipelining of various structures (Chapter 5), joint
algorithms for multiple structures (Chapter 3), multitask learning algorithms (Chap-
ter 4), and those which treat structures as latent variables (Swayamdipta et al., 2018a).
We motivated the use of structural inductive biases in Chapter 1 (§1.1). In this chap-
ter, we will review some common approaches to incorporate such biases into language
learning.

2.1 Stage-Wise Learning or Pipelines

In a typical pipeline, two tasks T1 and T2 are separately trained, with the output of T2
used to define the inputs to T1 (Wolpert, 1992). Using syntax as T2 in a pipeline is per-
haps the most common approach for semantic structure prediction (Toutanova et al.,
2008; Yang and Mitchell, 2017; Wiseman et al., 2016). Many systems have used syntactic
dependency or phrase-based parsers as preprocessing for semantic analysis (Gildea and
Palmer, 2002; Xue and Palmer, 2004; Punyakanok et al., 2008; Das et al., 2014). The most
common approach of incorporating syntactic features is to have access to the complete
syntactic parse tree of the text under consideration, beforehand. This involves syntac-
tic parsing of sentences, the output of which is fed in a pipeline to the semantic parser.
Pipelines generally tend to achieve state-of-the-art performance on structured predic-
tion tasks (Toutanova et al., 2008; Björkelund et al., 2010; FitzGerald et al., 2015; Yang
and Mitchell, 2017). One reason pipelines often dominate is that they make available
the complete syntactic parse tree at all stages of T1 processing (or inference).

However, pipelines introduce the problem of cascading errors (T2’s mistakes affect
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Figure 2.1: Different kinds of inductive biases taking into account different degrees of
syntax.
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the performance, and perhaps the training, of T1; He et al., 2013). Syntactic parsers
are trained almost exclusively on the news domain Marcus et al. (1993), and generaliz-
ing outside of it has proven difficult (McClosky, 2010). Errors in syntactic parsing thus
gravely hurt the quality of semantic graphs (Punyakanok et al., 2008), and this effect is
especially marked in non-news text. Dependence on syntax also means that features
must be re-engineered every time we consider a new semantic graph formalism. Fur-
ther, extraction of these intricately designed features increases run time cost (He et al.,
2013). To date, remedies to cascading errors are so computationally expensive as to be
impractical (e.g., Finkel et al., 2006).

Pretraining with language models is another example of a stage-wise learning ap-
proach (Peters et al., 2018a; Radford et al., 2018; Devlin et al., 2018). In this setting, T1
is a language model; representations learned as a side-effect are applied to downstream
tasks T2. These representations have been immensely successful due to the representa-
tional power offered via large-scale unsupervised training. In Chapter 5 we will see a
stage-wise pretraining approach for syntax-aware language modeling.

2.2 Joint Learning

The motivation behind joint learning of syntactic and semantic representations is that
any one task is helpful in predicting the other (Lluı́s and Màrquez, 2008; Lluı́s et al., 2013;
Henderson et al., 2013; Swayamdipta et al., 2016). This typically requires joint prediction
of the outputs of T1 and T2, which tends to be computationally expensive at both training
and test time.

Joint models have frequently been proposed as a way to avoid cascading errors in
NLP pipelines; varying degrees of success have been attained for a range of joint syntactic-
semantic analysis tasks (Sutton and McCallum, 2005; Henderson et al., 2008; Toutanova
et al., 2008; Johansson, 2009; Lluı́s et al., 2013, inter alia). Both structures can be combined
to form a joint graph with distinct edges for syntactic and semantic relations. Joint mod-
els can potentially model the uncertainty of a syntactic decision—a feat pipelines cannot
achieve. In Chapter 3, we will address the task of semantic dependency parsing, by
taking into account syntactic dependency trees.

While joint models are excellent representation learners, they require complex infer-
ence algorithms which need to account for individual structural constraints. A simpli-
fication is offered by multitask learning, where each task gets to retain some of its own
parameters, while sharing the rest with others.
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2.3 Multi-Task Learning

As a first step towards building linguistic structure-aware representations, we need to se-
lect informative structures, annotations for which do not always agree. However, taken
together, different linguistic annotations provide interdependent views on the same un-
derlying object: the meaning of a sentence. This makes it possible to synthesize multiple
annotations to learn better representations.

Multitask learning (Caruana, 1997) is a collection of techniques in which two or more
tasks are learned from data with at least some parameters shared. A range of exam-
ples have recently been explored in NLP, showing in particular how neural architec-
tures achieve better performance when learned for multiple tasks together (Collobert
et al., 2011; Luong et al., 2015; FitzGerald et al., 2015; Chen et al., 2017; Peng et al., 2017;
Hashimoto et al., 2017).

Neural architectures have often yielded performance gains when trained for multiple
tasks together (Collobert et al., 2011; Luong et al., 2015; Chen et al., 2017; Hashimoto
et al., 2017). In particular, performance of semantic role labeling tasks improves when
done jointly with other semantic tasks (FitzGerald et al., 2015; Peng et al., 2017, 2018a).
Hershcovich et al. (2018) proposed a multitask learning setting for universal syntactic
dependencies and UCCA semantics (Abend and Rappoport, 2013).

This framework is particularly useful when each task deserves slightly different treat-
ment, particularly in the structural assumptions - such is the case for learning shallow
syntax with full semantic structures (Chapter 4).

Multiple Semantic Sources Not only is syntax complementary to semantics, various
semantic formalisms can also be complementary to each other. Recent approaches have
experimented with learning from multiple semantic sources. Peng et al. (2018a) used
supervision from two different, structurally divergent semantic formalisms—semantic
dependency graphs and span-based semantic graphs. They observed gains in perfor-
mance in both formalisms when considering cross-task features. Similarly, in Mulcaire
et al. (2018), the same semantic dependency formalism was considered across seven dif-
ferent languages, resulting in improvements in languages which are resource poor, when
incorporating supervision from English semantic dependencies.

Fig. 1.4 illustrates different broad-coverage semantic formalisms—frame-semantic
graphs from FrameNet (Baker et al., 1998), semantic role labeling (SRL) structures from
PropBank (Palmer et al., 2005), and abstract meaning representations (AMR) from AM-
RBank (Banarescu et al., 2012) for a single sentence, along with its syntactic trees in de-
pendency and phrase-structure forms.
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2.3.1 Varying Degrees of Supervision

While leveraging supervision for different flavors of linguistic structure is beneficial, it
can be expensive to learn the intricacies of each kind of structure. This is particularly true
when one of the sources is syntax, which is constrained to be tree-structured. Moreover,
in Chapter 3, we will see that learning syntax is helpful for semantics, but we did not
observe improvements in the reverse direction. Hence, the amount of syntax learnt could
be reduced such that it is still beneficial to semantics, and yet does not expend too much
modeling effort.

Guided by this intuition, in Chapter 4, we will downgrade syntactic learning to an
auxiliary task which learned shallow syntactic structures, only to aid the primary task of
semantic structure learning. We will use a multi-task setting to learn the entire semantic
structure, and only some relevant parts of the syntactic tree.

2.4 Latent Variable Learning

Another solution is to treat the output of T2 as a (perhaps structured) latent variable.
This approach obviates the need of supervision for T2 and requires marginalization (or
some approximation to it) in order to reason about the outputs of T1. Syntax as a latent
variable for semantics was explored by Zettlemoyer and Collins (2005) and Naradowsky
et al. (2012).

Peng et al. (2018b) treated semantic dependency labels as latent when trying to pre-
dict span-based arguments. Another application is question answering with distant su-
pervision (Swayamdipta et al., 2018a). Our model had access to the question, the answer
string, and lengthy documents which contained the answer string during training, but
no knowledge of which exact passage in the document answered the question. Since
the answer string could appear in different contexts, where not every occurrence could
answer the question, we used a latent variable to model this uncertainty. The lengthy
document itself was represented as a simple bag-of-embeddings. This approach was
able to surpass the performance of more powerful recurrent neural models which relied
on truncating the document for managing space and time complexity.

2.5 End-to-end Learning

End-to-end learning refers to training a possibly complex task using a single objective
such that gradient-based learning can be applied to all the modules together. End-to-end
approaches have regained popularity with the advent of deep learning, for applications
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Figure 2.2: Syntax and semantics are closely related. The syntactic constituency tree is
shown in brown above the sentence. Also shown alongside syntax are PropBank (Palmer
et al., 2005) predicates and corresponding (color-coded) arguments; arguments are an-
notated on top of syntactic nodes, indicating a full overlap. Coreference chains (connect-
ing references to the same entity) are shown in orange, fully overlapping with syntactic
nodes. Color-coded FrameNet (Baker et al., 1998) frames are shown in layers below the
sentence, each frame indicates an elementary event, and contains sentential spans as ar-
guments to understand the event. Almost all frame-semantic arguments (except Event)
are also syntactic constituents. The three different semantic structures also show con-
siderable overlap with one another.

in reinforcement learning (Mnih et al., 2015), control and automation (Bojarski et al.,
2016). Due to the presence of a single objective, the learned representations are biased
only towards that objective. As a result, to achieve high performance, end-to-end ar-
chitectures tend to be very complex. Transfer to other tasks, as well as generalization,
suffers as a result (Glasmachers, 2017).

In NLP end-to-end methods which forgo explicit syntactic processing altogether have
been applied to semantic structured prediction (Zhou and Xu, 2015; He et al., 2017; Lee
et al., 2017; Peng et al., 2017). However, it has been shown that syntax still offers benefits
to highly engineered end-to-end architectures (He et al., 2017; Yang and Mitchell, 2017).
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Chapter 3

Joint Learning of Semantics and Entire
Syntactic Trees

In this chapter, we focus on syntactic inductive biases that result from exposure to full
trees.

We consider the task of dependency-based semantic role labeling (Surdeanu et al.,
2008; Hajič et al., 2009). Semantic dependency structures highlight relationships between
semantic predicates and their arguments. Semantic predicates are words or multi-word
expressions in a sentence which denote the various events in the sentence, and are asso-
ciated with arguments which fill in the roles of the different actors in the event. Edges be-
tween predicates and arguments are labeled with the specific role each argument plays.
Figure 3.1 shows an example of different flavors semantic dependencies. In this chapter,
we only consider semantic dependencies based on semantic role labeling annotations
from PropBank and NomBank (Fig. 3.1a).

There exists a close correspondence between syntactic dependencies and SRL depen-
dencies. Figure 3.2 illustrates this for an example sentence; we see one-to-one mappings
between several semantic and syntactic dependency arcs. Because of this close corre-
spondence, these structures can be trained jointly; knowing one might help predict the
other. This calls for expert syntactic and semantic annotations on the same data, i.e.
direct supervision of syntactic as well as semantic dependencies. Shared tasks from
CoNLL in 2008 (Surdeanu et al., 2008) and 2009 (Hajič et al., 2009) were devoted to the
task of prediction of syntactic and semantic dependencies; the focus in 2008 being on
English and in 2009 on seven different languages.1

One solution is given by pipelines—predict syntactic dependencies, extract features
from syntax, and use those to predict the semantic dependencies. Such pipelines are

1Catalan, Chinese, Czech, English, German, Japanese and Spanish.

18



abundantly used since they make available the complete syntactic parse tree. They also
enable arbitrarily-scoped syntactic features—such as the “path” between predicate and
argument, proposed by Gildea and Jurafsky (2002)—for semantic analysis. Such features
are a mainstay of high performance semantic role labeling systems (Roth and Woodsend,
2014; Lei et al., 2015; FitzGerald et al., 2015; Foland and Martin, 2015). However, such
features are expensive to extract (Johansson, 2009; He et al., 2013). Moreover, pipelines
are vulnerable to cascading errors—errors made during the syntactic parsing phase are
bound to be problematic during the semantic parsing phase also.

Training Objective The solution we outline in this chapter is to jointly learn the entire
syntactic dependency tree for a given sentence along with its semantic graph. Joint mod-
els have frequently been proposed as a way to avoid cascading errors in NLP pipelines;
varying degrees of success have been attained for a range of joint syntactic-semantic anal-
ysis tasks (Sutton and McCallum, 2005; Henderson et al., 2008; Toutanova et al., 2008;
Johansson, 2009; Lluı́s et al., 2013, inter alia). Both structures can be combined to form a
joint graph with distinct edges for syntactic and semantic relations. Joint models can po-
tentially model the uncertainty of a syntactic decision—a feat pipelines cannot achieve.

Our parser draws from the algorithmic insights of the incremental structure building
approach of Henderson et al. (2008), with two key differences. First, it learns represen-
tations for the parser’s entire algorithmic state, not just the top items on the stack or
the most recent parser states; in fact, it uses no expert-crafted features at all. Second, it
uses entirely greedy inference rather than beam search. We leverage recent advances in
representation learning that can bypass learning expensive features used in pipelines,
discovering cheap alternatives available during a greedy parsing procedure. The specific
advance we employ is the stack LSTM (Dyer et al., 2015), a neural network that contin-
uously summarizes the contents of the stack data structures in which a transition-based
parser’s state is conventionally encoded. Stack LSTMs were shown to obviate many fea-
tures used in syntactic dependency parsing; here we find them to do the same for joint
syntactic-semantic dependency parsing. We believe this is an especially important find-
ing for greedy models that cast parsing as a sequence of decisions made based on al-
gorithmic state, where linguistic theory and researcher intuitions offer less guidance in
feature design.

Syntactic Inductive Bias Our approach learns intermediate continuous representations of
syntactic and semantic structure jointly. A composition function (§3.2.1) is used to cre-
ate such representations, as parts of the joint graph are built incrementally. The rep-
resentations are biased towards being both syntactically and semantically meaningful.
Additionally, such intermediate continuous representations can bypass those expensive
features used in pipelines.

Our model surpasses the performance of previous joint models on the CoNLL 2008

19



Figure 3.1: Different dependency semantic formalisms. Figure from Oepen et al. (2014)
highlighting differences between PropBank-style dependencies and broad-coverage se-
mantic dependencies. In this chapter, we deal only with the dependency SRL structures
from CoNLL shared tasks from 2008-9 (shown in (a)). Dependency SRL structures are
sparser—forming a forest of depth one trees, while other semantic formalisms form ar-
bitrary graphs; predicates are predominantly verbal or nominal.

and 2009 tasks, without using expert-crafted, expensive features of the full syntactic
parse. Specifically we show improvements over all prior joint models including Hen-
derson et al. (2008) and variants (Gesmundo et al., 2009; Titov et al., 2009; Henderson
et al., 2013) on the CoNLL 2008 and 2009 (English) shared tasks Hajič et al. (2009). Our
parser’s multilingual results are comparable to the top systems at CoNLL 2009. More
importantly, we observed improvements over a baseline which predicted only the se-
mantic graph, without any syntactic knowledge, showing that access to syntax helped
learn semantics. This work was published as Swayamdipta et al. (2016).
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Figure 3.2: Syntactic and semantic role dependencies for a sentence from CoNLL shared
tasks 2008-9. Syntactic dependencies are shown by red arcs below the sentence. Shown
above the sentence, are semantic predicates, marked in boldface, and semantic depen-
dencies, color-coded by their respective predicates. C- denotes continuation of argument
A1. Correspondences between syntactic and semantic dependencies might be close (be-
tween expected and to) or not (between reopen and all).

3.1 Joint Syntactic and Semantic Dependency Parsing

We largely follow the transition-based, synchronized algorithm of Henderson et al. (2013)
to predict joint parse structures. The input to the algorithm is a sentence annotated with
part-of-speech tags. The output consists of a labeled syntactic dependency tree and a
directed SRL graph, in which a subset of words in the sentence are selected as predi-
cates, disambiguated to a sense, and linked by labeled, directed edges to their semantic
arguments. Figure 3.2 shows an example.

3.1.1 Transition-Based Procedure

The two parses are constructed in a bottom-up fashion, incrementally processing words
in the sentence from left to right. The state of the parsing algorithm at timestep t is
represented by three stack data structures: a syntactic stack St, a semantic stack Mt—
each containing partially built structures—and a buffer of input wordsBt. Our algorithm
also places partial syntactic and semantic parse structures onto the front of the buffer,
so it is also implemented as a stack. Each arc in the output corresponds to a transition
(or “action”) chosen based on the current state; every transition modifies the state by
updating St, Mt, and Bt to St+1, Mt+1, and Bt+1, respectively. While each state may
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license several valid actions, each action has a deterministic effect on the state of the
algorithm.

Initially, S0 andM0 are empty, andB0 contains the input sentence with the first word
at the front ofB and a special root symbol at the end.2 Execution ends on iteration t such
that Bt is empty and St and Mt contain only a single structure headed by root.

3.1.2 Transitions for Joint Parsing

There are separate sets of syntactic and semantic transitions; the former manipulate S
andB, the latterM andB. All are formally defined in Table 3.1. The syntactic transitions
are from the “arc-eager” algorithm of Nivre (2008). They include:

• S-Shift, which copies3 an item from the front of B and pushes it on S.
• S-Reduce pops an item from S.
• S-Right(`) creates a syntactic dependency. Let u be the element at the top of S

and v be the element at the front of B. The new dependency has u as head, v as
dependent, and label `. u is popped off S, and the resulting structure, rooted at u,
is pushed on S. Finally, v is copied to the top of S.

• S-Left(`) creates a syntactic dependency with label ` in the reverse direction as
S-Right. The top of S, u, is popped. The front of B, v, is replaced by the new
structure, rooted at v.

The semantic transitions are similar, operating on the semantic stack.

• M-Shift removes an item from the front of B and pushes it on M .
• M-Reduce pops an item from M .
• M-Right(r) creates a semantic dependency. Let u be the element at the top of M

and v, the front of B. The new dependency has u as head, v as dependent, and
label r. u is popped off M , and the resulting structure, rooted at u, is pushed on
M .

• M-Left(r) creates a semantic dependency with label r in the reverse direction as
M-Right. The buffer front, v, is replaced by the new v-rooted structure. M remains
unchanged.

Because SRL graphs allow a node to be a semantic argument of two parents—like all

2This works better for the arc-eager algorithm (Ballesteros and Nivre, 2013), in contrast to Henderson
et al. (2013), who initialized with root at the buffer front.

3Note that in the original arc-eager algorithm (Nivre, 2008), Shift and Right-Arc actions move the item
on the buffer front to the stack, whereas we only copy it (to allow the semantic operations to have access
to it).
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in the example in Figure 3.2—M-Left and M-Right do not remove the dependent from
the semantic stack and buffer respectively, unlike their syntactic equivalents, S-Left and
S-Right. We use two other semantic transitions from Henderson et al. (2013) which have
no syntactic analogues:

• M-Swap swaps the top two items on M , to allow for crossing semantic arcs.
• M-Pred(p) marks the item at the front of B as a semantic predicate with the sense
p, and replaces it with the disambiguated predicate.

The CoNLL 2009 corpus introduces semantic self-dependencies where many nomi-
nal predicates (from NomBank) are marked as their own arguments; these account for
6.68% of all semantic arcs in the English corpus. We introduce a new semantic transition,
not in Henderson et al. (2013), to handle such cases:

• M-Self(r) adds a dependency, with label r between the item at the front of B and
itself. The result replaces the item at the front of B.

Note that the syntactic and semantic transitions both operate on the same buffer,
though they independently specify the syntax and semantics, respectively. In order to
ensure that both syntactic and semantic parses are produced, the syntactic and semantic
transitions are interleaved. Only syntactic transitions are considered until a transition is
chosen that copies an item from the buffer front to the syntactic stack (either S-Shift or
S-Right). The algorithm then switches to semantic transitions until a buffer-modifying
transition is taken (M-Shift).4 At this point, the buffer is modified and the algorithm
returns to syntactic transitions. This implies that, for each word, its left-side syntactic
dependencies are resolved before its left-side semantic dependencies. An example run
of the algorithm is shown in Figure 3.3.

Constraints on Transitions

To ensure that the parser never enters an invalid state, the sequence of transitions is
constrained, following Henderson et al. (2013). Actions that copy or move items from the
buffer (S-Shift, S-Right and M-Shift) are forbidden when the buffer is empty. Actions
that pop from a stack (S-Reduce and M-Reduce) are forbidden when that stack is empty.
We disallow actions corresponding to the same dependency, or the same predicate to be
repeated in the sequence. Repetitive M-Swap transitions are disallowed to avoid infinite
swapping. Finally, as noted above, we restrict the parser to syntactic actions until it
needs to shift an item from B to S, after which it can only execute semantic actions until
it executes an M-Shift.

4Had we moved the item at the buffer front during the syntactic transitions, it would have been unavail-
able for the semantic transitions, hence we only copy it.
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Table 3.1: Parser transitions along with the modifications to the stacks and the buffer
resulting from each. Syntactic transitions are shown above, semantic below. Italic sym-
bols denote symbolic representations of words and relations, and bold symbols indicate
(learned) embeddings of words and relations; each element in a stack or buffer includes
both symbolic and vector representations, either atomic or recursive. S represents the
set of syntactic transitions, andM the set of semantic transitions.
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Asymptotic runtime complexity of this greedy algorithm is linear in the length of the
input, following the analysis by Nivre (2009).5

3.2 Statistical Model

The transitions in (§3.1.1) describe the execution paths our algorithm can take; like past
work, we apply a statistical classifier to decide which transition to take at each timestep,
given the current state. The novelty of our model is that it learns a finite-length vector
representation of the state of the entire joint parser (S, M , and B) in order to make this
decision.

Stack Long Short-Term Memory (LSTM)

LSTMs are recurrent neural networks equipped with specialized memory components
in addition to a hidden state (Hochreiter and Schmidhuber, 1997; Graves, 2013) to model
sequences. Stack LSTMs (Dyer et al., 2015) are LSTMs that allow for stack operations:
query, push, and pop. A “stack pointer” is maintained which determines which cell in
the LSTM provides the memory and hidden units when computing the new memory
cell contents. Query provides a summary of the stack in a single fixed-length vector.
Push adds an element to the top of the stack, resulting in a new summary. Pop, which
does not correspond to a conventional LSTM operation, moves the stack pointer to the
preceding timestep, resulting in a stack summary as it was before the popped item was
observed. Implementation details (Dyer et al., 2015; Goldberg, 2016) and code have been
made publicly available.6

Using stack LSTMs, we construct a representation of the algorithm state by decom-
posing it into smaller pieces that are combined by recursive function evaluations (similar
to the way a list is built by a concatenate operation that operates on a list and an element).
This enables information that would be distant from the “top” of the stack to be carried
forward, potentially helping the learner.

3.2.1 Stack LSTMs for Joint Parsing

Our algorithm employs four stack LSTMs, one each for the S, M , and B data structures.
Like Dyer et al. (2015), we use a fourth stack LSTM, A, for the history of actions—A is

5The analysis in (Nivre, 2009) does not consider Swap actions. However, since we constrain the number
of such actions, the linear time complexity of the algorithm stays intact.

6https://github.com/clab/lstm-parser
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Figure 3.3: Joint parser transition sequence for the sentence in Figure 3.2, “all are expected
to reopen soon.” Syntactic labels are in lower-case and semantic role labels are capitalized.
*** marks the operation predicted in Figure 3.5.
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Figure 3.4: Stack LSTM-based architecture for joint parsing. The state illustrated corre-
sponds to the ***-marked row in the example transition sequence in Fig. 3.3. Syntactic
components are shown in red, and semantic in blue.

never popped from, only pushed to. Figure 3.4 illustrates the architecture. The algo-
rithm’s state at timestep t is encoded by the four vectors summarizing the four stack
LSTMs, and this is the input to the classifier that chooses among the allowable transi-
tions at that timestep.

Let st, mt, bt, and at denote the summaries of St, Mt, Bt, and At, respectively. Let
At = Allowed(St,Mt, Bt, At) denote the allowed transitions given the current stacks and
buffer. The parser state at time t is given by a rectified linear unit (Nair and Hinton, 2010)
in vector yt:

yt = elementwisemax {0,d + W[st;mt;bt; at]}

where W and d are the parameters of the classifier. The transition selected at timestep t
is

arg max
τ∈At

qτ + θτ · yt (3.1)

≡ arg max
τ∈At

score(τ ;St,Mt, Bt, At)

where θτ and qτ are parameters for each transition type τ . Note that only allowed tran-
sitions are considered in the decision rule (see §3.1.2).
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Composition Functions

To use stack LSTMs, we require vector representations of the elements that are stored in
the stacks. Specifically, we require vector representations of atoms (words, possibly with
part-of-speech tags) and parse fragments. Word vectors can be pretrained or learned
directly; we consider a concatenation of both in our experiments; part-of-speech vectors
are learned and concatenated to the same.

To obtain vector representations of parse fragments, we use neural networks which
recursively compute representations of the complex structured output (Dyer et al., 2015).
The tree structures here are always ternary trees, with each internal node’s three children
including a head, a dependent, and a label. The vectors for leaves are word vectors and
vectors corresponding to syntactic and semantic relation types.

The vector for an internal node is a squashed (tanh) affine transformation of its chil-
dren’s vectors. For syntactic and semantic attachments, respectively, the composition
function is:

gs(v,u, l) = tanh(Zs[v;u; l] + es) (3.2)
gm(v,u, r) = tanh(Zm[v;u; r] + em) (3.3)

where v and u are vectors corresponding to atomic words or composed parse fragments;
l and r are learned vector representations for syntactic and semantic labels respectively.
Syntactic and semantic parameters are separated (Zs, es and Zm, em, respectively).

Finally, for predicates, we use another recursive function to compose the word repre-
sentation, v with a learned representation for the dismabiguated sense of the predicate,
p:

gd(v,p) = tanh(Zd[v;p] + ed) (3.4)

where Zd and ed are parameters of the model. Note that, because syntactic and seman-
tic transitions are interleaved, the fragmented structures are a blend of syntactic and
semantic compositions. Figure 3.5 shows an example.

3.3 Experiments and Results

3.3.1 Experimental Setup

Our model is evaluated on the CoNLL shared tasks on joint syntactic and semantic de-
pendency parsing in 2008 (Surdeanu et al., 2008) and 2009 (Hajič et al., 2009). The stan-
dard training, development and test splits of all datasets were used. Per the shared task
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Figure 3.5: Illustration of the model composition architecture for a joint parse. Each node
is associated with a vector. Vectors for the leaf nodes correspond to learned embeddings
for tokens (grey), syntactic (red) and semantic (blue) labels. Internal vectors are obtained
by recursive composition of the vectors for the head, dependent, and labels for a given
dependency, their colors are a mix of the colors of their descendants. Syntactic depen-
dencies and labels from the joint parse are shown in red, semantic in blue, alongside the
parts of the composition network represented.
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guidelines, automatically predicted POS tags and lemmas provided in the datasets were
used for all experiments. As a preprocessing step, pseudo-projectivization of the syntac-
tic trees (Nivre et al., 2007) was used, which allowed an accurate conversion of even the
non-projective syntactic trees into syntactic transitions. However, the oracle conversion
of semantic parses into transitions is not perfect despite using the M-Swap action, due to
the presence of multiple crossing arcs.7

The standard evaluation metrics include the syntactic labeled attachment score (LAS),
the semantic F1 score on both in-domain (WSJ) and out-of-domain (Brown corpus) data,
and their macro average (Macro F1) to score joint systems. Because the task was defined
somewhat differently in each year, each dataset is considered in turn.

3.3.2 CoNLL 2008

The CoNLL 2008 dataset contains annotations from the Penn Treebank (Marcus et al.,
1993), PropBank (Palmer et al., 2005) and NomBank (Meyers et al., 2004). The shared
task evaluated systems on predicate identification in addition to predicate sense disam-
biguation and SRL.

To identify predicates, we trained a zero-Markov order bidirectional LSTM two-class
classifier. As input to the classifier, we use learned representations of word lemmas and
POS tags. This model achieves an F1 score of 91.43% on marking words as predicates
(or not).

Hyperparameters The input representation for a word consists of pretrained embed-
dings (size 100 for English, 80 for Chinese, 64 for German and Spanish), concatenated
with additional learned word and POS tag embeddings (size 32 and 12, respectively).
Learned embeddings for syntactic and semantic arc labels are of size 20 and predicates
100. Two-layer LSTMs with hidden state dimension 100 were used for each of the four
stacks. The parser state yt and the composition function g are of dimension 100. A
dropout rate of 0.2 (Zaremba et al., 2014) was used on all layers at training time, tuned
on the development data from the set of values {0.1, 0.2, 0.3, 1.0}. The learned represen-
tations for actions are of size 100, similarly tuned from {10, 20, 30, 40, 100}. Other hyper-
parameters have been set intuitively; careful tuning is expected to yield improvements
(Weiss et al., 2015).

An initial learning rate of 0.1 for stochastic gradient descent was used and updated in
every training epoch with a decay rate of 0.1 (Dyer et al., 2015). Training is stopped when
the development performance does not improve for approximately 6–7 hours of elapsed

7For 1.5% of English sentences in the CoNLL 2009 English dataset, the transition sequence incorrectly
encodes the gold-standard joint parse; details in Henderson et al. (2013).
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Labeled Accuracy Semantic Macro
Score F1 F1

joint models:
Lluı́s and Màrquez (2008) 85.8 70.3 78.1
Henderson et al. (2008) 87.6 73.1 80.5
Johansson (2009) 86.6 77.1 81.8
Titov et al. (2009) 87.5 76.1 81.8

CoNLL 2008 best:
#3: Zhao and Kit (2008) 87.7 76.7 82.2
#2: Che et al. (2008) 86.7 78.5 82.7
#2: Ciaramita et al. (2008) 87.4 78.0 82.7
#1: Johansson and Nugues (2008) 89.3 81.6 85.5

Joint (this work) 89.1 80.5 84.9

Table 3.2: Joint parsers: comparison on the CoNLL 2008 test (WSJ+Brown) set.

time. Experiments were run on a single thread on a CPU, with memory requirements of
up to 512 MB.

From Table 3.2, we see that our joint model significantly outperforms the joint model
of Henderson et al. (2008), from which our set of transitions is derived, showing the
benefit of learning a representation for the entire algorithmic state. Several other joint
learning models have been proposed (Lluı́s and Màrquez, 2008; Johansson, 2009; Titov
et al., 2009) for the same task; our joint model surpasses the performance of all these
models. The best reported systems on the CoNLL 2008 task are due to Johansson and
Nugues (2008), Che et al. (2008), Ciaramita et al. (2008) and Zhao and Kit (2008), all of
which pipeline syntax and semantics; our system’s semantic and overall performance is
comparable to these. We fall behind only Johansson and Nugues (2008), whose success
was attributed to carefully designed global SRL features integrated into a pipeline of
classifiers, making them asymptotically slower.

3.3.3 CoNLL 2009

Relative to the CoNLL 2008 task (above), the main change in 2009 is that predicates are
pre-identified, and systems are only evaluated on predicate sense disambiguation (not
identification). Hence, the bidirectional LSTM classifier is not used here. The prepro-
cessing for projectivity, and the hyperparameter selection is the same as in (§3.3.2).

In addition to the joint approach described in the preceding sections, we experiment
here with several variants:
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Semantics-only: the set of syntactic transitions S, the syntactic stack S, and the syntac-
tic composition function gs are discarded. As a result, the set of constraints on transitions
is a subset of the full set of constraints in (§3.1.2). Effectively, this model does not use any
syntactic features, similar to Collobert et al. (2011) and Zhou and Xu (2015). It provides
a controlled test of the benefit of explicit syntax in a semantic parser.

Syntax-only: all semantic transitions in M, the semantic stack M , and the semantic
composition function gm are discarded. S-Shift and S-Right now move the item from the
front of the buffer to the syntactic stack, instead of copying. The set of constraints on
the transitions is again a subset of the full set of constraints. This model is an arc-eager
variant of Dyer et al. (2015), and serves to check whether semantic parsing degrades
syntactic performance.

Hybrid: the semantics parameters are trained using automatically predicted syntax
from the syntax-only model. At test time, only semantic parses are predicted. This setup
bears similarity to other approaches which pipeline syntax and semantics, extracting
features from the syntactic parse to help SRL. However, unlike other approaches, this
model does not offer the entire syntactic tree for feature extraction, since only the partial
syntactic structures present on the syntactic stack (and potentially the buffer) are visible
at a given timestep. This model helps show the effect of joint prediction.

CoNLL 2009 Results (English)

All of our models (Syntax-only, Semantics-only, Hybrid and Joint) improve over Ges-
mundo et al. (2009) and Henderson et al. (2013), demonstrating the benefit of our entire-
parser-state representation learner compared to the more locally scoped model. These
results are shown in Table 3.3.

Given that syntax has consistently proven useful in SRL, we expected our Semantics-
only model to underperform Hybrid and Joint, and it did. In the training domain, syntax
and semantics benefit each other (Joint outperforms Hybrid). Out-of-domain (the Brown
test set), the Hybrid pulls ahead, a sign that Joint overfits to WSJ. As a syntactic parser,
our Syntax-only model performs slightly better than Dyer et al. (2015), who achieve 89.56
LAS on this task. Joint parsing is very slightly better still.

The overall performance of Joint is on par with the other winning participants at the
CoNLL 2009 shared task (Zhao et al., 2009; Che et al., 2009; Gesmundo et al., 2009), falling
behind only Zhao et al. (2009), who carefully designed language-specific features and
used a series of pipelines for the joint task, resulting in an accurate but computationally
expensive system.
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Model LAS Semantic F1

(WSJ)
Semantic F1

(Brown)
Macro
F1

CoNLL’09 best:
#3 Gesmundo et al. (2009) 88.79 83.24 70.65 86.03
#2 Che et al. (2009) 88.48 85.51 73.82 87.00
#1 Zhao et al. (2009) 89.19 86.15 74.58 87.69

This work:
Syntax-only 89.83 - - -
Sem.-only - 84.39 73.87 -
Hybrid 89.83 84.58 75.64 87.20
Joint 89.94 84.97 74.48 87.45

Pipelines:
Roth and Woodsend (2014) - 86.34 75.90 -
Lei et al. (2015) - 86.58 75.57 -
Täckström et al. (2015) - 87.30 75.50 -
FitzGerald et al. (2015) - 87.80 75.50 -

Table 3.3: Comparison on the CoNLL 2009 English test set. The first block presents
results of other models evaluated for both syntax and semantics on the CoNLL 2009
task. The second block presents our models. The third block presents the best published
models, each using its own syntactic preprocessing.

State-of-the-art SRL systems (shown in the last block of Table 3.3) which use advances
orthogonal to the contributions in this paper, perform better than our models. Many of
these systems use expert-crafted features derived from full syntactic parses in a pipeline
of classifiers followed by a global reranker (Björkelund et al., 2009; Björkelund et al.,
2010; Roth and Woodsend, 2014); we have not used these features or reranking. Lei et al.
(2015) use syntactic parses to obtain interaction features between predicates and their ar-
guments and then compress feature representations using a low-rank tensor. Täckström
et al. (2015) present an exact inference algorithm for SRL based on dynamic program-
ming and their local and structured models make use of many syntactic features from a
pipeline; our search procedure is greedy. Their algorithm is adopted by FitzGerald et al.
(2015) for inference in a model that jointly learns representations from a combination of
PropBank and FrameNet annotations; we have not experimented with extra annotations.

Our system achieves an end-to-end runtime of 177.6±18 seconds to parse the CoNLL
2009 English test set on a single core. This is almost 2.5 times faster than the pipeline
model of Lei et al. (2015) (439.9±42 seconds) on the same machine.8

8See https://github.com/taolei87/SRLParser; unlike other state-of-the-art systems, this one is pub-
licly available.

33

https://github.com/taolei87/SRLParser


Language Che et al. (2009)
#1

Zhao et al. (2009)
#2

Gesmundo et al. (2009)
#3

Joint
Ours

Catalan 81.84 83.01 82.66 82.40
Chinese 76.38 76.23 76.15 79.27
Czech 83.27 80.87 83.21 79.53
English 87.00 87.69 86.03 87.45
German 82.44 81.22 79.59 81.05
Japanese 85.65 85.28 84.91 80.91
Spanish 81.90 83.31 82.43 83.11
Average 82.64 82.52 82.14 81.96

Table 3.4: Comparison of macro F1 scores on the multilingual CoNLL 2009 test set.

CoNLL 2009 (Multilingual)

We tested the joint model on the non-English CoNLL 2009 datasets, and the results
demonstrate that it adapts easily—it is on par with the top three systems in most cases
(Table 3.4). We note that our Chinese parser relies on pretrained word embeddings
for its superior performance; without them (not shown), it was on par with the others.
Japanese is a small-data case (4,393 training examples), illustrating our model’s depen-
dence on reasonably large training datasets.

We have not extended our model to incorporate morphological features, which are
used by the systems to which we compare. Future work might incorporate morpholog-
ical features where available; this could potentially improve performance, especially in
highly inflective languages like Czech. An alternative might be to infer word-internal
representations using character-based word embeddings, which was found beneficial
for syntactic parsing (Ballesteros et al., 2015).

Other approaches to joint modeling, not considered in our experiments, are notable.
Lluı́s et al. (2013) propose a graph-based joint model using dual decomposition for agree-
ment between syntax and semantics, but do not achieve competitive performance on the
CoNLL 2009 task. Lewis et al. (2015) proposed an efficient joint model for CCG syn-
tax and SRL, which performs better than a pipelined model. However, their training
necessitates CCG annotation; ours does not. Moreover, their evaluation metric rewards
semantic dependencies regardless of where they attach within the argument span given
by a PropBank constituent, making direct comparison to our evaluation infeasible. Kr-
ishnamurthy and Mitchell (2014) propose a joint CCG parsing and relation extraction
model which improves over pipelines, but their task is different from ours. Li et al.
(2010) also perform joint syntactic and semantic dependency parsing for Chinese, but
do not report results on the CoNLL 2009 dataset.

There has also been an increased interest in models which use neural networks for
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SRL. Collobert et al. (2011) proposed models which perform many NLP tasks without
hand-crafted features. Though they did not achieve the best results on the constituent-
based SRL task (Carreras and Màrquez, 2005), their approach inspired Zhou and Xu
(2015), who achieved state-of-the-art results using deep bidirectional LSTMs. Our ap-
proach for dependency-based SRL is not directly comparable.

Our system’s performance does not match that of the top expert-crafted feature-
based systems (Zhao et al., 2009; Björkelund et al., 2010; Roth and Woodsend, 2014; Lei
et al., 2015), systems which perform optimal decoding (Täckström et al., 2015), or of
systems that exploit additional, differently-annotated datasets (FitzGerald et al., 2015).
Many advances in those systems are orthogonal to our model, and we expect future work
to achieve further gains by integrating them.

Because our system is very fast— with an end-to-end runtime of 177.6±18 seconds
to parse the CoNLL 2009 English test data on a single core—we believe it will be useful
in practical settings. Our open-source implementation is available at https://github.
com/clab/joint-lstm-parser.

3.4 Conclusion

We presented an incremental, greedy parser for joint syntactic and semantic dependency
parsing. Our model surpasses the performance of previous joint models on the CoNLL
2008 and 2009 English tasks, without using expert-crafted, expensive features of the full
syntactic parse.
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Chapter 4

Multi-Task Training with Syntactic
Substructures

Inspired by the usefulness of syntactic biases in learning semantic representations in
Chapter 3, we will further explore this idea in the current chapter. Many semantic
tasks involve labeling spans, including semantic role labeling (SRL; Gildea and Jurafsky,
2002) and coreference resolution (Ng, 2010) (tasks we consider in this chapter), as well
as named entity recognition and some reading comprehension and question answering
tasks (Rajpurkar et al., 2016). Here, we consider three different semantic tasks, each
involving classification of spans of text as semantic arguments. The first task is frame-
semantic role labeling, which involves labeling spans in a sentence as arguments to se-
mantic frames from FrameNet (Baker et al., 1998; Fillmore, 1976). The second is Prop-
Bank span-based semantic role labeling, which is similar to the first task, but contains
coarser-grained labels for arguments.1 The final task is coreference resolution, which
involves identifying spans in a document as named entities and chaining together coref-
erent entity spans. See Figure 4.1 for an example sentence with these three semantic
annotations.

Also shown in Figure 4.1 is a phrase-syntactic parse. The key observation to be made
here is that semantic argument spans for all three tasks almost always correspond to
valid syntactic constituents (cf. PropBank; Palmer et al., 2005), making phrase-based
syntax a natural choice for incorporating a syntactic bias. Classical approaches to span-
based semantics employed syntactic span information as a feature (Xue and Palmer,
2004).

Our approach preserves most of the benefit of syntactic features without the accom-
panying computational cost of feature extraction or syntactic parsing. We incorporate
the training objective of our syntax-free model into a multitask setting where the sec-

1There are many more differences, which we will highlight in §4.4.
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themheAfter encouraging them , told goodbye and left for
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Figure 4.1: An example sentence with syntactic, PropBank and coreference annotations
from OntoNotes, and author-annotated frame-semantic structures. PropBank SRL argu-
ments and coreference mentions are annotated on top of syntactic constituents. All but
one frame-semantic argument (Event) is a syntactic constituent. Targets evoke frames
shown in the color-coded layers. FrameNet additionally annotates prepositional frames,
such as one evoked by “After”.
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ond task is unlabeled constituent identification (i.e., a separate binary decision for each
span). This syntactic scaffold2 task offers useful guidance to the frame-semantic model,
leading to performance on par with our models that use syntactic features.

Training Objective We address the central question: is there a way for semantic ana-
lyzers to benefit from syntax without the computational cost of syntactic parsing? We
propose a multitask learning approach to incorporate syntactic information into learned
representations of neural semantics models (§4.1). Our approach, the syntactic scaffold,
minimizes an auxiliary supervised loss function, derived from a syntactic treebank. We
avoid the cost of training or executing a full syntactic parser, and at test time (i.e., runtime
in applications) the semantic analyzer has no additional cost over a syntax-free baseline.
Further, the method does not assume that the syntactic treebank overlaps the dataset for
the primary task, which is in contrast to Chapter 3, and is a more practical setting for
most tasks.

Syntactic Inductive Bias The goal is to steer the distributed, contextualized represen-
tations of words and spans toward accurate semantic and syntactic labeling. This is en-
abled by sharing representations of spans between the primary and the scaffolding tasks.

Since the scaffold task is not an end in itself, we relax the syntactic parsing problem
to a collection of independent span-level predictions, with no constraint that they form
a valid parse tree. This means we never need to run a syntactic parsing algorithm.

We propose strong syntax-free baselines, which were themselves state-of-the-art, us-
ing the strongest available neural network architectures for these tasks, integrating deep
representation learning (He et al., 2017) and structured prediction at the level of spans
(Kong et al., 2016). For SRL, the syntax-free baseline itself is a novel globally normal-
ized structured conditional random field, which outperforms the previous state of the
art.3 Even more remarkably, annotations for syntax and semantics were not required
on the same data, making this approach generalizable to other tasks. Our experiments
demonstrate that the syntactic scaffold offers a substantial boost to state-of-the-art base-
lines for two SRL tasks (§4.4) and coreference resolution (§4.5). Syntactic scaffolds result
in further improvements over prior work—3.6 absolute F1 in FrameNet SRL, 1.1 abso-
lute F1 in PropBank SRL, and 0.6 F1 in coreference resolution (averaged across three
standard scores). Even though the tasks considered here concern span-based semantics,
the methods discussed are general enough for any span-based task, which is poised to
benefit from a different span-based task.

2We borrow the term scaffolding from developmental psychology (Wood et al., 1976) to describe a sup-
port task during learning that is eventually discarded.

3This holds regardless of whether the model is initialized with deep, contextualized embeddings (Pe-
ters et al., 2018a), an approach orthogonal to ours.
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This work was presented in Swayamdipta et al. (2017) and (Swayamdipta et al., 2018b).
Our code is open source and available at https://github.com/swabhs/scaffolding.

4.1 Syntactic Scaffolds

Multitask learning (Caruana, 1997) is a collection of techniques in which two or more
tasks are learned from data with at least some parameters shared. A range of exam-
ples have recently been explored in NLP, showing in particular how neural architec-
tures achieve better performance when learned for multiple tasks together (Collobert
et al., 2011; Luong et al., 2015; FitzGerald et al., 2015; Chen et al., 2017; Peng et al., 2017;
Hashimoto et al., 2017).

We assume there is only one task about whose performance we are concerned, de-
noted T1 (in this chapter, T1 is either frame-semantic role labeling or coreference resolu-
tion). We use the term “scaffold” to refer to a second task, T2, that can be combined with
T1 during multitask learning. A scaffold task is only used during training; it holds no
intrinsic interest beyond biasing the learning of T1, and after learning is completed, the
scaffold is discarded.

A syntactic scaffold is a task designed to steer the (shared) model toward awareness
of syntactic structure. It could be defined through a parsing model that shares some
parameters with T1’s model. Since syntactic parsing is costly, we use simpler syntactic
prediction problems (discussed below) that do not produce whole trees.

As with multitask learning in general, we do not assume that the same data are an-
notated with outputs for T1 and T2. In this work, T2 is defined using phrase-structure
syntactic annotations from OntoNotes 5.0 (Weischedel et al., 2013; Pradhan et al., 2013).
We experiment with two settings: one where the corpus for T2 does not overlap with
the training datasets for T1 (frame-SRL) and the second where there is a complete over-
lap (coreference). This is a major advantage of our approach: it does not require any
assumptions about or specification of the relationship between T1 and T2 output.

4.2 Related Work

We briefly contrast the syntactic scaffold with existing alternatives. For a more detailed
discussion, see Chapter 2.

Pipelines. In a typical pipeline, T1 and T2 are separately trained, with the output of
T2 used to define the inputs to T1 (Wolpert, 1992). Using syntax as T2 in a pipeline is

39

https://github.com/swabhs/scaffolding


perhaps the most common approach for semantic structure prediction (Toutanova et al.,
2008; Yang and Mitchell, 2017; Wiseman et al., 2016).4 However, pipelines introduce
the problem of cascading errors (T2’s mistakes affect the performance, and perhaps the
training, of T1; He et al., 2013). To date, remedies to cascading errors are so computa-
tionally expensive as to be impractical (e.g., Finkel et al., 2006). A syntactic scaffold is
quite different from a pipeline since the output of T2 is never explicitly used.

Latent variables. Another solution is to treat the output of T2 as a (perhaps structured)
latent variable. This approach obviates the need of supervision for T2 and requires
marginalization (or some approximation to it) in order to reason about the outputs of
T1. Syntax as a latent variable for semantics was explored by Zettlemoyer and Collins
(2005) and Naradowsky et al. (2012). Apart from avoiding marginalization, the syntactic
scaffold offers a way to use auxiliary syntactically-annotated data as direct supervision
for T2, and it need not overlap the T1 training data.

Joint learning of syntax and semantics. The motivation behind joint learning of syn-
tactic and semantic representations is that any one task is helpful in predicting the other
(Lluı́s and Màrquez, 2008; Lluı́s et al., 2013; Henderson et al., 2013; Swayamdipta et al.,
2016). This typically requires joint prediction of the outputs of T1 and T2, which tends
to be computationally expensive at both training and test time.

Part of speech scaffolds. Similar to our work, there have been multitask models that
use part-of-speech tagging as T2, with transition-based dependency parsing (Zhang and
Weiss, 2016) and CCG supertagging (Søgaard and Goldberg, 2016) as T1. Both of the
above approaches assumed parallel input data and used both tasks as supervision. No-
tably, we simplify our T2, throwing away the structured aspects of syntactic parsing,
whereas part-of-speech tagging has very little structure to begin with. While their ap-
proach results in improved token-level representations learned via supervision from
POS tags, these must still be composed to obtain span representations. Instead, our
approach learns span-level representations from phrase-type supervision directly, for
semantic tasks. Additionally, these methods explore architectural variations in RNN
layers for including supervision, whereas we focus on incorporating supervision with
minimal changes to the baseline architecture. To the best of our knowledge, such sim-
plified syntactic scaffolds have not been tried before.

Word embeddings. Our definition of a scaffold task almost includes stand-alone meth-
ods for estimating word embeddings (Mikolov et al., 2013; Pennington et al., 2014; Pe-

4There has been some recent work on SRL which completely forgoes syntactic processing (Zhou and
Xu, 2015), however it has been shown that incorporating syntactic information still remains useful (He
et al., 2017).
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ters et al., 2018a). After training word embeddings, the tasks implied by models like
the skip-gram or ELMo’s language model become irrelevant to the downstream use of
the embeddings. A noteworthy difference is that, rather than pre-training, a scaffold is
integrated directly into the training of T1 through a multitask objective.

Multitask learning. Neural architectures have often yielded performance gains when
trained for multiple tasks together (Collobert et al., 2011; Luong et al., 2015; Chen et al.,
2017; Hashimoto et al., 2017). In particular, performance of semantic role labeling tasks
improves when done jointly with other semantic tasks (FitzGerald et al., 2015; Peng et al.,
2017, 2018a). Contemporaneously with this work, Hershcovich et al. (2018) proposed a
multitask learning setting for universal syntactic dependencies and UCCA semantics
(Abend and Rappoport, 2013). Syntactic scaffolds focus on a primary semantic task,
treating syntax as an auxillary, eventually forgettable prediction task.

4.3 Syntactic Scaffold Model

We assume two sources of supervision: a corpus Dpr with instances x annotated for
the primary task’s outputs y (semantic role labeling or coreference resolution), and a
treebank Dsc with sentences x, each with a phrase-structure tree z. Each task has an
associated loss, and we seek to minimize the interpolation of task losses,∑

(x,y)∈Dpr

Lpr(x,y) + δ
∑

(x,z)∈Dsc

Lsc(x, z)

with respect to parameters, which are partially shared, where δ is a tunable hyperpa-
rameter.

In the rest of this section, we describe the scaffold task. The primary tasks are defined
in Sections 4.4 and 4.5.

Each input is a sequence of tokens, x = 〈x1, x2, . . . , xn〉, for some n. We refer to a span
of contiguous tokens in the sentence as xi:j = 〈xi, xi+1, . . . , xj〉, for any 1 6 i 6 j 6 n. In
our experiments we consider only spans up to a maximum lengthD, resulting inO(nD)
spans.

Supervision comes from a phrase-syntactic tree z for the sentence, comprising a syn-
tactic category zi:j ∈ C for every span xi:j in x (many spans are given a null label). We
experiment with different sets of labels C (§4.3.1).

In our model, every span xi:j is represented by an embedding vector vi:j (see details
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in §4.4.3). A distribution over the category assigned to zi:j is derived from vi:j :

p(zi:j = c | xi:j) = softmax
c

wc · vi:j

where wc is a parameter vector associated with category c. We sum the log loss terms
for all the spans in a sentence to give the loss for the sentence:

Lsc(x, z) = −
∑

16i6j6n
j−i6D

log p(zi:j | xi:j).

4.3.1 Labels for the Syntactic Scaffold Task

Different kinds of syntactic labels can be used for learning syntactically-aware span rep-
resentations:

• Constituent identity: C = {0, 1}; is a span a constituent, or not?
• Non-terminal: c is the phrase type of a span, including a null for non-constituents.
• Non-terminal and parent: c is the phrase type of a span, composed with the phrase

type of its immediate ancestor. null is used for non-constituents, and for empty
ancestors.

• Common non-terminals: Since a majority of semantic arguments and entity men-
tions are labeled with a small number of categories,5 we experiment with a three-
way classification among (i) noun phrase (or prepositional phrase, for frame SRL);
(ii) any other category; and (iii) null.

In Figure 4.1, for the span “encouraging them”, the constituent identity scaffold label
is 1, the non-terminal label is VP|S, the non-terminal and parent label is VP|S+par=PP, and
the common non-terminals label is set to OTHER.

4.4 Semantic Role Labeling

We contribute a new SRL model which contributes a strong baseline for experiments
with syntactic scaffolds. The performance of this baseline itself is competitive with state-
of-the-art methods (§5.4).

FrameNet. In the FrameNet lexicon (Baker et al., 1998), a frame represents a type of
event, situation, or relationship, and is associated with a set of semantic roles, or argu-

5In the Ontonotes corpus, which includes both syntactic and semantic annotations, 44% of semantic
arguments are noun phrases and 13% are prepositional phrases.

42



ments, called frame elements. A frame can be evoked by a word or phrase in a sentence,
called a target. Each frame element of an evoked frame can then be realized in the sen-
tence as a sentential span, called an argument (or it can be unrealized). Arguments for a
given frame do not overlap. Frame elements can be classified as either core to the mean-
ing of the frame or not.

PropBank. PropBank similarly disambiguates predicates and identifies argument spans.
Targets are disambiguated to lexically specific senses rather than shared frames, and a set
of generic roles is used for all targets, reducing the argument label space by a factor of
17. Most importantly, the arguments were annotated on top of syntactic constituents,
directly coupling syntax and semantics. A detailed example for both formalisms is pro-
vided in Figure 4.1.

Semantic structure prediction is the task of identifying targets, labeling their frames
or senses, and labeling all their argument spans in a sentence. Here we assume gold
targets and frames, and consider only the SRL task.

Formally, a single input instance for argument identification consists of: an n-word
sentence x = 〈x1, x2, . . . , xn〉, a single target span t = 〈tstart, tend〉, and its evoked frame,
or sense, f . The argument labeling task is to produce a segmentation of the sentence:
s = 〈s1, s2, . . . , sm〉 for each input x. A segment s = 〈i, j, yi:j〉 corresponds to a labeled
span of the sentence, where the label yi:j ∈ Yf∪{null} is either a role that the span fills, or
null if the span does not fill any role. In the case of PropBank, Yf consists of all possible
roles. The segmentation is constrained so that argument spans cover the sentence and
do not overlap (ik+1 = 1 + jk for sk; i1 = 1; jm = n). Segments of length 1 such that
i = j are allowed. A separate segmentation is predicted for each target annotation in a
sentence.

4.4.1 Semi-CRF Model

In order to model the non-overlapping arguments of a given frame, we use a semi-
Markov conditional random field (semi-CRF; Sarawagi et al., 2004). Semi-CRFs define a
conditional distribution over labeled segmentations of an input sequence, and are glob-
ally normalized. A single frame’s arguments can be neatly encoded as a labeled segmen-
tation by giving the spans in between arguments a reserved null label. Semi-Markov
models are more powerful than BIO tagging schemes, which have been used success-
fully for PropBank SRL (Collobert et al., 2011; Zhou and Xu, 2015, inter alia). The semi-
Markov assumption allows scoring variable-length segments, rather than fixed-length
label n-grams as under an (n − 1)-order Markov assumption, while retaining exact in-
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ference and a linear runtime. 6

Computing the marginal likelihood with a semi-CRF can be done using dynamic
programming inO(n2) time (§4.4.2). By filtering out segments longer thanD tokens, this
can be reduced to O(nD), and we use D = 15, pruning less than 5% of gold-standard
arguments from the train and development data.

Given an input x, a semi-CRF defines a conditional distribution p(s | x). Every
segment s = 〈i, j, yi:j〉 is given a real-valued score,

ψ(〈i, j, yi:j = r〉,xi:j) =wr · vi:j.

where vi:j is an embedding of the span (§4.4.3) and wr is a parameter corresponding to
its label. The score of the entire segmentation s is the sum of the scores of its segments:

Ψ(x, s) =
m∑
k=1

ψ(sk,xik:jk).

These scores are exponentiated and normalized to define the probability distribution.
The sum-product variant of the semi-Markov dynamic programming algorithm is used
to calculate the normalization term (required during learning). At test time, the max-
product variant returns the most probable segmentation,

ŝ = arg max
s

Ψ(s,x).

The parameters of the semi-CRF are learned to maximize a criterion related to the condi-
tional log-likelihood of the gold-standard segments in the training corpus (§4.4.2). The
learner evaluates and adjusts segment scores ψ(sk,x) for every span in the sentence,
which in turn involves learning embedded representations for all spans (§4.4.3). The
gradients of the objective with respect to the parameters could be computed using the
forward-backward algorithm, but we rely on automatic differentiation of the dynamic
program.

4.4.2 Softmax-Margin Objective

Typically CRF and semi-CRF models are trained to maximize a conditional log-likelihood
objective. In early experiments, we found that incorporating a structured cost was bene-
ficial; we do so by using a softmax-margin training objective (Gimpel and Smith, 2010),

6Relatedly, Täckström et al. (2015) introduced a dynamic program that allows direct modeling of
variable-length segments as well as enforcing constraints such as certain roles being filled at most once.
Its runtime is linear in the sentence length, but exponential in the number of roles. The semi-Markov
CRF’s inference algorithm is a relaxed special case of their method, with fewer constraints and without
the exponential runtime constant.

44



a “cost-aware” variant of log-likelihood:

Lpr =−
∑

(x,s∗)∈Dpr

log
exp Ψ(s∗,x)

Z(x)
,

Z(x, s∗) =
∑
s

exp {Ψ(s,x) + cost(s, s∗)}.

We design the cost function so that it factors by predicted span, in the same way Ψ does:

cost(s, s∗) =
∑
s∈s

cost(s, s∗) =
∑
s∈s

I(s 6∈ s∗). (4.1)

The softmax-margin criterion, like log-likelihood, is globally normalized over all of the
exponentially many possible labeled segmentations. The following zeroth-order semi-
Markov dynamic program (Sarawagi et al., 2004) efficiently computes the new partition
function:

αj =
∑

s=〈i,j,yi:j〉
j−i6D

αi−1 exp{Ψ(s,x) + cost(s, s∗)},

where Z = αn, under the base case α0 = 1. Overall, the run time complexity is given
by O(nDL) where n is the length of the sentence, D is the maximum argument width
considered and L the maximum number of labels for arguments.

The prediction under the model can be calculated using a similar dynamic program
with the following recurrence where γ0 = 1:

γj = max
s=〈i,j,yi:j〉
j−i6D

γi−1 exp Ψ(s,x).

The decoding problem uses the Viterbi algorithm which replaces the sums in the marginal-
ization algorithm in Equation 5.1 with maximization operators and therefore runs in the
same time. At test time, since the cost is unknown (since the gold standard is not known),
we do not incorporate it in the maximization function.

Our model formulation enforces that arguments do not overlap. We do not enforce
any other SRL constraints, such as non-repetition of core frame elements (Das et al.,
2012).

4.4.3 Input Span Representation

This section describes the neural architecture used to obtain the span embedding, vi:j
corresponding to a span xi:j and the target in consideration, t = 〈tstart, tend〉. For the scaf-
fold task, since the syntactic treebank does not contain annotations for semantic targets,

45



we use the last verb in the sentence as a placeholder target, wherever target features are
used. If there are no verbs, we simply use the first token in the sentence as a placeholder
target. The parameters used to learn v are shared between the tasks.

First, we construct an embedding for the span using

• hi and hj : contextualized embeddings for the words at the span boundary (§4.4.3),
• ui:j : a span summary that pools over the contents of the span (§4.4.3), and
• ai:j : and a hand-engineered feature vector for the span (§4.4.3).

This embedding is then fed into a feed-forward layer to compute the span represen-
tation, vi:j .

Contextualized Token Embeddings

To obtain contextualized embeddings of each token in the input sequence, we run a
bidirectional LSTM (Graves, 2012) with ` layers over the full input sequence. To indicate
which token is a predicate, a linearly transformed one-hot embedding, v is used, follow-
ing He et al. (2017). The input vector representing the token at position q in the sentence
is the concatenation of a fixed pretrained embedding xq and vq. When given as input to
the bidirectional LSTM, this yields a hidden state vector hq representing the qth token
in the context of the sentence.

Span Summary

Tokens within a span might convey different amount of information necessary to label
the span as a semantic argument. Following Lee et al. (2017), we use an attention mech-
anism (Bahdanau et al., 2014) to summarize each span. Each contextualized token in the
span is passed through a feed-forward network to obtain a weight, normalized to give

σk =softmax
i6k6j

whead · hk,

where whead is a learned parameter. The weights σ are then used to obtain a vector that
summarizes the span,

ui:j =
∑

i6k6j;j−i<D σk · hk.

Span Features

Lastly we use the following three features for each span:
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• width of the span in tokens (Das et al., 2014)
• distance (in tokens) of the span from the target (Täckström et al., 2015)
• position of the span with respect to the target (before, after, overlap) (Täckström et al.,

2015)

Each of these features is encoded as a one-hot-embedding and then linearly transformed
to yield a feature vector, ai:j .

4.5 Coreference Resolution

Coreference resolution is the task of determining clusters of mentions that refer to the
same entity. Formally, the input is a document x = 〈x1, x2, . . . , xn〉 consisting of nwords.
The goal is to predict a set of clusters c = 〈c1, c2, . . .〉, where each cluster c = 〈s1, s2, . . .〉
is a set of spans and each span s = 〈i, j〉 is a pair of indices such that 1 6 i 6 j 6 n.

As a baseline, we use the model of Lee et al. (2017), which we describe briefly in
this section. This model decomposes the prediction of coreference clusters into a se-
ries of span classification decisions. Every span s predicts an antecedent ws ∈ Y(s) =
{null, s1, s2, . . . sm}. Labels s1 to sm indicate a coreference link between s and one of
the m spans that precede it, and null indicates that s does not link to anything, either
because it is not a mention or it is in a singleton cluster. The predicted clustering of the
spans can be recovered by aggregating the predicted links.

Analogous to the frame-SRL model (§4.4), every span s is represented by an em-
bedding vs, which is central to the model. For each span s and a potential antecedent
a ∈ Y(s), pairwise coreference scores Ψ(vs,va, φ(s, a)) are computed via feedforward
networks with the span embeddings as input. φ(s, a) are pairwise discrete features en-
coding the distance between span s and span a and metadata, such as the genre and
speaker information. We refer the reader to Lee et al. (2017) for the details of the scoring
function, since the focus of this work is on improving the span embeddings.

The scores from Ψ are normalized over the possible antecedents Y(s) of each span to
induce a probability distribution for every span:

p(ws = a) =
exp(Ψ(vs,va, φ(s, a)))∑

a′∈Y(s) exp(Ψ(vs,va′ , φ(s, a′)))

Learning involves minimizing the negative log-likelihood marginalized over the pos-
sibly correct antecedents:

L = −
∑
s∈D

log
∑

a∗∈G(s)∩Y(s)

p(ws = a∗)
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where D is the set of spans in the training dataset, and G(s) indicates the gold cluster of
s if it belongs to one and {null} otherwise.

To operate under reasonable computational requirements, inference under this model
requires a two-stage beam search, which reduces the number of span pairs considered.
We refer the reader to Lee et al. (2017) for details.

Input span representation. The input span embedding, vs for coreference resolution
and its syntactic scaffold follow the definition used in §4.4.3, with the key difference of
using no target features. Since there is a complete overlap of input sentences between
Dsc and Dpr as the coreference annotations are also from OntoNotes (Pradhan et al.),
we reuse the v for the scaffold task. Additionally, instead of the entire document, each
sentence in it is independently given as input to the bidirectional LSTMs.

4.6 Experiments and Results

We evaluate our models on the test set of FrameNet 1.5 for frame SRL and on the test set
of OntoNotes for both PropBank SRL and coreference. For the syntactic scaffold in each
case, we use syntactic annotations from OntoNotes 5.0 (Weischedel et al., 2013; Pradhan
et al., 2013).7

Experimental Settings. We used GloVe embeddings (Pennington et al., 2014) for to-
kens in the vocabulary, with out of vocabulary words being initialized randomly. For
frame-SRL, 300 dimensional embeddings were used, and kept fixed during training. For
PropBank SRL, we used 100 dimensional embeddings which were updated during train-
ing. A 100-dimensional embedding is learned for indicating target positions, following
Zhou and Xu (2015). Bidirectional LSTMs with highway connections (Srivastava et al.,
2014) between 6 layers are used, each layer containing 300-dimensional hidden states.
A dropout of 0.1 is applied to the LSTMs. The feed-forward networks are of dimension
150 and of depth 2, with rectified linear units (Nair and Hinton, 2010). A dropout of 0.2
is applied to the feed-forward networks.

We limit the maximum length of spans to D = 15 in FrameNet, resulting in oracle
recall of 95% on the development set, and to 13 in Propbank, resulting in an oracle recall
of 96%. An identical maximum span length is used for the scaffold task.

For the SRL scaffolds, we randomly sample instances from OntoNotes to match the
size of the SRL data, and alternate between training an SRL batch and a scaffold batch. In

7http://cemantix.org/data/ontonotes.html
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FrameNet, this amounts to downsampling OntoNotes. For PropBank SRL, this amounts
to upsampling syntactic annotations from OntoNotes, since a sentence has a single syn-
tactic tree, but could have multiple target annotations, each of which is a training in-
stance.

The mixing ratio, δ is set to 1.0 (tuned across {0.1, 0.5, 1.0, 1.5}) for frame and Prop-
Bank SRL. We use Adam (Kingma and Ba, 2014) for optimization, at a learning rate of
0.001, and a minibatch of size 32. Our dynamic program formulation for loss computa-
tion and inference under the semi-CRF is also batched. To prevent exploding gradients,
the 2-norm of the gradient is clipped to 1 before a gradient update (Graves, 2013). All
models are trained for a maximum of 20 epochs, and stopped early based on dev F1.

For the coreference model, we use the same hyperparameters and experimental set-
tings from Lee et al. (2017). The only new hyperparameter needed for scaffolding is the
mixing ratio, δ, which we set to 0.1 based on performance on the validation set.

We extended the AllenNLP library,8 which is built on top of PyTorch.9 Each experi-
ment was run on a single TitanX GPU.

4.6.1 Frame SRL

Table 4.1 shows the performance of all the scaffold models on frame SRL with respect
to prior work and a semi-CRF baseline (§4.4.1) without a syntactic scaffold. We follow
the official evaluation from the SemEval shared task for frame-semantic parsing (Baker
et al., 2007).

Prior work for frame SRL has relied on predicted syntactic trees, in two different
ways: by using syntax-based rules to prune out spans of text that are unlikely to con-
tain any frame’s argument; and by using syntactic features in their statistical model (Das
et al., 2014; Täckström et al., 2015; FitzGerald et al., 2015; Kshirsagar et al., 2015). Syn-
tactic parsing comes at a computational cost, though, and syntactic filters are known
to be too strict. Indeed, Täckström et al. (2015) found that filtering heuristics based on
predicted dependencies bounded recall below 72.6%.

The best published results on FrameNet 1.5 are due to Yang and Mitchell (2017). In
their sequential model (seq), they treat argument identification as a sequence-labeling
problem using a deep bidirectional LSTM with a CRF layer. In their relational model
(Rel), they treat the same problem as a span classification problem. Finally, they intro-
duce an ensemble to integerate both models, and use an integer linear program for infer-
ence satisfying SRL constraints. Though their model does not do any syntactic pruning,

8http://allennlp.org/
9http://pytorch.org/
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it does use syntactic features for argument identification and labeling.10

Notably, all prior systems for frame SRL listed in Table 4.1 use a pipeline of syntax
and semantics. Our semi-CRF baseline outperforms all prior work, without any syntax.
This highlights the benefits of modeling spans and of global normalization.

Turning to scaffolds, even the most coarse-grained constituent identity scaffold im-
proves the performance of our syntax-agnostic baseline. The nonterminal and nonter-
minal and parent scaffolds, which use more detailed syntactic representations, improve
over this. The greatest improvements come from the scaffold model predicting com-
mon nonterminal labels (NP and PP, which are the most common syntactic categories of
semantic arguments, vs. others): 3.6% absolute improvement in F1 measure over prior
work.

Contemporaneously with this work, Peng et al. (2018a) proposed a system for joint
frame-semantic and semantic dependency parsing. They report results for joint frame
and argument identification, and hence cannot be directly compared in Table 4.1. We
evaluated their output for argument identification only; our semi-CRF baseline model
exceeds their performance by 1 F1, and our common nonterminal scaffold by 3.1 F1.11

Model Prec. Rec. F1

Kshirsagar et al. (2015) 66.0 60.4 63.1
Yang and Mitchell (2017) (Rel) 71.8 57.7 64.0
Yang and Mitchell (2017) (Seq) 63.4 66.4 64.9
†Yang and Mitchell (2017) (All) 70.2 60.2 65.5
Semi-CRF baseline 67.8 66.2 67.0

+ constituent identity 68.1 67.4 67.7
+ nonterminal and parent 68.8 68.2 68.5
+ nonterminal 69.4 68.0 68.7
+ common nonterminals 69.2 69.0 69.1

Table 4.1: Frame SRL results on the test set of FrameNet 1.5., using gold frames. Ensem-
bles are denoted by †.

10Yang and Mitchell (2017) also evaluated on the full frame-semantic parsing task, which includes
frame-SRL as well as identifying frames. Since our frame SRL performance improves over theirs, we
expect that incorporation into a full system (e.g., using their frame identification module) would lead to
overall benefits as well; this experiment is left to future work.

11This result is not reported in Table 4.1 since Peng et al. (2018a) used a preprocessing which renders
the test set slightly larger — the difference we report is calculated using their test set.
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Model Prec. Rec. F1

Zhou and Xu (2015) - - 81.3
He et al. (2017) 81.7 81.6 81.7
He et al. (2018a) 83.9 73.7 82.1
Tan et al. (2018) 81.9 83.6 82.7
Semi-CRF baseline 84.8 81.2 83.0

+ common nonterminals 85.1 82.6 83.8

Table 4.2: PropBank span SRL results, using gold predicates, on CoNLL 2012 test. For
fair comparison, we show only non-ensembled models.

Model MUC B3 CEAFφ4 Avg. F1

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

+ common nonterminals 78.4 74.3 76.3 68.7 62.9 65.7 62.9 60.2 61.5 67.8

Table 4.3: Coreference resolution results on the test set on the English CoNLL-2012
shared task. The average F1 of MUC, B3, and CEAFφ4 is the main evaluation metric.
For fair comparison, we show only non-ensembled models.

4.6.2 PropBank SRL

We use the OntoNotes data from the CoNLL shared task in 2012 (Pradhan et al., 2013)
for Propbank SRL. Table 4.2 reports results using gold predicates.

Recent competitive systems for PropBank SRL follow the approach of Zhou and Xu
(2015), employing deep architectures, and forgoing the use of any syntax. He et al. (2017)
improve on those results, and in analysis experiments, show that constraints derived
using syntax may further improve performance. Tan et al. (2018) employ a similar ap-
proach but use feed-forward networks with self-attention. He et al. (2018a) use a span-
based classification to jointly identify and label argument spans.

Our syntax-agnostic semi-CRF baseline model improves on prior work (excluding
ELMo), showing again the value of global normalization in semantic structure prediction.
We obtain further improvement of 0.8 absolute F1 with the best syntactic scaffold from
the frame SRL task. This indicates that a syntactic inductive bias is beneficial even when
using sophisticated neural architectures.
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He et al. (2018a) also provide a setup where initialization was done with deep con-
textualized embeddings, ELMo (Peters et al., 2018a), resulting in 85.5 F1 on the OntoNotes
test set. The improvements from ELMo are methodologically orthogonal to syntactic scaf-
folds.

Since the datasets for learning PropBank semantics and syntactic scaffolds completely
overlap, the performance improvement cannot be attributed to a larger training corpus
(or, by extension, a larger vocabulary), though that might be a factor for frame SRL.

A syntactic scaffold can match the performance of a pipeline containing carefully
extracted syntactic features for semantic prediction (Swayamdipta et al., 2017). This,
along with other recent approaches (He et al., 2017, 2018b) show that syntax remains
useful, even with strong neural models for SRL.

4.6.3 Coreference Resolution

We report the results on four standard scores from the CoNLL evaluation: MUC, B3

and CEAFφ4 , and their average F1 in Table 4.3. Prior competitive coreference resolution
systems (Wiseman et al., 2016; Clark and Manning, 2016b,a) all incorporate synctactic
information in a pipeline, using features and rules for mention proposals from predicted
syntax.

Our baseline is the model from Lee et al. (2017), described in §4.5. Similar to the
baseline model for frame SRL, and in contrast with prior work, this model does not use
any syntax.

We experiment with the best syntactic scaffold from the frame SRL task. We used
NP, OTHER, and null as the labels for the common nonterminals scaffold here, since core-
ferring mentions are rarely prepositional phrases. The syntactic scaffold outperforms
the baseline by 0.6 absolute F1. Contemporaneously, Lee et al. (2018) proposed a model
which takes in account higher order inference and more aggressive pruning, as well as
initialization with ELMo embeddings, resulting in 73.0 average F1. All the above are or-
thogonal to our approach, and could be incorporated to potentially yield higher gains.

4.7 Discussion

To investigate the performance of the syntactic scaffold, we focus on the frame SRL re-
sults, where we observed the greatest improvement with respect to a non-syntactic base-
line.

We consider a breakdown of the performance by the syntactic phrase types of the
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Figure 4.2: Performance breakdown by argument’s phrase category, sorted left to right
by frequency, for top ten phrase categories.

arguments, provided in FrameNet12 in Figure 4.2. Not surprisingly, we observe large
improvements in the common nonterminals used (NP and PP). However, the phrase type
annotations in FrameNet do not correspond exactly to the OntoNotes phrase categories.
For instance, FrameNet annotates non-maximal (A) and standard adjective phrases (AJP),
while OntoNotes annotations for noun-phrases are flat, ignore the underlying adjective
phrases. This explains why the syntax-agnostic baseline is able to recover the former
while the scaffold is not.

Similarly, for frequent frame elements, scaffolding improves performance across the
board, as shown in Fig. 4.3. The largest improvements come for Theme and Goal, which
are predominantly realized as noun phrases and prepositional phrases. The scaffold also
accounts for improvements in prediction of longer arguments, as is evidenced in Fig. 4.4
as well as arguments further away from the predicate, as in Fig. 4.5.

12We used FrameNet syntactic phrase annotations for analysis only, and not in our models, since they
are annotated only for the gold arguments.
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Figure 4.3: Performance breakdown by top ten frame element types, sorted left to right
by frequency.

4.7.1 Effect of Contextualized Word Embeddings

The results from (§4.6.1) raise the question of how much improvement in performance
could be attributed to using representations trained on more data. One excellent source
of such representations are contextualized embeddings for word tokens obtained as a
by product of training large language models (Peters et al., 2018a; Radford et al., 2018;
Howard and Ruder, 2018). We initialize our semi-CRF model with ELMo representa-
tions Peters et al. (2018a) to study this, and report results in Fig. 4.6. As expected, both
the baseline and the scaffold models improve with ELMo embeddings, as these can cap-
ture much richer contextual information than bidirectional LSTMs trained on the target
task alone. However, there still is a relative gain of 0.7 F1 points with the noun and prepo-
sitional phrase scaffold, compared to the baseline, demonstrating that the improvements
from ELMo are orthogonal. A similar finding was reported by Strubell et al. (2018).

4.8 Conclusion

We introduced syntactic scaffolds, a multitask learning approach to incorporate syntac-
tic bias into semantic processing tasks. Unlike pipelines and approaches which jointly
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Figure 4.4: Performance of models on FN test by width of argument.

model syntax and semantics, no explicit syntactic processing is required at runtime. Our
method improves the performance of competitive baselines for semantic role labeling on
both FrameNet and PropBank, and for coreference resolution. While our focus was on
span-based tasks, syntactic scaffolds could be applied in other settings (e.g., dependency
and graph representations).

Semantic Scaffolds Moreover, scaffolds need not be syntactic; we can imagine, for
example, semantic scaffolds being used to improve NLP applications with limited an-
notated data. Other kinds of span-based predictions, such as those needed in extrac-
tive question answering such as SQuAD (Rajpurkar et al., 2016) also frequently coincide
with semantic arguments. Another direct application of span-based semantic scaffolds
is given by causal structure learning, where sentences are divided into cause and effect
subsequences, joined by causal relations (Dunietz et al., 2017). Such applications stand to
still benefit from structural guidance, even as strong contextualized representations are
employed; the advantages offered by either are orthogonal. It remains an open empirical
question to determine the relative merits of different kinds of scaffolds and multi-task
learners, and how they can be most productively combined.

One perspective on syntactic scaffolds is to view them as syntactic pretraining tasks.13

Access to a large treebank would make it possible to pretrain representations with syn-
tax. However, such large resources containing gold annotations are unavailable, but we
could automatically predict syntactic parses on large datasets and use them for pretrain-

13On preliminary experiments we saw that training the scaffold model first, and then training the pri-
mary task model, did not offer much performance or run time benefit over training both tasks simultane-
ously. We hypothesize this might be because the primary and scaffold datasets are similarly sized.
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Figure 4.5: Performance of models on FN test by distance of argument from target.

ing, extending approaches suggested by Peters et al. (2018a). In the next chapter, we will
see a method based on this idea.
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Chapter 5

Stage-Wise Pretraining with Shallow
Syntax

In this chapter, we consider the role of syntactic inductive biases in language modeling.
Specifically, we are interested in language modeling from the perspective of producing
contextualized representations of word tokens (hereafter, cwr). These are dense, contin-
uous vectors for word tokens in context1 produced as a side-effect of language model esti-
mation at a large scale (Dai and Le, 2015; Peters et al., 2018a; Radford et al., 2018; Howard
and Ruder, 2018).2 Language modeling, hence, serves as pretraining task, to obtain cwr,
followed by the downstream task-specific training. As a result of being trained on large
amounts of data, cwr such as ELMo (Peters et al., 2018a), OpenAI GPT (Radford et al.,
2018) and BERT (Devlin et al., 2018) have been instrumental in improving performance
of several downstream tasks, such as text classification, parsing and question answering.
The larger the exposure to data, the more powerful the cwr are, as this allows them to
model word tokens in a variety of contexts.

However, the large-scale requirement also urges the language models to be efficient,
by making simplistic assumptions about linguistic structure. As a result, language mod-
eling pretraining to produce cwr tends to treat language as sequential. Given that lan-
guage is inherently hierarchical (Chapter 1), sequential biases are inappropriate for learn-
ing generalizations of language.3 Generalizations hinge on access to the syntactic struc-

1Independent occurrences of the same word token may not correspond to the same cwr, since they
might be in different contexts; cwr are therefore functions of the entire input sentence. In contrast, word
vectors (Mikolov et al., 2013; Pennington et al., 2014) correspond to word types; even polysemous words
(regardless of context) get the same word vector.

2Other tasks such machine translation (McCann et al., 2017) and sequence labeling (Clark et al., 2018)
have also been used to obtain contextualized representations. However, the scale of supervision for these
tasks is limited, hence semi-supervised methods are employed to match the performance of cwr from
language modeling.

3Attention mechanisms (Bahdanau et al., 2014) have been employed in language modeling architec-
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ture of language—access to this structure would enable the resulting cwr to be robust
enough to handle new, unseen constructions. Syntactic language models (Dyer et al.,
2016) have been well studied; see §5.1.2 for a detailed discussion.

On the other hand, despite having just a sequential bias, many recent studies have
begun showing that some linguistic knowledge is implicitly encoded in cwr (Zhang and
Bowman, 2018; Blevins et al., 2018). Goldberg (2019) found that BERT embeddings (De-
vlin et al., 2018) capture a surprisingly large amount of syntax. Tenney et al. (2019) and
Liu et al. (2019) find that while cwr capture syntactic phenomena well, the same cannot
be said for some semantic phenomena. Sequentially-biased language models seem to
contain “enough” information for the downstream tasks. 4

As we saw in previous chapters, downstream task performance may still benefit from
explicitly injecting a syntactic inductive bias into model architectures. Kuncoro et al.
(2018) argue for explicitly integrating syntactic inductive biases into models for increased
awareness of syntactic phenomena such as number agreement. Strubell et al. (2018)
show explicit syntactic integration is useful for semantic role labeling. However, high
quality linguistic structure annotation at a large scale remains expensive—a trade-off
needs to be made between the quality of the annotations and the computational expense
of obtaining them.

Shallow syntactic structures (Abney, 1991; also called chunk sequences) offer a viable
middle ground, by providing a flat, non-hierarchical approximation to phrase-syntactic
trees (see Fig. 5.1 for an example). These structures can be obtained efficiently, and with
high accuracy, using sequence labelers. Compared to phrase-syntactic parsers, chunkers
can be extremely efficient.5 In this chapter we consider shallow syntax to be a proxy for
linguistic structure. While shallow syntactic chunks are almost as ubiquitous as part-of-
speech tags in standard NLP pipelines (Jurafsky and Martin, 2009), their relative merits
in the presence of cwrs remain unclear.

We investigate the role of these structures using two methods. First, we enhance
the ELMo architecture (Peters et al., 2018b) to allow pretraining on predicted shallow
syntactic parses, instead of just raw text, so that contextual embeddings make use of
shallow syntactic context (§5.2). We pose the question of whether pretraining with syn-
tax is useful for learning contextualized representations. Since a traditional language
model pretraining objective does not consider chunked text, we propose a new objective

tures (Vaswani et al., 2017). While these may capture some longer range dependencies between words
in a sentence, they do not have the capability of capturing the richness of linguistic structure, because
of their limitation of considering word-word or bilexical relationships only. Moreover, without explicit
knowledge of syntactic structure, they might only capture co-occurrence relationships between words.

4Sequential RNNs are theoretically powerful enough to recognize context-free languages (Siegelmann
and Sontag, 1995).

5Chunking with CRFs can be executed in O(nl2) time, where n is the length of a sentence, and l is the
number of labels in the tagging task. Constituency parsing takes O(n3G) time, where G is the size of the
grammar.
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Figure 5.1: A sentence from WSJ Section 01 (Marcus et al., 1993) with its phrase-structure
parse (shown above) and shallow syntactic (chunk) annotations, shown below. Follow-
ing standard schemata, terminal nodes in the tree correspond to words in the sentence
and preterminals to part-of-speech tags. Shallow syntactic annotations are derived from
the full phrase-syntactic tree by a deterministic process (Tjong Kim Sang and Buchholz,
2000) to yield labeled sequences for the sentence. Unlike syntax, the structure is non-
recursive and contains no overlapping tags. As a result of the deterministic process,
some internal nodes (such as S) do not feature as shallow syntactic labels. Moreover,
some spans, such as the single token span containing “and” get no tags. Shallow syn-
tactic parsing, or chunking, is typically treated as a sequence labeling problem with a
BIOUL encoding. The spans without tags get an O (outside) tag.
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for estimating a model on linguistically annotated text, rather than raw text, and measure
the effects on downstream tasks. For enabling efficient training, we initialize this model
with pretrained embeddings from a bidirectional language model. Hence, we train on
two objectives—a language modeling objective, followed by a data likelihood objective
which conditions on a structured history; our approach involves a stage-wise pretrain-
ing. Our architecture is capable of consuming both word token representations as well as
shallow syntactic labels using a hierarchy of encoders. This encoder facilitates a shallow
syntactic inductive bias by producing an encoding which is structurally aware.

This also serves as an analysis method to determine whether syntactic pretraining is
necessary. The reasoning behind our analysis is as follows: suppose that a syntactically
endowed variant of cwr leads to improvements in accuracy of downstream consumer
tasks (relative to baseline cwr). We could then infer that whatever implicit represen-
tation the baseline learned was less informative than the annotations.6 Alternatively,
if there is no benefit, then the relevant signal from the annotations about the task was
already captured by baseline cwr.

Our second method involves classical addition of chunk features to cwr-infused ar-
chitectures for four different downstream tasks (§5.3). Shallow syntactic information
is obtained automatically using a highly accurate model (97% F1 on standard bench-
marks). In both settings, we observe only modest gains on three of the four downstream
tasks relative to ELMo-only baselines (§5.4). We consistently find both to perform equally
well, across four downstream tasks, including named entity recognition (coarse and fine-
grained), phrase-structure parsing, and sentiment classification.

Recent work has probed the knowledge encoded in cwrs and found they capture a
surprisingly large amount of syntax (Blevins et al., 2018; Liu et al., 2019; Tenney et al.,
2019). We further examine the contextual embeddings obtained from the enhanced ar-
chitecture and a shallow syntactic context, using black-box probes from Liu et al. (2019).
Results on ten linguistic probes from Liu et al. (2019) confirm that performance is neither
helped nor harmed by exposing the language model to explicit shallow syntax during
pretraining, contributing strong evidence that baseline ELMo is already implicitly aware
of shallow syntax. Our analysis indicates that our shallow-syntax-aware contextual em-
beddings do not transfer to linguistic tasks any more easily than ELMo embeddings
((§5.4.2)).

Overall, our experiments show while shallow syntax can be somewhat useful, ELMo-
style pretraining discovers representations which make additional awareness of shallow
syntax largely redundant. To summarize, the contributions in this chapter include:

• a general method for testing “knowledge” of cwr by training on annotated text (§5.2),
• strategies to make training large-scale models on annotated text feasible (§5.2.4),

6Levy and Goldberg (2014) observed gains from training non-contextual word embeddings from a
syntactic dependency context.
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and
• application of the method on four downstream tasks, as well as several probing

tasks (§5.4).

5.1 Background

We discuss some background on cwr (§5.1.1), the relationship between language mod-
eling and syntax (§5.1.2) and a brief discussion of shallow syntax (§5.1.3).

5.1.1 Language Models

Language models compute the probability of a piece of text x, given its document con-
text, or history. The probability of the entire document is given by

p(x) =p(x1, ...xT ) (5.1)

=
T∏
i=1

p(xi|x1..i−1)

=
T∏
i=1

p(xi | x<i) (5.2)

Equation 5.2 shows the application of chain rule, and results in the factorization of the
probability into components which estimate the probability of the subsequent word
given the prefix. As is evident from above, there is no need of external supervision,
hence language models are typically treated as unsupervised models of language. Per-
plexity, which measures how well the model predicts a sentence on a held-out test set is
computed as 2−

1
T
log p(x); lower perplexity indicates better a language model.

Most modern language models are based on neural architectures such as recurrent
neural nets (Mikolov et al., 2010), since these can score arbitrarily long histories, hence
capturing distant contextual information. The context, or history, is updated from left to
right in a sequential manner.7

p(xi|x1..i−1) =
T∏
i=1

exp(vxi · hi−1)∑
x∈V

exp(vx · hi−1)
(5.3)

7Bidirectional language models (Peters et al., 2018a) additionally update the future context by an ad-
ditional objective which estimates parameters as it moves through a document in a right to left fashion.
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Here, vx is the vector associated with a word x, and ht is the hidden state of the net-
work after being updated with the first t words. Tractability is ensured by the ability of
summarizing an entire history as a fixed-size representation, as we saw in Chapter 3.

Any sequence to sequence, encoder-decoder architecture can be used for language
modeling. Popular architectures involve the transformer (Vaswani et al., 2017) which
involves several feed-forward layers, followed by self-attention layers (Bahdanau et al.,
2014). Character-based (Ling et al., 2015; Kim et al., 2016) and sub-word level features
(Botha and Blunsom, 2014) are often used instead of words to capture morphological
features as well as account for unknown vocabulary items.

5.1.2 Syntactic Language Models

While language models provide a statistical model of language, syntax provides a blueprint
for the arrangement of words in a sentence—these two concepts are intimately related.
As a result, there has been a long history of syntactially structured language models
which estimate the joint probability of sentences and their underlying phrase-structure
trees (Jelinek and Lafferty, 1991; Chelba and Jelinek, 2000; Roark, 2001; Emami and Je-
linek, 2005; Dyer et al., 2016). The approaches of Roark (2001) and Dyer et al. (2016) in-
volve generative models for top-down parsing and language modeling, the former with
a grammar-based approach and the latter with a transition-based algorithm. In partic-
ular, Dyer et al. (2016) used a recurrent neural net architecture8 as well as an explicit
composition operator that represents completed constituents, serving as the syntactic
inductive bias. Chelba and Jelinek (2000) and Emami and Jelinek (2005) proposed ap-
proaches for bottom-up shift reduce phrase-structure parsing and language modeling,
primarily for speech recognition. While the above approaches model a richer linguistic
structure given by the full parse tree, they need access to phrase-syntactic trees, and as
a result of consuming the tree, can be expensive.

In contrast, hierarchical language models treat linguistic structure as latent (Chung
et al., 2017; Chan et al., 2016; Wang et al., 2017; Buckman and Neubig, 2018). Most of these
hierarchies correspond to text segmentations, as opposed to trees. Shen et al. (2018) show
that the latent structures actually correspond to syntactic trees. As all latent variable
approaches (§2.4), these can also be expensive to train. Most of these approaches involve
backpropagation through a discrete variable (indicating segment boundary), and hence
need to rely on approximate estimation techniques such as Gumbel softmax (Jang et al.,
2017).

8LSTMs (Hochreiter and Schmidhuber, 1997), to be exact.
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5.1.3 Shallow Syntax

Shallow syntax is a non-recursive simplification of phrase-syntactic trees, where the sen-
tence is segmented into a sequence of non-overlapping syntactic chunks. Fig. 5.2 shows
an example of a sentence with its phrase-syntactic parse as well as its shallow syntactic
(partial) parse. Every token in the sentence is associated with a single chunk label, while
it can be the descendant of several non-terminals in its tree. Tjong Kim Sang and Buch-
holz (2000) offered a rule-based transformation deriving non-overlapping chunks from
phrase-structure trees as found in the Penn Treebank (Marcus et al., 1993). The process to
find chunk boundaries involves finding the head of a constituent, including the span on
the left of the head till the constituent boundary, and ignoring the rest of the span to the
right. Since there are inconsistencies in the annotations of the Penn Treebank, there are
similar inconsistencies in chunk boundary annotation (Tjong Kim Sang and Buchholz,
2000; Jurafsky and Martin, 2009).

Base phrase chunking is a cheap sequence-model–based alternative to full syntactic
parsing. This task was addressed in the CoNLL 2000 shared task. The standard task
definition includes eleven chunk labels, as shown in Table 5.1.

Label Abbr. % Occurrence

Noun Phrase NP 51.7
Verb Phrase VP 20.0
Prepositional Phrase PP 19.8
Adverbial Phrase ADVP 3.7
Subordinate Clause SBAR 2.1
Adjective Phrase ADJP 1.9
Verb Particles PRT 0.5
Conjunctive Phrase CONJ 0.06
Interjective Phrase INTJ 0.03
List Marker LST 0.01
Unlike Coordination Phrase UCP 0.002

Table 5.1: Shallow syntactic chunk phrase types from CoNLL 2000 shared task (Tjong
Kim Sang and Buchholz, 2000) and their occurrence percentage in the training data.

Chunking is useful for tasks such as information extraction where it might be suf-
ficient to extract the meaning-bearing spans which correspond to chunk segments. Be-
sides practical usages in applications, children are known to acquire language by learn-
ing elementary chunks of words first.9

9https://en.wikipedia.org/wiki/Language_acquisition
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5.2 Pretraining with Shallow Syntactic Annotations

We briefly review language models for cwr, and then present a model architecture to
obtain embeddings from shallow Syntactic Context (mSynC).

5.2.1 Language Models for Contextualized Representations

Traditional language models (§5.1.1) are estimated to maximize the likelihood of each
word xi given the words that precede it, p(xi | x<i). A function fseq is used for encoding
the history of tokens x<i).

The token representation is context-independent (Jozefowicz et al., 2016; Melis et al.,
2018; Merity et al., 2018) and is given by a CNN over character embeddings, followed
by a linear projection to yield vt. This is input to the deep neural architecture, which
results in contextualized representations for the tokens. A linear combination of all the
hidden layers of the architecture, ht is then used to predict the next word in the sequence
via a cross-entropy loss, with negative sampling (Gutmann and Hyvärinen, 2012). We
consider the architecture of Peters et al. (2018b), where transformers (Vaswani et al.,
2017) were used as the encoder-decoder architecture.

Bidirectional language models (Peters et al., 2017) jointly estimate a left-to-right (for-
ward) and right-to-left (backward) language model. Each objective uses the respective
directional encoder, i.e. only forward encoder-decoders are used for the forward lan-
guage model and vice-versa.

Adaptation to Downstream Tasks At test time, the language model is run over all the
data for the downstream task (train, heldout and test). Resultant cwr are then used as
input to the model for the downstream task. This approach is known as freezing, since
the language model is frozen and not updated by fine-tuning to the downstream task
data (Peters et al., 2019).

5.2.2 Training Objective

We extend the language modeling setting by considering a corpus that is annotated with
shallow syntax. We propose to maximize the likelihood of each word conditioned on
both the preceding words and their annotations. We associate with each word xi three
additional variables (denoted ci): the indices of the beginning and end of the last com-
pleted chunk before xi, and its label. For example, in Fig. 5.2, c4 = 〈3, 3,VP〉 for x4 = the.
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NP VP NP

Shallow Syntactic Encoder fsyn

Sequential Encoder fseq

mSynC3

g1,2,NP
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g3,3,VP
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h2h1

Not everyone believes the truth .
x3x2x1

—

fproj
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`

Figure 5.2: A sentence with its shallow syntactic (chunk) annotations, and the model
architecture to handle such annotations. A sequential encoder converts the raw text into
cwr (shown in blue). Observed shallow syntactic structure (chunk boundaries and la-
bels) are combined with these cwr in a shallow syntactic encoder to get contextualized
representations for chunks (shown in orange). cwr from both are passed through a pro-
jection layer to get mSynC embeddings (details shown only in some positions, for clar-
ity), used both for computing the data likelihood, as shown, as well as in downstream
tasks.
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Chunks, c are only used as conditioning context via

p(xi | x<i, c6i); (5.4)

they are not predicted.10 Because the c annotations depend on the entire sentence through
the automatic chunker, conditioning each word’s probability on any ci means that our
model is, strictly speaking, not a language model, and it can no longer be meaningfully
evaluated using perplexity.

A right-to-left model is constructed analogously, conditioning on c>i alongside x>i.
Following Peters et al. (2018a), we use a joint objective maximizing data likelihood ob-
jectives in both directions, with shared softmax parameters.

5.2.3 Model Architecture

Our model uses two encoders: fseq for encoding the sequential history (x<i), and fsyn
for shallow syntactic (chunk) history (c6i). For both, we use transformers (Vaswani
et al., 2017), which consist of large feedforward networks equipped with multiple self-
attention mechanisms.11

As inputs to fseq , we use a context-independent embedding, obtained from a CNN
character encoder (Kim et al., 2016) for each token xi. The outputs hi from fseq represent
words in context.

Next, we build representations for (observed) chunks in the sentence by concatenat-
ing a learned embedding for the chunk label with h’s for the boundaries and applying
a linear projection (fproj ). The output from fproj is input to fsyn , the shallow syntactic
encoder, and results in contextualized chunk representations, g. Note that the number
of chunks in the sentence is less than or equal to the number of tokens.

Each hi is now concatentated with gci , where gci corresponds to ci, the last chunk
before position i. Finally, the output is given by mSynC i = f ′proj (hi, gci) = W>[hi; gci ],
where W is a model parameter. For training, mSynC i is used to compute the proba-
bility of the next word, using a sampled softmax (Bengio et al., 2003). For downstream
tasks, we use a learned linear weighting of all layers in the encoders to obtain a task-
specific mSynC, following Peters et al. (2018a).

10A different objective could consider predicting the next chunks, along with the next word. However,
this chunker would have access to strictly less information than usual, since the entire sentence would no
longer be available.

11While transformers are shown to have slightly lower performance on downstream tasks than RNNs
for pretraining cwr (Peters et al., 2018b), this model trains almost twice as fast on two NVIDIA Tesla V100s,
and is hence cost-effective.
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5.2.4 Staged Parameter Updates

Training both the sequential encoder, fseq , and the syntactic encoder, fsyn , jointly to max-
imize the data likelihood can be expensive, due to the large number of parameters in-
volved. To reduce cost, we initialize our sequential cwr, h, using pretrained embeddings
from ELMo-transformer (Peters et al., 2018b). Once initialized as such, the encoder is
fine-tuned to the data likelihood objective (§5.2.2). This results in a staged parameter
update, which reduces training duration by a factor of 10 in our experiments. We dis-
cuss the empirical effect of this approach in §5.4.3.

5.3 Shallow Syntactic Features

Our second approach incorporates shallow syntactic information in downstream tasks
via token-level chunk label embeddings. Task training (and test) data is automatically
chunked, and chunk boundary information is passed into the task model via BIOUL
encoding of the labels. We add randomly initialized chunk label embeddings to task-
specific input encoders, which are then fine-tuned for task-specific objectives. This ap-
proach does not require a shallow syntactic encoder or chunk annotations for pretrain-
ing cwrs, only a chunker. Hence, this can more directly measure the impact of shallow
syntax for a given task.12

5.4 Experiments and Results

Our experiments evaluate the effect of shallow syntax, via contextualization (mSynC,
§5.2) and features (§5.3). We provide comparisons with four baselines—ELMo-transformer
(Peters et al., 2018b), our reimplementation of the same, as well as two cwr-free baselines,
with and without shallow syntactic features. Both ELMo-transformer and mSynC are
trained on the 1B word benchmark corpus (Chelba et al., 2013); the latter also employs
chunk annotations (§5.1.3) obtained automatically. We use a BiLSTM-CRF model for
chunking (Lample et al., 2016; Peters et al., 2017), which achieves 97% F1 on the CoNLL
2000 (Tjong Kim Sang and Buchholz, 2000) benchmark test set.13

Architecture and Implementation
12In contrast, in §5.2, the shallow-syntactic encoder itself, as well as predicted chunk quality on the large

pretraining corpus could affect downstream performance.
13We trained on data from the CoNLL 2000 shared task, as well as the remaining sections (except §23 and

§20) of the Penn Treebank. Chunks on PTB were obtained using the official script for chunk generation,
https://www.clips.uantwerpen.be/conll2000/chunking/.
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ELMo-transformer Our baseline pretraining model was a reimplementation of that
given in Peters et al. (2018b). Hyperparameters were generally identical, but we trained
on only 2 GPUs with (up to) 4,000 tokens per batch. This difference in batch size meant
we used 6,000 warm up steps with the learning rate schedule of Vaswani et al. (2017).

mSynC The function fseq is identical to the 6-layer biLM used in ELMo-transformer.
fsyn, on the other hand, uses only 2 layers. The learned embeddings for the chunk la-
bels have 128 dimensions and are concatenated with the two boundary h of dimension
512. Thus fproj maps 1024 + 128 dimensions to 512. Further, we did not perform weight
averaging over several checkpoints.

Shallow Syntax The size of the shallow syntactic feature embedding was 50 across all
experiments, initialized uniform randomly.

All model implementations are based on the AllenNLP library (Gardner et al., 2017).

5.4.1 Downstream Task Transfer

We employ four tasks to determine ELMo cwr awareness of shallow syntax. Following
Peters et al. (2018a), we do not apply finetuning to task-specific architectures, allowing
us to do a controlled comparison with ELMo cwr, in particular the transformer-based
architecture from Peters et al. (2018b) (ELMo-transformer). Given the base architecture
is identical across both settings, we can attribute any difference in performance to the
incorporation of shallow syntax.

NER We use the English portion of the CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003), which provides named entity annotations on newswire data across
four different entity types (PER, LOC, ORG, MISC). A bidirectional LSTM-CRF architec-
ture (Lample et al., 2016) and a BIOUL tagging scheme are used.

Fine-grained NER The same architecture and tagging scheme from above is also used
to predict fine-grained entity annotations from OntoNotes 5.0 (Weischedel et al., 2011).
The 18 fine-grained NER labels in the dataset are shown in Table 5.2.

Phrase-structure parsing We use the standard Penn Treebank splits, and adopt the
span-based model from Stern et al. (2017). Following their approach, we used predicted
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Label Description
PERSON People, including fictional
NORP Nationalities or religious or political groups
FACILITY Buildings, airports, highways, bridges, etc.
ORGANIZATION Companies, agencies, institutions, etc.
GPE (Geo-Political Entity) Countries, cities, states
LOCATION Non-GPE locations, mountain ranges, bodies of water
PRODUCT Vehicles, weapons, foods, etc. (Not services)
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK OF ART Titles of books, songs, etc.
LAW Named documents made into laws
LANGUAGE Any named language
DATE Absolute or relative dates or periods
TIME Times smaller than a day
PERCENT Percentage (including “%”)
MONEY Monetary values, including unit
QUANTITY Measurements, as of weight or distance
ORDINAL “first”, “second”
CARDINAL Numerals that do not fall under another type

Table 5.2: Fine-grained NER labels from OntoNotes 5.0 (Weischedel et al., 2013).

part-of-speech tags from the Stanford tagger (Toutanova et al., 2003) for training and test-
ing. About 51% of phrase-syntactic constituents align exactly with the predicted chunks
used, with a majority being single-width noun phrases. Given that the rule-based pro-
cedure used to obtain chunks only propagates the phrase type to the head-word and
removes all overlapping phrases to the right, this is expected. We did not employ jack-
knifing to obtain predicted chunks on PTB data; as a result there might be differences
in the quality of shallow syntax annotations between the train and test portions of the
data.

Task Train Heldout Test
CoNLL 2003 NER (Tjong Kim Sang and De Meulder, 2003) 23,499 5,942 5,648
OntoNotes NER (Weischedel et al., 2013) 81,828 11,066 11,257
Penn TreeBank (Marcus et al., 1993) 39,832 1,700 2,416
Stanford Sentiment Treebank (Socher et al., 2013) 8,544 1,101 2,210

Table 5.3: Downstream Dataset Statistics.
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Sentiment analysis We consider fine-grained (5-class) classification on Stanford Sen-
timent Treebank (Socher et al., 2013). The labels are negative, somewhat negative,

neutral, positive and somewhat positive. Our model was based on the Biattentive
Classification Network (McCann et al., 2017). We used all phrase lengths in the dataset
for training, but test results are reported only on full sentences, following prior work.

Dataset statistics for all tasks is shown in Table 5.3. The first three of the four tasks
above are span-based, so we would expect explicit shallow syntactic cues to provide use-
ful signal for them. The sentiment classification task is included to test the impact of
mSynC for text classification. All downstream model implementations use the defaults
from the AllenNLP library.

NER Fine-grained
NER

Constit.
Parsing

Sentiment
Classif.

Baseline (no cwr) 88.1 ± 0.27 78.5 ± 0.19 88.9 ± 0.05 51.6 ± 1.63
+ shallow syn. features 88.6 ± 0.22 78.9 ± 0.13 90.8 ± 0.14 51.1 ± 1.39

ELMo-transformer 91.1 ± 0.26 — 93.7 ± 0.00 —
ELMo-transformer (our reimpl.) 91.5 ± 0.25 85.7 ± 0.08 94.1 ± 0.06 53.0 ± 0.72

+ shallow syn. features 91.6 ± 0.40 85.9 ± 0.28 94.3 ± 0.03 52.6 ± 0.54
Shallow syn. context (mSynC) 91.5 ± 0.19 85.9 ± 0.20 94.1 ± 0.07 53.0 ± 1.07

Table 5.4: Test-set performance of ELMo-transformer Peters et al. (2018b), our reimple-
mentation, and mSynC, compared to baselines without cwr. Evaluation metric is F1 for
all tasks except sentiment, which reports accuracy. Reported results show the mean and
standard deviation across 5 runs for coarse-grained NER and sentiment classification
and 3 runs for other tasks.

ELMo-transformer mSynC

CCG 92.68 92.03
PTB POS Tagging 97.09 96.91
EWT POS Tagging 95.13 94.64
Chunking 92.18 96.89
Named Entity Recognition 81.21 79.98
Semantic Tagging 93.78 93.03
Grammar Error Detection 30.80 30.86
Prep. Role 72.81 70.83
Prep. Func. 82.24 82.67
Event Factuality 70.88 70.39

Table 5.5: Test performance of ELMo-Transformer vs. mSynC on several linguistic
probes from Liu et al. (2019). In each case, performance of the best layer from the archi-
tecture is reported. Details on each metric can be found in Table 5.7.
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Model Fine-grained
NER F1

end-to-end
ELMo 86.90 ± 0.11
mSynC end-to-end 86.89 ± 0.04

initialized
mSynC frozen 87.36 ± 0.02
mSynC fine-tuned 87.44 ± 0.07

Table 5.6: Validation F1 for fine-grained NER across syntactic pretraining schemes, with
mean and standard deviations across 3 runs.

Results are shown in Table 5.4. Consistent with previous findings, cwrs offer large
improvements across all tasks. Though helpful to span-level task models without cwrs,
shallow syntactic features offer little to no benefit to ELMo models. mSynC’s perfor-
mance is similar. On sentiment classification, chunk features are slightly harmful on
average (but variance is high); mSynC again performs similarly to ELMo-transformer.
Overall, the performance differences across all tasks are small enough to infer that shal-
low syntax is not particularly helpful when using cwrs.

5.4.2 Linguistic Probes

To test whether mSynC learns shallow syntactic information, and how this compares to
ELMo-transformer, we examine both embeddings for awareness of chunk information.
In particular, we use the probes from Liu et al. (2019), which train linear models on frozen
cwr for making predictions about linguistic (syntactic and semantic) properties of words
and phrases. Unlike the downstream tasks in §5.4.1, there is minimal downstream task
architecture, bringing into focus the transferrability of cwr.

As expected, on the probe for predicting chunk tags, mSynC achieves 96.9 F1 vs 92.2
F1 for ELMo-transformer, indicating that mSynC is indeed aware of shallow syntax.
We further evaluated the cwr on 9 other probes—CCG supertagging (Hockenmaier and
Steedman, 2007), PTB (Marcus et al., 1993) and Universal Dependencies (Silveira et al.,
2014) POS tagging, NER (Tjong Kim Sang and De Meulder, 2003), grammar error detec-
tion (Yannakoudakis et al., 2011), semantic tagging (Bjerva et al., 2016), preposition su-
persense identification (Schneider et al., 2018), and event factuality detection (Rudinger
et al., 2018). Metrics and references for each are summarized in Table 5.7. For more
details, readers are referred to Liu et al. (2019).

Results in Table 5.5 show that again the performance of baseline ELMo-transformer and
mSynC are similar, with mSynC doing slightly worse on 7 out of 9 tasks. Overall,
the results further confirm that shallow syntax does not offer any benefits over ELMo-
transformer.
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5.4.3 Effect of Training Scheme

We test whether our staged parameter training (§5.2.4) is a viable alternative to an end-
to-end training of both fsyn and fseq . We make a further distinction between fine-tuning
fseq vs. not updating it all after initialization (frozen).

Downstream validation F1 on fine-grained NER reported in Table 5.6 show that the
end-to-end strategy lags behind the others, perhaps indicating the need to train longer
than 10 epochs. However, a single epoch on the 1B-word benchmark takes 36 hours on 2
Tesla V100s, making this prohibitive. Interestingly, the frozen strategy, which takes the
least amount of time to converge (24 hours on 1 Tesla V100), also performs almost as well
as fine-tuning.

5.5 Conclusion

We find that exposing cwr-based models to shallow syntax, either through new cwr ar-
chitectures or explicit pipelined features, has little effect on their performance, across
several tasks. Linguistic probing also shows that cwrs aware of such structures do not
improve task transferability. Both findings indicate that the shallow syntactic structural
assumption is perhaps too strong to be useful, especially when pitted against contextu-
alization.

Our generalized architecture and method can be extended to incorporate a larger
variety of inductive biases, such as full syntactic trees, into pretraining language models.
A modified pretraining could be used to predict shallow syntactic labels of the word, in
addition to the word itself. We leave extending this approach to a masked language
modeling objective used in BERT (Devlin et al., 2018) to future work.
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Table 5.7: Dataset and metrics for each probing task from Liu et al. (2019), corresponding
to Table 5.5.

74



Chapter 6

Conclusions and Future Work

We presented here three approaches to incorporate syntactic inductive biases for learn-
ing continuous representations of language. The motivation behind the need for such
biases is that representation learning for language is aided by exposure to linguistic,
particularly syntactic structure. Incorporation of syntax has the potential to help artifi-
cial language learners generalize to new, previously unseen data. We tried to address
the challenges of incorporating a syntactic inductive bias and designing architectures
which support such biases, across three settings:

• Joint learning of entire syntactic trees (Chapter 3, Swayamdipta et al. (2016)). We
addressed the task of dependency-based semantic role labeling. Since these de-
pendencies are structurally close to syntactic dependencies, we designed a syn-
tactic inductive bias via a joint objective for predicting both structures. We used
a transition-based incremental algorithm. An intermediate continuous represen-
tations summarized the entire parser history at each time step. A composition
function synthesized syntactic and semantic substructures. This resulted in a bet-
ter performance compared to prior joint modeling approaches across two different
shared tasks and seven different languages.

• Multitask Learning with Syntactic Substructures (Chapter 4, Swayamdipta et al.
(2017), Swayamdipta et al. (2018b)). We addressed three different span-based se-
mantic structure prediction tasks. The substructures involved in each task had cor-
respondences to syntactic constituent structures. A syntactic inductive bias was in-
corporated via a multitask objective to predict both the full semantic structure (pri-
mary task) as well as the syntactic substructures (scaffold task). Span embeddings
trained towards scoring syntactic as well as semantic substructures were shared
across both tasks. We reported improvements across strong baselines on all three
tasks of FrameNet and Propbank SRL, and coreference resolution.

• Stage-Wise Pretraining with Shallow Syntax (Chapter 5) We analyzed how help-
ful shallow syntactic annotations might be to contextualized word representations.
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A syntactic inductive bias was incorporated via a data likelihood objective which
conditioned on both a sequential and a shallow syntactic history. A shallow-syntactic
encoder was designed to consume both word tokens and base phrase chunks; hid-
den representations from which captured syntactic contextual information. The
resultant contextualized representations performed on par with the baseline on
several downstream tasks, as well as light-weight black box analyzers.

The primary difference between the three settings was the decreasing level of gran-
ularity of the syntactic representations used. We moved from full trees in Chapter 3 to
overlapping phrase structures from the trees in Chapter 4 to non-overlapping phrases in
Chapter 5. Syntactic inductive biases were most helpful in the first two settings, and in
the last setting, did not hurt performance. There is perhaps a trade-off between using
richer structures to induce biases and the efficiency of the approach itself.

While some of the tasks discussed achieved state-of-the-art performance, there ex-
ists a lot of room for improvement. There are obvious benefits of using representations
pretrained on massive datasets, and carefully tuned hyperparameters. Perhaps taking
into account more context than such models can capture, again via structures such as
document structures, might lead to further benefits.

This thesis opens up several questions for future research. For each task, we (man-
ually) selected the syntactic representation that is best suited for it. Approaches that
instead learn to automatically predict the level of granularity of syntax might be more
general. Another question this thesis raises is could we obtain performance benefits
from incorporating more powerful structural encoders? Perhaps there is a need to move
towards larger models which take into account different kinds of inductive biases all at
the same time (Subramanian et al., 2018), instead of just syntactic ones. The above would
involve building better structural decoders.

Structure Manipulation While this thesis has involved relying on available linguistic
structure (gold or predicted) for training, similar principles might be instrumental in
generating language which adheres to structural constraints. Linguistic structure can
be manipulated to generate stylistic translations, for example, involving consistent use
of certain lexical as well as syntactic constructions which do not occur in the source
sentence. Continuous representations could be utilized to detect templates governing
such translations, and bring about rephrasal of text, without altering the meaning of
the utterance. Similarly, manipulation of semantic structures also opens up interesting
possibilities, such as altering sentiment, polarity and stance. Given the background on
learning continuous representations of structure in this thesis, these questions are inter-
esting future directions.
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Structure Learning from Large Crowd-Source Annotations One of the contributors
to the success of deep learning is the availability of large datasets, where annotations are
collected through crowd-sourcing. However, crowd-sourced annotations tend to accu-
mulate artifacts (e.g. simple negations are used as a shortcut to generate contradictions).
Deep models tend to learn from these artifacts, and ignore the actual reasoning—a find-
ing we uncovered for some popular datasets (Gururangan et al., 2018). Given that crowd-
sourcing is convenient, it is hard to get rid of annotation artifacts, which correspond to
systematic, but shallow structural patterns. However, if a model can exploit these, it
could also be trained to detect them. Based on this intuition, it might be possible to build
models which do not just learn from the entire dataset but are able to identify instances
which might be unreliable, downweight the quality of such instances, and ultimately
learn to ignore them. Continuous latent variable models could be used to encode global
information, such as style, which is a strong indicator of artifacts. Learning algorithms
which iteratively subsample the training data, based on such global, structured informa-
tion could be explored towards this.

Finally, the approaches discussed were applied to predominantly semantic struc-
tured prediction tasks, and used syntactic inductive biases, but are not limited to ei-
ther. Semantic biases could be useful for capturing deeper phenomena as observed in
discourse and pragmatics, which are essential in designing automated assistants and di-
alog systems. Other kinds of structure, such as knowledge graphs could be used instead
of linguistic structure, to encourage knowledge-aware representations.
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He He, Hal Daumé III, and Jason Eisner. 2013. Dynamic feature selection for dependency
parsing. In Proc. of EMNLP. 14, 19, 40

81

https://arxiv.org/abs/1803.07640
https://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1704.08305
https://www.jair.org/index.php/jair/article/view/11030
https://www.jair.org/index.php/jair/article/view/11030
http://arxiv.org/abs/1901.05287
http://www.deeplearningbook.org
https://www.springer.com/us/book/9783642247965
http://arxiv.org/abs/1308.0850
https://www.slideshare.net/normundsg/the-role-of-cnl-and-amr-in-scalable-abstractive-summarization-for-multilingual-media-monitoring
https://www.slideshare.net/normundsg/the-role-of-cnl-and-amr-in-scalable-abstractive-summarization-for-multilingual-media-monitoring
https://aclweb.org/anthology/N18-2017
https://aclweb.org/anthology/N18-2017
http://www.jmlr.org/papers/v13/gutmann12a.html
http://www.jmlr.org/papers/v13/gutmann12a.html
https://aclweb.org/anthology/papers/W/W09/W09-1201/
https://aclweb.org/anthology/papers/W/W09/W09-1201/
https://www.aclweb.org/anthology/D17-1206
https://www.aclweb.org/anthology/D17-1206


Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. 2018a. Jointly predicting
predicates and arguments in neural semantic role labeling. In Proc. of ACL. 51

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep semantic role
labeling: What works and whatâĂŹs next. In Proc. of ACL. 17, 38, 40, 46, 51, 52

Shexia He, Zuchao Li, Hai Zhao, and Hongxiao Bai. 2018b. Syntax for semantic role
labeling, to be, or not to be. In Proc. of ACL. 52

Marti A Hearst. 1997. TextTiling: Segmenting text into multi-paragraph subtopic pas-
sages. Computational linguistics, 23(1):33–64. 2

James Henderson, Paola Merlo, Gabriele Musillo, and Ivan Titov. 2008. A latent variable
model of synchronous parsing for syntactic and semantic dependencies. In Proc. of
CoNLL. 14, 19, 20, 31

James Henderson, Paola Merlo, Ivan Titov, and Gabriele Musillo. 2013. Multi-lingual
joint parsing of syntactic and semantic dependencies with a latent variable model.
Computational Linguistics, 39(4). 14, 20, 21, 22, 23, 30, 32, 40

Daniel Hershcovich, Omri Abend, and Ari Rappoport. 2018. Multitask parsing across
semantic representations. In Proc. of ACL. 15, 41

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Com-
putation, 9(8). 25, 63

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A corpus of ccg derivations
and dependency structures extracted from the Penn Treebank. Computational Linguis-
tics, 33(3). 72, 74

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for
text classification. In Proc. of ACL. 54, 58

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparametrization with
Gumbel-softmax. In Proc. of ICLR. 63

Frederick Jelinek and John D. Lafferty. 1991. Computation of the probability of initial
substring generation by stochastic context-free grammars. Computational Linguistics,
17(3):315–353. 6, 63

Richard Johansson. 2009. Statistical bistratal dependency parsing. In Proc. of EMNLP.
14, 19, 31

Richard Johansson and Pierre Nugues. 2008. Dependency-based syntactic-semantic
analysis with PropBank and NomBank. In Proc. of CoNLL. 31

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016.
Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410. 65

Daniel Jurafsky and James H. Martin. 2009. Speech and Language Processing (2nd Edition).
Prentice-Hall, Inc. 59, 64

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2016. Character-aware
neural language models. In Proc. of AAAI, AAAI’16. 63, 67

Diederik P. Kingma and Jimmy Ba. 2014. ADAM: A method for stochastic optimization.

82

http://aclweb.org/anthology/P18-2058
http://aclweb.org/anthology/P18-2058
http://aclweb.org/anthology/P18-1192
http://aclweb.org/anthology/P18-1192
https://dl.acm.org/citation.cfm?id=972687
https://dl.acm.org/citation.cfm?id=972687
https://www.aclweb.org/anthology/P18-1035
https://www.aclweb.org/anthology/P18-1035
https://www.aclweb.org/anthology/J07-3004
https://www.aclweb.org/anthology/J07-3004
http://www.aclweb.org/anthology/P18-1031
http://www.aclweb.org/anthology/P18-1031
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://www.aclweb.org/anthology/J91-3004
https://www.aclweb.org/anthology/J91-3004
https://arxiv.org/abs/1602.02410
https://dl.acm.org/citation.cfm?id=1214993
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://arxiv.org/abs/1412.6980


ArXiV:1412.6980. 49
Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016. Segmental Recurrent Neural

Networks. In Proc. of ICLR. 38
Jayant Krishnamurthy and Tom M. Mitchell. 2014. Joint syntactic and semantic parsing

with combinatory categorial grammar. In Proc. of ACL. 34
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification

with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105. 1

Meghana Kshirsagar, Sam Thomson, Nathan Schneider, Jaime Carbonell, Noah A Smith,
and Chris Dyer. 2015. Frame-semantic role labeling with heterogeneous annotations.
In Proc. of NAACL. 49, 50

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yogatama, Stephen Clark, and Phil
Blunsom. 2018. Lstms can learn syntax-sensitive dependencies well, but modeling
structure makes them better. In Proc. of ACL. 59

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. 2016. Neural architectures for named entity recognition. In Proc. of
NAACL-HLT. 68, 69

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature,
521(7553):436. 1

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end neural
coreference resolution. In Proc. of EMNLP. 17, 46, 47, 48, 49, 51, 52

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018. Higher-order coreference resolu-
tion with coarse-to-fine inference. In Proc. of ACL. 52
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