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Natural Language Inference

4 4 Stanford NLI [Bowman et al., 2015]



https://arxiv.org/abs/1508.05326
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or neither?
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Premise

Hypothesis

A dog is chasing
birds on the shore
of the ocean.

The cat is chasing
birds.

Three kids playing A dog and cat are A few people are
with a toy cat in a snuggling up during staring at
garden. a nap. something.

There's a toy cat and A dog and cat are The people are
dog in the garden. sharing a nap. staring at a cat.

Annotation Artifacts in NLI (G*., Swayamdipta®*, .., S.. B.. S.. 2018]
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birds.
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There's a toy cat and A dog and cat are The people are
dog in the garden. sharing a nap. staring at a cat.
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6 Example from Beery et al. [2019]
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Why this discrepancy?
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Human biases in Data Annotation
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Human biases in Data Annotation

Example from the Flickr30k Dataset

13 Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely
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13 Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely
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A blond girl and a bald man with his arms crossed
are standing inside looking at each other.

A worker is being scolded by her boss in a stern
lecture.

Example from the Flickr30k Dataset

13 Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely
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Human biases in Data Annotation

A blond girl and a bald man with his arms crossed
are standing inside looking at each other.

A worker is being scolded by her boss in a stern
lecture.

A hot, blond girl getting criticized by her boss.

Example from the Flickr30k Dataset

13 Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely
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Human Biases affecting Datasets
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Human Biases affecting Datasets

Human Biases in Data

Reporting bias

Selection bias

Overgeneralization
Out-group homogeneity bias

Training data are
collected and
annotated

\ Sampling error
Non-sampling error
Insensitivity to sample size

Correspondence bias

In-group bias

Stereotypical bias Group attribution error

Historical unfairness Halo effect
Implicit associations
Implicit stereotypes

Prejudice

Human Biases in Collection and Annotation

Bias blind spot Neglect of probability

Confirmation bias

Anecdotal fallacy

Subjective validation lllusion of validity
Experimenter’s bias

Choice-supportive bias

Source: Bias in the Vision and Language of Artificial Intelligence, Mitchell 2019
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A dog and cat are

snuggling up
during a nap.

Three kids playing
with a toy cat in a
garden.

There's a toy cat
and dog in the
garden.

Nevutral Entailment

Contradiction Contradiction

A dog and cat are
sharing a nap.

A tew people are
staring at
something.

The people are
staring at a cat.

Nevutral

Contradiction
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Some examples might

monamaes  Harmiful Spurious Biases

iriggering confent a) ground truth ~ b) blurred input  ¢) output
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Rudin 2020): input is column b and output 1s column c.
Rudinger et al. 2018
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® Mitigate:

® Datasets

® Model Objectives
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caused it? (Part 2 of this lecture)
caused it? (Part 3 of this lecture)

caused it? (Attention maps; not in lecture)
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Interpretability for Bias Discovery

® |f the model came to the , €ven as some is withheld, it likely
relies on some spurious biases.

® More broadly, interpretability is also useful for :
® Building user trust
® Debugging models
® Alternative to traditional evaluation metrics

® Faithfulness: “a faithful interpretation is one that accurately represents the reasoning process behind
the model’s pr ediction” [Jacovi & Goldberg, 2019; Subramanian et al., 2020 (in previous lecture) |
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Method 1: Saliency Maps

¢ Compute the relative importance of features in the input by computing how the
prediction changes with respect to the features.

® Features in NLP: Tokens

Sentiment an iNtGMIgeRE fiction about learning through cultural Elash.

QA  What company won free advertisement due to QuickBooks contest 7

MLM [CLS] The [MASK] ran to the emergency room to see her patient . [SEP]
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® Gradients: Derivative of the output with
respect to the input

Simoyan et al. 2014

p(y|x)
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Problems with Saliency

® Fragile, sensitive to local perturbations
|Ghorbani et al., 2017]

® Saliency accounts for importance at the
token level. However, language is
compositional.
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Proposed Workarounds

® Integrated Gradients
® Smoothed Gradients |Smilkov et al. 2017] [Sundarajan et al. 2017]
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Method 2: Input Attribution

e Workaround for the token-level problem, can consider phrases or sentences in passages.
® Input perturbation: Select tokens to drop from the input
® How to select?
® Valid and grammatical
® Behavioral Testing

® Observing change in model behavior with changes in the signal
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[Lietal., 2017]
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® Importance: change in prediction
probability when a token is
removed.
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[.eave-one-out

® Importance: change in prediction
probability when a token is
removed.
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Question Confidence Highlight
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o .
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[.eave-one-out

[Lietal.,, 2017]

Question Confidence Highlight
. o What did Tesla spend Astor's money on 7 0.78
o .
Importance‘ Change 11 predlctlon YWrat did Tesla spend Astor's money on 7 0.67 What
probablllty when a token is What et¢ Tesla spend Astor's money on 7 0.72 did
removed. What did Fester spend Astor's money on ? 0.66 Tesla
What did Tesla spemd Astor’'s money on 7 0.74 spend
What did Tesla spend Aster-s money on 7 0.76 Astor’s
® Obvious issue: it’s not just a Sing]e What did Tesla spend Astor's menmey on ? 0.48 money
What did Tesla spend Astor’'s money om ? 0.2 on
token (OI' phrase) that matters, What did Tesla spend Astor’'s money on +# 0.73 ?

usually

What did Tesla spend Astor's money on 7

Slide adapted from Sameer Singh’s tutorial on Interpretability at EMNLP 2020
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LIME

® Find nearby inputs, based on cosine Distance

® | earn a linear classifier based on model predictions on
those points

e Use interpretable features

® Weights of the classifier indicate feature importance x

|[Ribeiro et al., 2016]
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Problems with Input Perturbations

® How to perturb?
® Overall: “salient” gradients and inputs might not always be human interpretable

® General trend: if it does not match with human intuition, model is probably relying
on biases.

® However, these biases are themselves not consistent / easy to interpret.

33
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Other variants of input perturbations

¢ How much can be removed without changing the
prediction? [Feng et al. 2018]

34

SQuAD
Context

Original
Reduced
Confidence

VQA
Original
Answer
Reduced
Confidence

SNLI
Premise
Original
Answer
Reduced
Confidence

In 1899, John Jacob Astor IV invested $100,000 for
Tesla to further develop and produce a new lighting
system. Instead, Tesla used the money to fund his
Colorado Springs experiments.

What did Tesla spend Astor’s money on ?

did

0.78 — 0.91

What color is the flower ?
yellow

flower ?
0.827 — 0.819

Well dressed man and woman dancing in the street
Two man is dancing on the street

Contradiction

dancing

0.977 — 0.706
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¢ How much can be removed without changing the
prediction? [Feng et al. 2018]

® Adversarial modifications

® Additions [Addsent SQuUAD; Jia & Liang, 2017]
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Other variants of input perturbations

¢ How much can be removed without changing the

prediction? [Feng et al. 2018

® Adversarial modifications

® Additions [Addsent SQuUAD; Jia & Liang, 2017]

® Syntactic Paraphrases [SCPN; Iyyer et al., 2018]
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Other variants of input perturbations

¢ How much can be removed without changing the
prediction? [Feng et al. 2018]

® Adversarial modifications

® Additions [Addsent SQuUAD; Jia & Liang, 2017]

® Syntactic Paraphrases [SCPN; Iyyer et al., 2018]

® Also reveal biases.
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® Partial Input Baselines
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Method 3: Architectural Modifications

® Partial Input Baselines

Two dogs are

running through

® [dea: if the model still makes the a, field.
correct decision despite not Premise
receiving the full input, model
likely relies on some bias The pets are

sitting on a
couch.

® Also tried for VQA [Goyal etal. 2016],  Hypothesis

SQuAD [Kaushik & Lipton, 2018] ,
among others.

Annotation Artifacts in NLI (G*.. Swavamdipta*, L... S.. B., S.. 2018]
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Mitigation of Biases

® Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.
® Two broad paradigms:
® Pre-specified (known) biases (task or dataset-specific)

® Unspecified biases (more general)
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Case Study: Pre-specified Biases

Hate Speech in
Online Platforms

® Spurred a great deal of research on automatic
detection of hate speech ®
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Pre-specified biases in hate-speech detection

[Sap et. al, 2019]

® Hate Speech Detection datasets are indeed biased

o Identity Biases a <[ Lidentify as a black gay womaw] 600/0
_B

® 1 1 == | o
Profanity Biases S~ 86%
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Pre-specified biases in hate-speech detection

[Sap et. al, 2019]

® Hate Speech Detection datasets are indeed biased

o Identity Biases n <[ Lidentify as a black gay womaw] 600/0
‘

® Profanity Biases v

< F*lng love this!

® Racial / Dialectal Biases u 90%
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Unspecified biases

® May be too example-specific, and not general enough to explain the entirety of model
behavior

® NLI has many different biases!

A person in red
is cutting the

. ‘Q% grass on a riding
INOWEr.

Hypothesis

A person in a red shirt is
mowing the grass with a

Some men and boys green riding mower.

are playing frisbee
in a grassy area. Premise

Premise
42 Annotation Artifacts in NLI [G*., Swayamdipta*, L., S., B., S., 2018]
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Addressing Biases: Datasets

® One solution: Filtering / Downsampling the data to
remove instances that “leak” the correct answer, but
because of the wrong reasons.

® Simple for known biases (rules / simple classifiers)

® Also possible for unspecified biases!
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® Easy examples can be detected:

® By simple model architectures [AFLite; LeBras et al., 2020]
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e What instances to filter?

e Key intuition: Examples which are relatively for a model might contain spurious
correlations

® Easy examples can be detected:

® By simple model architectures [AFLite; LeBras et al., 2020]

® Based on how the training proceeds [Dataset Cartography; Swayamdipta et al.,
2020]
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(ensembles of)
simplified
architectures.
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e What instances to filter?

e Key intuition: Examples which are relatively for a model might contain spurious
correlations

® Easy examples can be detected:

® By simple model architectures [AFLite; LeBras et al., 2020]

® Based on how the training proceeds [Dataset Cartography; Swayamdipta et al.,
2020]
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Training Dynamics

correctness J

® Ratio at which model
prediction matches true
class

— Z L[ = arg max pe | %]

!

confidence /I\

® Mean probability of the
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Addressing Biases: Models

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]
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Adversarial Methods

® Pre-specified biases
® Can the model predict something about the input itself? This is typically the bias feature.

® c.g. Can the model predict the gender from a professional bio? Given that we know
models have gender bias [De-Arteaga et al., 2019]

® Now, the auxiliary is discouraged (ensure you cannot predict the bias) in an adversarial
setting

| Belinkov et al., 2019; Ganin et al., 2016]
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Adversarial Methods

® Pre-specified biases
® Can the model predict something about the input itself? This is typically the bias feature.

® c.g. Can the model predict the gender from a professional bio? Given that we know
models have gender bias [De-Arteaga et al., 2019]

® Now, the auxiliary is discouraged (ensure you cannot predict the bias) in an adversarial
setting

® Might not entirely remove the information

| Belinkov et al., 2019; Ganin et al., 2016]
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Bias Mitigation Summary

® Dataset Filtering Methods

® Algorithms that differentiate data instances (AFLite,
Dataset Cartography)

® Can be applied to unspecified biases
® Models with Auxiliary Objectives
® Ensembles, Adversarial Approaches

e Effective for pre-specified biases
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Bias Mitigation Summary

® Dataset Filtering Methods

® Algorithms that differentiate data instances (AFLite,
Dataset Cartography) How effective are
these methods?

® Can be applied to unspecified biases
® Models with Auxiliary Objectives

® Ensembles, Adversarial Approaches |“debiasing”...

e Effective for pre-specified biases



Interpretability and Biases in NLP

This Lecture

Discovering Biases via

Biases in NLP Interpretability Methods
® Dataset Biases e Saliency Methods
® Model Biases ® Input Attribution

® Architectural
Modifications
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Mitigating Biases
® Filtering Datasets

® Auxiliary Objectives



Summary

64



Summary

® Biases are present wherever humans are involved: data collection & model design

64



Summary

® Biases are present wherever humans are involved: data collection & model design

® The term “bias” can be overloaded: biases can be “good” or “bad”

64



Interpretability and Biases in NLP UT-Austin | Swabha Swayamdipta

Summary

® Biases are present wherever humans are involved: data collection & model design
® The term “bias” can be overloaded: biases can be “good” or “bad”

® Interpretability methods can be used to detect and discover biases in models and data

64



Interpretability and Biases in NLP UT-Austin | Swabha Swayamdipta

Summary

® Biases are present wherever humans are involved: data collection & model design
® The term “bias” can be overloaded: biases can be “good” or “bad”
® Interpretability methods can be used to detect and discover biases in models and data

® Bias discovery and bias mitigation is not necessarily a pipeline

64



Interpretability and Biases in NLP UT-Austin | Swabha Swayamdipta

Summary

® Biases are present wherever humans are involved: data collection & model design

® The term “bias” can be overloaded: biases can be “good” or “bad”
® Interpretability methods can be used to detect and discover biases in models and data
® Bias discovery and bias mitigation is not necessarily a pipeline

® Bias mitigation methods either focus on models or datasets.
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Thank you!
Questions?




