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RealToxicityPrompts [Gehman et. al, 2020]

https://arxiv.org/pdf/2009.11462.pdf
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Example from the Flickr30k Dataset

Credit: van Miltenburg [2016] & Paullada A. [2020] Using Datasets Wisely 

A blond girl and a bald man with his arms crossed 
are standing inside looking at each other. 

A worker is being scolded by her boss in a stern 
lecture.

A hot, blond girl getting criticized by her boss.

Bias!

https://arxiv.org/abs/1605.06083
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�14 Source: Bias in the Vision and Language of Artificial Intelligence, Mitchell 2019

Bias!

https://www.youtube.com/watch?v=XR8YSRcuVLE
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Linguistic structure provides a 

prior for understanding language 

and reasoning.

Syntactic Inductive Biases in NLP [Swayamdipta, 2019, PhD Thesis]

https://www.lti.cs.cmu.edu/people/18088/swabha-swayamdipta
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Interpretability

• How did the model come to a certain decision?

• What in the data instance caused it? (Part 2 of this lecture)

• What in the dataset caused it? (Part 3 of this lecture)

• What in the model caused it? (Attention maps; not in lecture) 
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Interpretability for Bias Discovery
• If the model came to the correct decision, even as some critical information is withheld, it likely 

relies on some spurious biases.

• More broadly, interpretability is also useful for :

• Building user trust

• Debugging models

• Alternative to traditional evaluation metrics

• Faithfulness: “a faithful interpretation is one that accurately represents the reasoning process behind 
the model’s prediction” [Jacovi & Goldberg, 2019; Subramanian et al., 2020 (in previous lecture)]
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Problems with Saliency

• Fragile, sensitive to local perturbations 
[Ghorbani et al., 2017]

• Saliency accounts for importance at the 
token level. However, language is 
compositional.
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Method 2: Input Attribution
• Workaround for the token-level problem, can consider phrases or sentences in passages.

• Input perturbation: Select tokens to drop from the input

• How to select?

• Valid and grammatical

• Behavioral Testing

• Observing change in model behavior with changes in the signal
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• Find nearby inputs, based on cosine Distance

• Learn a linear classifier based on model predictions on 
those points

• Use interpretable features

• Weights of the classifier indicate feature importance
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Problems with Input Perturbations

• How to perturb?

• Overall: “salient” gradients and inputs might not always be human interpretable

• General trend: if it does not match with human intuition, model is probably relying 
on biases.

• However, these biases are themselves not consistent / easy to interpret.
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• How much can be removed without changing the 
prediction? [Feng et al. 2018]

• Adversarial modifications

• Additions [Addsent SQuAD; Jia & Liang, 2017]

• Syntactic Paraphrases [SCPN; Iyyer et al., 2018]

• Also reveal biases.
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Method 3: Architectural Modifications

• Partial Input Baselines

• Idea: if the model still makes the 
correct decision despite not 
receiving the full input, model 
likely relies on some bias

• Also tried for VQA [Goyal et al. 2016], 
SQuAD [Kaushik & Lipton, 2018], 
among others.
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Mitigation of Biases

• Once bias is demonstrated, the next steps involve mitigation (reduction) of biases.

• Two broad paradigms:

• Pre-specified (known) biases (task or dataset-specific)

• Unspecified biases (more general)
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Case Study: Pre-specified Biases

�39

• Human moderation does not scale 

• Spurred a great deal of research on automatic 
detection of hate speech

Some examples might contain 
offensive or triggering content

Hate Speech in 
Online Platforms
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Annotation Artifacts in NLI [G*., Swayamdipta*, L., S., B., S., 2018]

https://aclweb.org/anthology/N18-2017


Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�43

Raw Data

Human  
Labeling

Evaluation

Deployment

Bias!

Bias!

Bias!
Bias!

Training a model

�43

The NLP 
Pipeline

Bias!

�43



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�43

Raw Data

Human  
Labeling

Evaluation

Deployment

Bias!

Bias!

Bias!
Bias!

Training a model

�43

The NLP 
Pipeline

Bias!

�43



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�43

Raw Data

Human  
Labeling

Evaluation

Deployment

Bias!

Bias!

Bias!
Bias!

Training a model

�43

The NLP 
Pipeline

Bias!

�43



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�44

Addressing Biases: Datasets

Raw Data

Human  
Labeling

Bias!

Bias!



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�44

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to 
remove instances that “leak” the correct answer, but 
because of the wrong reasons.

Raw Data

Human  
Labeling

Bias!

Bias!



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�44

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to 
remove instances that “leak” the correct answer, but 
because of the wrong reasons.

• Simple for known biases (rules / simple classifiers)

Raw Data

Human  
Labeling

Bias!

Bias!



Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

�44

Addressing Biases: Datasets

• One solution: Filtering / Downsampling the data to 
remove instances that “leak” the correct answer, but 
because of the wrong reasons.

• Simple for known biases (rules / simple classifiers)

• Also possible for unspecified biases!
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Labeling
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Dataset Filtering

�45

• What instances to filter?

• Key intuition: Examples which are relatively easy for a model might contain spurious 
correlations

• Easy examples can be detected:

• By simple model architectures [AFLite; LeBras et al., 2020]

• Based on how the training proceeds [Dataset Cartography; Swayamdipta et al., 
2020]

https://arxiv.org/abs/2002.04108
https://arxiv.org/abs/2009.10795
https://arxiv.org/abs/2009.10795
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Dataset Filtering

�54

• What instances to filter? 

• Key intuition: Examples which are relatively easy for a model might contain spurious 
correlations 

• Easy examples can be detected: 

• By simple model architectures [AFLite; LeBras et al., 2020] 

• Based on how the training proceeds [Dataset Cartography; Swayamdipta et al., 
2020]

https://arxiv.org/abs/2002.04108
https://arxiv.org/abs/2009.10795
https://arxiv.org/abs/2009.10795
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correctness confidence variability

Dataset Cartography [Swayamdipta et. al, 2020]

https://arxiv.org/abs/2009.10795
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Training Dynamics

• Ratio at which model 
prediction matches true 
class
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correctness confidence variability

̂ci =
1
E

E

∑
e=1

1[y*i = arg max
y

pθ(e)(y |xi)] ̂μi =
1
E

E

∑
e=1

pθ(e)(y*i ∣ xi)

across E training epochs…
Dataset Cartography [Swayamdipta et. al, 2020]

https://arxiv.org/abs/2009.10795


Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

 55

Training Dynamics

• Ratio at which model 
prediction matches true 
class

• Mean probability of the 
true class

• Standard deviation of the 
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correctness confidence variability

̂ci =
1
E

E

∑
e=1

1[y*i = arg max
y

pθ(e)(y |xi)] ̂μi =
1
E

E

∑
e=1

pθ(e)(y*i ∣ xi) ̂σi =
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e=1 (pθ(e)(y*i ∣ xi) − ̂μi)2

E

across E training epochs…
Dataset Cartography [Swayamdipta et. al, 2020]
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Training Dynamics

• Ratio at which model 
prediction matches true 
class

• Mean probability of the 
true class

• Standard deviation of the 
true class probability

correctness confidence variability

̂ci =
1
E

E

∑
e=1

1[y*i = arg max
y

pθ(e)(y |xi)] ̂μi =
1
E

E

∑
e=1

pθ(e)(y*i ∣ xi) ̂σi =
∑E

e=1 (pθ(e)(y*i ∣ xi) − ̂μi)2

E

across E training epochs… By-product of 

training!
Dataset Cartography [Swayamdipta et. al, 2020]

https://arxiv.org/abs/2009.10795
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Training 
Dynamics

Dataset Cartography [Swayamdipta et. al, 2020]
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Training 
Dynamics

Dataset Cartography [Swayamdipta et. al, 2020]
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Good luck and let's join hands 
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Sc**w you Trump supporters! 

https://arxiv.org/abs/2009.10795


Interpretability and Biases in NLP                                                                  UT-Austin | Swabha Swayamdipta

easy-to-le
arn

hard-to-l
earn

ambiguou
s

Dataset Cartography

�57 Dataset Cartography [Swayamdipta et. al, 2020]

Good luck and let's join hands 
to form unity. 

Sc**w you Trump supporters! 

All the flashbacks.. and all the 
memories. It really f*ing hurts...

POTUS lives rent free in the angry 
heads of twitting tw*ts..

https://arxiv.org/abs/2009.10795


Question: Doesn’t removing 
data hurt performance?

�58
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Addressing Biases: Models

�60

[Clark et al., 2019; He et al., 2019; Mahabadi et al., 2020]

https://arxiv.org/abs/1909.03683
https://www.aclweb.org/anthology/D19-6115/
https://arxiv.org/pdf/1909.06321.pdf
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Adversarial Methods
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Adversarial Methods
• Pre-specified biases

• Can the model predict something about the input itself? This is typically the bias feature.

• e.g. Can the model predict the gender from a professional bio? Given that we know 
models have gender bias [De-Arteaga et al., 2019]

• Now, the auxiliary is discouraged (ensure you cannot predict the bias) in an adversarial 
setting

• Might not entirely remove the information

�61
[Belinkov et al., 2019; Ganin et al., 2016]
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Bias Mitigation Summary
• Dataset Filtering Methods 

• Algorithms that differentiate data instances (AFLite, 
Dataset Cartography) 

• Can be applied to unspecified biases 

• Models with Auxiliary Objectives 

• Ensembles, Adversarial Approaches 

• Effective for pre-specified biases
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Bias Mitigation Summary
• Dataset Filtering Methods 

• Algorithms that differentiate data instances (AFLite, 
Dataset Cartography) 

• Can be applied to unspecified biases 

• Models with Auxiliary Objectives 

• Ensembles, Adversarial Approaches 

• Effective for pre-specified biases
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How effective are 
these methods?

Be careful of the term 
“debiasing”…
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This Lecture

�63

Discovering Biases via 
Interpretability Methods 

• Saliency Methods 

• Input Attribution 

• Architectural 
Modifications

Mitigating Biases 

• Filtering Datasets 

• Auxiliary Objectives

Biases in NLP                          

• Dataset Biases 

• Model Biases 



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

�64



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

�64



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

• The term “bias” can be overloaded: biases can be “good” or “bad”

�64



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

• The term “bias” can be overloaded: biases can be “good” or “bad”

• Interpretability methods can be used to detect and discover biases in models and data

�64



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

• The term “bias” can be overloaded: biases can be “good” or “bad”

• Interpretability methods can be used to detect and discover biases in models and data

• Bias discovery and bias mitigation is not necessarily a pipeline 

�64



Interpretability and Biases in NLP                                                                               UT-Austin | Swabha Swayamdipta

Summary

• Biases are present wherever humans are involved: data collection & model design

• The term “bias” can be overloaded: biases can be “good” or “bad”

• Interpretability methods can be used to detect and discover biases in models and data

• Bias discovery and bias mitigation is not necessarily a pipeline 

• Bias mitigation methods either focus on models or datasets.
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Thank you! 
Questions?
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