
Transfer Learning
March 4th, 2021
UW DATA 598

!1

Swabha
Swayamdipta

Transfer Learning in
Natural Language Processing

June 2, 2019
NAACL-HLT 2019

!2

Sebastian
Ruder

Matthew
Peters

Swabha
Swayamdipta

Thomas
Wolf

Slides adapted from…

Pan and Yang (2010)

What is transfer learning?

!3

https://www.cse.ust.hk/~qyang/Docs/2009/tkde_transfer_learning.pdf

Preliminaries

❏ Focus: Natural Language Processing
❏ Goal: provide broad overview of methods in transfer learning

❏ focusing on the most empirically successful methods in NLP (as of 2019)
❏ Demo:

❏ Transfer learning from language model to a text classification task in NLP

!4

Why transfer learning?

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

❏ In NLP, tasks share linguistic representations, structural similarities, etc.

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

❏ In NLP, tasks share linguistic representations, structural similarities, etc.
❏ Tasks can inform each other

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

❏ In NLP, tasks share linguistic representations, structural similarities, etc.
❏ Tasks can inform each other

❏ NLP: semantics are shared in tasks such as QA, sentiment classification etc.

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

❏ In NLP, tasks share linguistic representations, structural similarities, etc.
❏ Tasks can inform each other

❏ NLP: semantics are shared in tasks such as QA, sentiment classification etc.

❏ Empirically, transfer learning has resulted in state-of-the-art performance

!5

Why transfer learning?

❏ Annotated data is rare, make use of as much supervision as available.
❏ Many tasks share common knowledge about data

❏ In NLP, tasks share linguistic representations, structural similarities, etc.
❏ Tasks can inform each other

❏ NLP: semantics are shared in tasks such as QA, sentiment classification etc.

❏ Empirically, transfer learning has resulted in state-of-the-art performance
❏ for many supervised NLP tasks (e.g. classification, information extraction, Q&A, etc).

!5

Why transfer learning (in NLP)? Empirically...

Performance on Named Entity Recognition (NER) on CoNLL-2003 (English) over time

!6

Ruder (2019)

Types of transfer learning in NLP

!7

http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf

Ruder (2019)

We will
focus on
this

Types of transfer learning in NLP

!7

http://ruder.io/thesis/neural_transfer_learning_for_nlp.pdf

Agenda

[2] Pretraining [4] Adaptation

[3] What’s in a
representation?

[1] Introduction

!8

1. Introduction

!9

Sequential transfer learning

Learn on one task / dataset, then transfer to another task / dataset

word2vec
GloVe
skip-thought
InferSent
ELMo
ULMFiT
GPT
BERT

classification
sequence labeling
Q&A
....

Pretraining Adaptation

!10

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining
❏ Very common in vision, less in NLP due to lack of large supervised datasets

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining
❏ Very common in vision, less in NLP due to lack of large supervised datasets
❏ Machine translation

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining
❏ Very common in vision, less in NLP due to lack of large supervised datasets
❏ Machine translation
❏ NLI for sentence representations

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

!11

Pretraining tasks and datasets

❏ Unlabeled data and self-supervision

❏ Supervised pretraining
❏ Very common in vision, less in NLP due to lack of large supervised datasets
❏ Machine translation
❏ NLI for sentence representations
❏ Task-specific—transfer from one Q&A dataset to another

❏ Easy to gather very large corpora: Wikipedia, news, web crawl, social media, etc.
❏ Training takes advantage of distributional hypothesis: “You shall know a word by the company

it keeps” (Firth, 1957), often formalized as training some variant of language model
❏ Focus on efficient algorithms to make use of plentiful data

!11

Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

!12

Concrete example—word vectors
Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

PRP VBP PRP NN CC NN .

 I love my cat and dog .

!13

Concrete example—word vectors

Word embedding methods (e.g. word2vec) learn one vector per word:

cat = [0.1, -0.2, 0.4, …]

dog = [0.2, -0.1, 0.7, …]

PRP VBP PRP NN CC NN .

 I love my cat and dog .

I love my cat and dog . }-> “positive"

!14

Major Themes

!15

Major themes: From words to words-in-context

Word vectors

cats = [0.2, -0.3, …]

dogs = [0.4, -0.5, …]

!16

Major themes: From words to words-in-context

Word vectors

cats = [0.2, -0.3, …]

dogs = [0.4, -0.5, …]

Sentence / doc vectors

It’s raining
cats and dogs.

We have two
cats.

[0.8, 0.9, …]

[-1.2, 0.0, …]}

}

!16

Major themes: From words to words-in-context

Word vectors

cats = [0.2, -0.3, …]

dogs = [0.4, -0.5, …]

Sentence / doc vectors

It’s raining
cats and dogs.

We have two
cats.

[0.8, 0.9, …]

[-1.2, 0.0, …]}

}

Word-in-context
vectors

We have two cats.

}

[1.2, -0.3, …]

It’s raining cats and dogs.

}[-0.4, 0.9, …]

!16

Major themes: LM pretraining

!17

Major themes: LM pretraining

❏ Many successful pretraining approaches are based on language modeling

!17

Major themes: LM pretraining

❏ Many successful pretraining approaches are based on language modeling
❏ Informally, a LM learns Pϴ(text) or Pϴ(text | some other text)

!17

Major themes: LM pretraining

❏ Many successful pretraining approaches are based on language modeling
❏ Informally, a LM learns Pϴ(text) or Pϴ(text | some other text)

❏ Doesn’t require human annotation

!17

Major themes: LM pretraining

❏ Many successful pretraining approaches are based on language modeling
❏ Informally, a LM learns Pϴ(text) or Pϴ(text | some other text)

❏ Doesn’t require human annotation
❏ Many languages have enough text to learn high capacity model

!17

Major themes: LM pretraining

❏ Many successful pretraining approaches are based on language modeling
❏ Informally, a LM learns Pϴ(text) or Pϴ(text | some other text)

❏ Doesn’t require human annotation
❏ Many languages have enough text to learn high capacity model
❏ Versatile—can learn both sentence and word representations with a variety of

objective functions

!17

Major themes: pretraining vs target task

Choice of pretraining and target tasks are coupled

!18

Major themes: pretraining vs target task

❏ Sentence / document representations not useful for word level predictions

Choice of pretraining and target tasks are coupled

!18

Major themes: pretraining vs target task

❏ Sentence / document representations not useful for word level predictions
❏ Word vectors can be pooled across contexts, but often outperformed by other

methods

Choice of pretraining and target tasks are coupled

!18

Major themes: pretraining vs target task

❏ Sentence / document representations not useful for word level predictions
❏ Word vectors can be pooled across contexts, but often outperformed by other

methods
❏ In contextual word vectors, bidirectional context important

Choice of pretraining and target tasks are coupled

!18

Major themes: pretraining vs target task

❏ Sentence / document representations not useful for word level predictions
❏ Word vectors can be pooled across contexts, but often outperformed by other

methods
❏ In contextual word vectors, bidirectional context important

Choice of pretraining and target tasks are coupled

In general:

❏ Similar pretraining and target tasks → best results

!18

Agenda

[2] Pretraining [4] Adaptation

[3] What’s in a
representation?

[1] Introduction

!19

2. Pretraining

Image credit: Creative Stall
!20

Overview

❏ Language model pretraining

❏ Word vectors (types)

❏ Contextual word vectors (tokens)

❏ Self-supervised and Supervised pretraining

!21

Word Type RepresentationLM pretraining
word2vec, Mikolov et al (2013)

!22

 We [have a ??? and three] dogs

https://arxiv.org/abs/1301.3781

Word Type RepresentationLM pretraining
word2vec, Mikolov et al (2013)

!22

 We [have a ??? and three] dogs We have a ???

ELMo, Peters et al. 2018, ULMFiT (Howard &
Ruder 2018), GPT (Radford et al. 2018)

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Word Type RepresentationLM pretraining
word2vec, Mikolov et al (2013)

!22

 We [have a ??? and three] dogs We have a ???

 We have a MASK and three dogs

ELMo, Peters et al. 2018, ULMFiT (Howard &
Ruder 2018), GPT (Radford et al. 2018)

BERT, Devlin et al 2019
???

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1801.06146
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://arxiv.org/abs/1810.04805

Word vectors

!23

Why embed words?

!24

Why embed words?

❏ Embeddings are themselves parameters—can be learned

!24

Why embed words?

❏ Embeddings are themselves parameters—can be learned

❏ Sharing representations across tasks

!24

Why embed words?

❏ Embeddings are themselves parameters—can be learned

❏ Sharing representations across tasks

❏ Lower dimensional space

❏ Better for computation—difficult to handle sparse vectors.

!24

word2vec

Efficient algorithm + large scale training → high quality word vectors

(Mikolov et al., 2013)

!25

See also:
❏ Pennington et al. (2014): GloVe
❏ Bojanowski et al. (2017): fastText

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/abs/1607.04606

Contextual word vectors

!26

Contextual word vectors - Motivation

Word vectors compress all contexts into a single vector

Nearest neighbor GloVe vectors to “play”

VERB
playing
played

NOUN
game
games
players
football

ADJ
multiplayer

!27

Contextual word vectors - Motivation

Word vectors compress all contexts into a single vector

Nearest neighbor GloVe vectors to “play”

VERB
playing
played

NOUN
game
games
players
football

??
play
(theatrical)
Play

ADJ
multiplayer

!27

Contextual word vectors - Key Idea

✦ Instead of learning one vector per word type, learn a vector that depends on context

f(play | The kids play a game in the park.)

f(play | The Broadway play premiered yesterday.)

!=

✦ Many approaches based on language models.

✦ We’ll only look at a few.
!28

Pretraining Tasks

!29

Supervised Pretraining: CoVe

(McCann et al, NeurIPS 2017)
!30

https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors

Pretrain bidirectional
encoder with MT
supervision, extract
LSTM states

Supervised Pretraining: CoVe

(McCann et al, NeurIPS 2017)
!30

https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors

Pretrain bidirectional
encoder with MT
supervision, extract
LSTM states

Adding CoVe with
GloVe gives
improvements for
classification, NLI, Q&A

Supervised Pretraining: CoVe

(McCann et al, NeurIPS 2017)
!30

https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors

Self-supervised Pretraining: GPT

(Radford et al., 2018)
!31

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Self-supervised Pretraining: GPT

(Radford et al., 2018)

Pretrain large 12-layer left-to-right
Transformer Language Model.

!31

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Self-supervised Pretraining: GPT

(Radford et al., 2018)

Pretrain large 12-layer left-to-right
Transformer Language Model.

[More on Transformers in coming
slides]

!31

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Self-supervised Pretraining: GPT

(Radford et al., 2018)

Pretrain large 12-layer left-to-right
Transformer Language Model.

[More on Transformers in coming
slides]

Finetuning for sentence classification,
sentence pair classification and
multiple choice question- answer
classification gave state-of-the-art
results for 9 tasks.

!31

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Self-supervised Pretraining: GPT

(Radford et al., 2018)

Pretrain large 12-layer left-to-right
Transformer Language Model.

[More on Transformers in coming
slides]

Finetuning for sentence classification,
sentence pair classification and
multiple choice question- answer
classification gave state-of-the-art
results for 9 tasks.

More variants of GPT: 2 and 3!

!31

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Self-supervised Pretraining: BERT

(Devlin et al. 2019)

BERT pretrains both sentence and contextual word representations, using masked LM and next
sentence prediction. BERT-large has 340M parameters, 24 layers!

!32

https://arxiv.org/abs/1810.04805

Self-supervised Pretraining: BERT

(Devlin et al. 2019)

BERT pretrains both sentence and contextual word representations, using masked LM and next
sentence prediction. BERT-large has 340M parameters, 24 layers!

!32

https://arxiv.org/abs/1810.04805

Why does language modeling work so well?

!33

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.

!33

https://arxiv.org/abs/1809.10040

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.

!33

https://arxiv.org/abs/1809.10040

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.
❏ “They walked down the street to ???”

!33

https://arxiv.org/abs/1809.10040

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.
❏ “They walked down the street to ???”

❏ To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

!33

https://arxiv.org/abs/1809.10040

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.
❏ “They walked down the street to ???”

❏ To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

❏ Given enough data, a huge model, and enough compute, can do a
reasonable job!

!33

https://arxiv.org/abs/1809.10040

Why does language modeling work so well?

❏ Language modeling is a very difficult task, even for humans.
❏ Language models are expected to compress any possible context into a

vector that generalizes over possible completions.
❏ “They walked down the street to ???”

❏ To have any chance at solving this task, a model is forced to learn syntax,
semantics, encode facts about the world, etc.

❏ Given enough data, a huge model, and enough compute, can do a
reasonable job!

❏ Empirically works better than translation: “Language Modeling Teaches
You More Syntax than Translation Does” (Zhang et al. 2018)

!33

https://arxiv.org/abs/1809.10040

Hands-on #1:
Pretraining a Transformer Language Model

Image credit: Chanaky
!34

Hands-on: Overview

!35

Hands-on: Overview
Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) ⇨ can look intimidating and complex

!35

Hands-on: Overview

❏ Goals:
❏ Let’s make these recent works “uncool” i.e. as accessible as possible
❏ Expose all the details in a simple, concise and self-contained code-base
❏ Show that transfer learning can be simple (less hand-engineering) & fast (pretrained model)

Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) ⇨ can look intimidating and complex

!35

Hands-on: Overview

❏ Goals:
❏ Let’s make these recent works “uncool” i.e. as accessible as possible
❏ Expose all the details in a simple, concise and self-contained code-base
❏ Show that transfer learning can be simple (less hand-engineering) & fast (pretrained model)

❏ Plan
❏ Build a GPT-2 / BERT model
❏ Pretrain it on a rather large corpus with ~100M words
❏ Adapt it for a target task (question categorization) to get SOTA performances

Current developments in Transfer Learning combine new approaches for training schemes
(sequential training) as well as models (transformers) ⇨ can look intimidating and complex

!35

Hands-on pre-training
Our core model will be a Transformer (Vaswani et al., 2017). Large-scale transformer architectures (GPT-2,
BERT, XLM…) are very similar to each other and consist of: 

!36

https://arxiv.org/abs/1706.03762

Hands-on pre-training

❏ summing words and position embeddings
❏ applying a succession of transformer blocks with:

❏ layer normalisation
❏ a self-attention module
❏ dropout and a residual connection 

❏ another layer normalisation
❏ a feed-forward module with one hidden layer and a non

linearity: Linear ⇨ Non-Linear Activation ⇨ Linear
❏ dropout and a residual connection

❏ The

Illustration from (Child et al, 2019)

Our core model will be a Transformer (Vaswani et al., 2017). Large-scale transformer architectures (GPT-2,
BERT, XLM…) are very similar to each other and consist of: 

!36

http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1706.03762

Hands-on pre-training

❏ summing words and position embeddings
❏ applying a succession of transformer blocks with:

❏ layer normalisation
❏ a self-attention module
❏ dropout and a residual connection 

❏ another layer normalisation
❏ a feed-forward module with one hidden layer and a non

linearity: Linear ⇨ Non-Linear Activation ⇨ Linear
❏ dropout and a residual connection

❏ The

Illustration from (Child et al, 2019)

Our core model will be a Transformer (Vaswani et al., 2017). Large-scale transformer architectures (GPT-2,
BERT, XLM…) are very similar to each other and consist of: 

Main differences between GPT/GPT-2/BERT are the objective functions:
❏ causal language modeling for GPT
❏ masked language modeling for BERT (+ next sentence prediction)

We’ll play with both

!36

http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1706.03762

Hands-on pre-training
Let’s code the backbone of
our model!

!37

Hands-on pre-training
Let’s code the backbone of
our model!

!37

Hands-on pre-training
Let’s code the backbone of
our model!

!37

Hands-on pre-training
Let’s code the backbone of
our model!

!37

Hands-on pre-training
Two attention masks?

!38

Hands-on pre-training
Two attention masks?
❏ padding_mask masks the

padding tokens. It is specific
to each sample in the batch:

!38

Hands-on pre-training
Two attention masks?
❏ padding_mask masks the

padding tokens. It is specific
to each sample in the batch:

❏ attn_mask is the same
for all samples in the
batch. It masks the
previous tokens for
causal transformers:

!38

Hands-on pre-training
To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

!39

Hands-on pre-training
To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

We add these elements
with a pretraining model
encapsulating our model.

!39

Hands-on pre-training

1. A pretraining head on
top of our core model: we
choose a language
modeling head with tied
weights

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

We add these elements
with a pretraining model
encapsulating our model.

!39

Hands-on pre-training

1. A pretraining head on
top of our core model: we
choose a language
modeling head with tied
weights

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

We add these elements
with a pretraining model
encapsulating our model.

2. Initialize the weights

!39

Hands-on pre-training

1. A pretraining head on
top of our core model: we
choose a language
modeling head with tied
weights

To pretrain our model, we need to add a few elements: a head, a loss and initialize weights.

We add these elements
with a pretraining model
encapsulating our model.

2. Initialize the weights

3. Define a loss
function: we choose a
cross-entropy loss on
current (or next) token
predictions !39

Hands-on pre-training
Now let’s take care of our data and configuration

!40

Hands-on pre-training
Now let’s take care of our data and configurationWe'll use a pre-defined

open vocabulary
tokenizer: BERT’s model
cased tokenizer.

!40

Hands-on pre-training

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) ⇨
~50M parameters
causal model.

Now let’s take care of our data and configurationWe'll use a pre-defined
open vocabulary
tokenizer: BERT’s model
cased tokenizer.

!40

http://arxiv.org/abs/1901.02860

Hands-on pre-training

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) ⇨
~50M parameters
causal model.

Now let’s take care of our data and configurationWe'll use a pre-defined
open vocabulary
tokenizer: BERT’s model
cased tokenizer.

Use a large dataset for
pre-trainining:
WikiText-103 with 103M
tokens (Merity et al.,
2017).

!40

http://arxiv.org/abs/1901.02860
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

Hands-on pre-training

Hyper-parameters taken
from Dai et al., 2018
(Transformer-XL) ⇨
~50M parameters
causal model.

Now let’s take care of our data and configurationWe'll use a pre-defined
open vocabulary
tokenizer: BERT’s model
cased tokenizer.

Use a large dataset for
pre-trainining:
WikiText-103 with 103M
tokens (Merity et al.,
2017).

Instantiate our model
and optimizer

!40

http://arxiv.org/abs/1901.02860
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe

Hands-on pre-training
And we’re done: let’s train!

!41

Hands-on pre-training
And we’re done: let’s train!

!41

Hands-on pre-training

Go!

And we’re done: let’s train!

!41

Hands-on pre-training — Concluding remarks

❏ On pretraining
❏ Intensive: in our case 5h–20h on 8 V100 GPUs (few days w. 1 V100) to reach a good perplexity
⇨ share your pretrained models

❏ Robust to the choice of hyper-parameters (apart from needing a warm-up for transformers)
❏ Language modeling is a hard task, your model should not have enough capacity to overfit if

your dataset is large enough ⇨ you can just start the training and let it run.
❏ Masked-language modeling: typically 2-4 times slower to train than causal LM 

We only mask 15% of the tokens ⇨ smaller signal

!42

Hands-on pre-training — Concluding remarks

❏ First model:
❏ exactly the one we built together ⇨ a 50M parameters causal Transformer
❏ Trained 15h on 8 V100
❏ Reached a word-level perplexity of 29 on wikitext-103 validation set (quite competitive)

❏ Second model:
❏ Same model but trained with a masked-language modeling objective (see the repo)
❏ Trained 30h on 8 V100
❏ Reached a “masked-word” perplexity of 8.3 on wikitext-103 validation set

Dai et al., 2018
Wikitext-103 Validation/Test PPL

!43

http://arxiv.org/abs/1901.02860

Agenda

[2] Pretraining [4] Adaptation

[3] What’s in a
representation?

[1] Introduction

!44

3. What is in a Representation?

Image credit: Caique Lima
!45

Why care about what is in a representation?

!46

Why care about what is in a representation?

❏ Alternative to Extrinsic evaluation with downstream tasks
❏ Complex, diverse with task-specific quirks

!46

Why care about what is in a representation?

❏ Alternative to Extrinsic evaluation with downstream tasks
❏ Complex, diverse with task-specific quirks

❏ Measures language-awareness of representations
❏ To generalize to other tasks, new inputs
❏ As intermediates for possible improvements to pretraining

!46Swayamdipta, 2019

http://www.cs.cmu.edu/~sswayamd/swabha_thesis.pdf

Why care about what is in a representation?

❏ Alternative to Extrinsic evaluation with downstream tasks
❏ Complex, diverse with task-specific quirks

❏ Interpretability!
❏ Are we getting our results because of the right reasons?
❏ Uncovering biases...

❏ Measures language-awareness of representations
❏ To generalize to other tasks, new inputs
❏ As intermediates for possible improvements to pretraining

!46Swayamdipta, 2019

http://www.cs.cmu.edu/~sswayamd/swabha_thesis.pdf

What to analyze?

!47

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

!47

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

❏ Network Activations

!47

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

❏ Network Activations

❏ Alterations:
❏ Architecture

❏ (RNN / Transformer)

!47

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

❏ Network Activations

❏ Alterations:
❏ Architecture

❏ (RNN / Transformer)
❏ Layers

!47

What to analyze?

❏ Embeddings
❏ Word
❏ Contextualized

❏ Network Activations

❏ Alterations:
❏ Architecture

❏ (RNN / Transformer)
❏ Layers
❏ Pretraining Objectives

!47

Analysis Method 1: Visualization
Hold the embeddings / network activations static or frozen

!48

❏ Plotting embeddings faithfully into a lower
dimensional (2D/3D) space
❏ t-SNE van der Maaten & Hinton, 2008
❏ PCA projections

Visualizing Embedding Geometries

!49

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

❏ Plotting embeddings faithfully into a lower
dimensional (2D/3D) space
❏ t-SNE van der Maaten & Hinton, 2008
❏ PCA projections

Visualizing Embedding Geometries

Image: Tensorflow
!49

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://www.tensorflow.org/guide/embedding

❏ Plotting embeddings faithfully into a lower
dimensional (2D/3D) space
❏ t-SNE van der Maaten & Hinton, 2008
❏ PCA projections

Visualizing Embedding Geometries

❏ Visualizing word analogies Mikolov et al.
2013
❏ Spatial relations
❏ wking - wman + wwoman ~ wqueen

!49Pennington et al., 2014

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf

❏ Plotting embeddings faithfully into a lower
dimensional (2D/3D) space
❏ t-SNE van der Maaten & Hinton, 2008
❏ PCA projections

Visualizing Embedding Geometries

❏ Visualizing word analogies Mikolov et al.
2013
❏ Spatial relations
❏ wking - wman + wwoman ~ wqueen

❏ High-level view of lexical semantics
❏ Only a limited number of examples
❏ Connection to other tasks is unclear

Goldberg, 2017

!49Pennington et al., 2014

http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://arxiv.org/pdf/1310.4546.pdf
https://www.morganclaypool.com/doi/abs/10.2200/S00762ED1V01Y201703HLT037

❏ Neuron activation values correlate
with features / labels

Visualizing Neuron Activations

!50

❏ Neuron activation values correlate
with features / labels

Visualizing Neuron Activations

!50

Radford et al.,
2017

Karpathy et al., 2016

❏ Neuron activation values correlate
with features / labels

Visualizing Neuron Activations

!50

Radford et al.,
2017

Karpathy et al., 2016

❏ Neuron activation values correlate
with features / labels

Visualizing Neuron Activations

❏ Indicates learning of recognizable features
❏ How to select which neuron? Hard to scale!
❏ Interpretable != Important (Morcos et al., 2018)

!50

Radford et al.,
2017

https://arxiv.org/abs/1803.06959

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or other

seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017 !51

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or other

seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017

❏ Sheds light on architectures

!51

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or other

seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017

❏ Sheds light on architectures
❏ Having sophisticated attention mechanisms

can be a good thing!

!51

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or other

seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017

❏ Sheds light on architectures
❏ Having sophisticated attention mechanisms

can be a good thing!
❏ Layer-specific (layer 5 / layer 6 in fig.)

!51

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Visualization: Attention WeightsVisualizing Attention Weights
❏ Popular in machine translation, or other

seq2seq architectures:
❏ Alignment between words of source and

target.
❏ Long-distance word-word dependencies

(intra-sentence attention)

Vaswani et al., 2017

❏ Sheds light on architectures
❏ Having sophisticated attention mechanisms

can be a good thing!
❏ Layer-specific (layer 5 / layer 6 in fig.)

!51

❏ Interpretation can be tricky
❏ Few examples only - cherry picking?
❏ Robust corpus-wide trends? Next!

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

❏ Probe: Might be vulnerable to co-occurrence biases

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

❏ Probe: Might be vulnerable to co-occurrence biases
❏ “dogs in the neighborhood bark(s)”

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

!52

Analysis Method 2: Behavioral Probes

Linzen et al., 2016; Gulordava et al. 2018; Marvin et al., 2018

❏ RNN-based language models (RNN-based)
❏ number agreement in subject-verb

dependencies
❏ For natural and nonce/ungrammatical sentences
❏ LM perplexity differences

❏ RNNs outperform other non-neural baselines.

❏ Performance improves when trained explicitly with syntax
(Kuncoro et al. 2018)

❏ Probe: Might be vulnerable to co-occurrence biases
❏ “dogs in the neighborhood bark(s)”
❏ Nonce sentences might be too different from original...

Kuncoro et al. 2018

https://arxiv.org/abs/1611.01368
https://arxiv.org/abs/1803.11138
https://arxiv.org/abs/1808.09031
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/
https://www.aclweb.org/anthology/papers/P/P18/P18-1132/

Analysis Method 3: Classifier Probes

Hold the embeddings / network

activations static and

train a simple supervised

model on top

!53

Analysis Method 3: Classifier Probes

Hold the embeddings / network

activations static and

train a simple supervised

model on top

!53

Probe classification task
(Linear / MLP)

Probing Surface-level Features

!54
Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

❏ Given a sentence, predict properties such as
❏ Length
❏ Is a word in the sentence?

Probing Surface-level Features

!54
Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

❏ Given a word in a sentence predict properties such as:
❏ Previously seen words, contrast with language model
❏ Position of word in the sentence

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

❏ Given a sentence, predict properties such as
❏ Length
❏ Is a word in the sentence?

Probing Surface-level Features

!54
Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

❏ Given a word in a sentence predict properties such as:
❏ Previously seen words, contrast with language model
❏ Position of word in the sentence

❏ Checks ability to memorize

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

❏ Given a sentence, predict properties such as
❏ Length
❏ Is a word in the sentence?

Probing Surface-level Features

!54
Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

❏ Given a word in a sentence predict properties such as:
❏ Previously seen words, contrast with language model
❏ Position of word in the sentence

❏ Checks ability to memorize
❏ Well-trained, richer architectures tend to fare better

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

❏ Given a sentence, predict properties such as
❏ Length
❏ Is a word in the sentence?

Probing Surface-level Features

!54
Zhang et al. 2018; Liu et al., 2018; Conneau et al., 2018

❏ Given a word in a sentence predict properties such as:
❏ Previously seen words, contrast with language model
❏ Position of word in the sentence

❏ Checks ability to memorize
❏ Well-trained, richer architectures tend to fare better
❏ Training on linguistic data memorizes better

https://www.aclweb.org/anthology/W18-5448
https://homes.cs.washington.edu/~nfliu/papers/liu+levy+schwartz+tan+smith.repl4nlp2018.pdf
https://arxiv.org/abs/1805.01070

Layer-wise analysis (dynamic)Probing: Layers of the network

!55

Layer-wise analysis (dynamic)

❏ RNN layers: General linguistic properties
❏ Lowest layers: morphology
❏ Middle layers: syntax
❏ Highest layers: Task-specific semantics

❏ Transformer layers:
❏ Different trends for different tasks; middle-heavy
❏ Also see Tenney et. al., 2019

Probing: Layers of the network

!55

https://ai.google/research/pubs/pub48153

Fig. from Liu et al. (NAACL 2019)

Layer-wise analysis (dynamic)

❏ RNN layers: General linguistic properties
❏ Lowest layers: morphology
❏ Middle layers: syntax
❏ Highest layers: Task-specific semantics

❏ Transformer layers:
❏ Different trends for different tasks; middle-heavy
❏ Also see Tenney et. al., 2019

Probing: Layers of the network

!55

https://ai.google/research/pubs/pub48153

❏ Language modeling
outperforms other
unsupervised and supervised
objectives.
❏ Machine Translation
❏ Dependency Parsing
❏ Skip-thought

❏ Low-resource settings (size
of training data) might result in
opposite trends.

Zhang et al., 2018; Blevins et al., 2018; Liu et al., 2019;

Probing: Pretraining Objectives

!56

https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://www.aclweb.org/anthology/papers/P/P18/P18-2003/
https://arxiv.org/abs/1903.08855
https://arxiv.org/abs/1903.08855
https://arxiv.org/abs/1903.08855

❏ Representations are predictive of certain linguistic phenomena:
❏ Alignments in translation, Linguistic features (e.g. syntactic hierarchies)

What have we learnt so far?

!57

❏ Representations are predictive of certain linguistic phenomena:
❏ Alignments in translation, Linguistic features (e.g. syntactic hierarchies)

What have we learnt so far?

!57

❏ Network architectures determine what is in a representation
❏ Syntax and BERT Transformer (Tenney et al., 2019; Goldberg, 2019)
❏ Different layer-wise trends across architectures

https://arxiv.org/abs/1905.05950
https://arxiv.org/abs/1901.05287

!58

❏ What information should a good probe look for?
❏ Probing a probe!

Open questions about probes

!58

❏ What information should a good probe look for?
❏ Probing a probe!

Open questions about probes

❏ What does probing performance tell us?
❏ Hard to synthesize results across a variety of baselines...

!58

❏ What information should a good probe look for?
❏ Probing a probe!

Open questions about probes

❏ What does probing performance tell us?
❏ Hard to synthesize results across a variety of baselines...

❏ Can introduce some complexity in itself
❏ linear or non-linear classification.
❏ behavioral: design of input sentences

!58

❏ What information should a good probe look for?
❏ Probing a probe!

Open questions about probes

❏ What does probing performance tell us?
❏ Hard to synthesize results across a variety of baselines...

❏ Can introduce some complexity in itself
❏ linear or non-linear classification.
❏ behavioral: design of input sentences

❏ Should we be using probes as evaluation metrics?
❏ might defeat the purpose...

❏ Progressively erase or mask
network components
❏ Word embedding dimensions
❏ Hidden units
❏ Input - words / phrases

Analysis Method 4: Model Alterations

!59

❏ Progressively erase or mask
network components
❏ Word embedding dimensions
❏ Hidden units
❏ Input - words / phrases

Analysis Method 4: Model Alterations

Li et al., 2016 !59

https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220

So, what is in a representation?

!60

So, what is in a representation?

❏ Depends on how you look at it!

❏ Visualization:
❏ bird’s eye view
❏ few samples -- might call to mind cherry-picking

❏ Probes:
❏ discover corpus-wide specific properties
❏ may introduce own biases...

❏ Network ablations:
❏ great for improving modeling,
❏ could be task specific

!60

So, what is in a representation?

❏ Depends on how you look at it!

❏ Visualization:
❏ bird’s eye view
❏ few samples -- might call to mind cherry-picking

❏ Probes:
❏ discover corpus-wide specific properties
❏ may introduce own biases...

❏ Network ablations:
❏ great for improving modeling,
❏ could be task specific

!60

❏ Analysis methods as tools to aid model development!

Agenda

[2] Pretraining [4] Adaptation

[3] What’s in a
representation?

[1] Introduction

!61

4. Adaptation

Image credit: Ben Didier
!62

Several orthogonal directions we can make decisions on:

4 – How to adapt the pretrained model

Several orthogonal directions we can make decisions on:

1. Architectural modifications?  
How much to change the pretrained model architecture for adaptation  
 

4 – How to adapt the pretrained model

Several orthogonal directions we can make decisions on:

1. Architectural modifications?  
How much to change the pretrained model architecture for adaptation  
 

2. Optimization schemes?  
Which weights to train during adaptation and following what schedule  

4 – How to adapt the pretrained model

4.1 – Architecture
Two general options:

Image credit:
Darmawansyah

!64

4.1 – Architecture
Two general options:

Image credit:
Darmawansyah

A. Keep pretrained model internals unchanged: 
Add classifiers on top, embeddings at the bottom, use outputs as features 

!64

4.1 – Architecture
Two general options:

Image credit:
Darmawansyah

A. Keep pretrained model internals unchanged: 
Add classifiers on top, embeddings at the bottom, use outputs as features 

B. Modify pretrained model internal architecture:  
Initialize encoder-decoders, task-specific modifications, adapters

!64

4.1 – Architecture
Two general options:

Image credit:
Darmawansyah

A. Keep pretrained model internals unchanged: 
Add classifiers on top, embeddings at the bottom, use outputs as features 

B. Modify pretrained model internal architecture:  
Initialize encoder-decoders, task-specific modifications, adapters

!64

4.1.A – Architecture: Keep model unchanged
General workflow:

!65

4.1.A – Architecture: Keep model unchanged
General workflow:

!65

1. Remove pretraining task head if not useful
for target task

a. Example: remove softmax classifier from pretrained
LM

b. Not always needed: some adaptation schemes re-
use the pretraining objective/task, e.g. for multi-task
learning

4.1.A – Architecture: Keep model unchanged

General workflow:

!66

Also known as finetuning*

4.1.A – Architecture: Keep model unchanged

General workflow:

!66

2. Add target task-specific layers on
top/bottom of pretrained model

a. Simple: adding linear layer(s) on top of
the pretrained model

Also known as finetuning*

4.1.A – Architecture: Keep model unchanged

General workflow:

General,
pretrained

!66

2. Add target task-specific layers on
top/bottom of pretrained model

a. Simple: adding linear layer(s) on top of
the pretrained model

Also known as finetuning*

4.1.A – Architecture: Keep model unchanged

General workflow:

Task-specific,
randomly initialized

General,
pretrained

!66

2. Add target task-specific layers on
top/bottom of pretrained model

a. Simple: adding linear layer(s) on top of
the pretrained model

Also known as finetuning*

Hands-on #2:
Adapting our pretrained model

Image credit: Chanaky
!67

Hands-on: Model adaptation

❏ Plan
❏ Start from our Transformer language model
❏ Adapt the model to a target task:

❏ keep the model core unchanged, load the pretrained weights
❏ add a linear layer on top, newly initialized
❏ use additional embeddings at the bottom, newly initialized

Let’s see how a simple fine-tuning scheme can be implemented with our pretrained model:

!68

Adaptation task

❏ We select a text classification task as the downstream task

❏ TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002) 

❏ TREC consists of open-domain, fact-based questions divided into broad semantic categories contains 5500 labeled
training questions & 500 testing questions with 6 labels: 

NUMERIC, LOCATION, HUMAN, DESCRIPTION, ENTITY, ABBREVIATION

Hands-on: Model adaptation

!69

https://aclweb.org/anthology/C02-1150

Adaptation task

❏ We select a text classification task as the downstream task

❏ TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002) 

❏ TREC consists of open-domain, fact-based questions divided into broad semantic categories contains 5500 labeled
training questions & 500 testing questions with 6 labels: 

NUMERIC, LOCATION, HUMAN, DESCRIPTION, ENTITY, ABBREVIATION

Hands-on: Model adaptation

Ex:
★ How did serfdom develop in and then leave Russia ? —> DESCRIPTION
★ What films featured the character Popeye Doyle ? —> ENTITY

!69

https://aclweb.org/anthology/C02-1150

Adaptation task

❏ We select a text classification task as the downstream task

❏ TREC-6: The Text REtrieval Conference (TREC) Question Classification (Li et al., COLING 2002) 

❏ TREC consists of open-domain, fact-based questions divided into broad semantic categories contains 5500 labeled
training questions & 500 testing questions with 6 labels: 

NUMERIC, LOCATION, HUMAN, DESCRIPTION, ENTITY, ABBREVIATION

Hands-on: Model adaptation

Ex:
★ How did serfdom develop in and then leave Russia ? —> DESCRIPTION
★ What films featured the character Popeye Doyle ? —> ENTITY

(Howard and Ruder, ACL 2018)

Transfer learning models shine on this type of low-resource task
!69

https://aclweb.org/anthology/C02-1150
https://arxiv.org/abs/1801.06146

Hands-on: Model adaptation

First adaptation scheme

!70

Hands-on: Model adaptation

(Radford et al., 2018)

First adaptation scheme

!70

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

❏ Modifications:
❏ Keep model internals unchanged
❏ Add a linear layer on top
❏ Add an additional embedding (classification token) at the bottom 

Hands-on: Model adaptation

(Radford et al., 2018)

First adaptation scheme

!70

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

❏ Modifications:
❏ Keep model internals unchanged
❏ Add a linear layer on top
❏ Add an additional embedding (classification token) at the bottom 

❏ Computation flow:
❏ Model input: the tokenized question with a classification token at the end
❏ Extract the last hidden-state associated to the classification token
❏ Pass the hidden-state in a linear layer and softmax to obtain class

probabilities

Hands-on: Model adaptation

(Radford et al., 2018)

First adaptation scheme

!70

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

!71

Hands-on: Model adaptation
Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Other fine tuning hyper parameters
from Radford et al., 2018

!71

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Other fine tuning hyper parameters
from Radford et al., 2018

!71

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Other fine tuning hyper parameters
from Radford et al., 2018

- trim to the transformer input size
& add a classification token at the
end of each sample,

!71

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Other fine tuning hyper parameters
from Radford et al., 2018

- trim to the transformer input size
& add a classification token at the
end of each sample,
- pad to the left,

!71

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation

Let’s load and prepare our dataset:

Fine-tuning hyper-parameters:
– 6 classes in TREC-6
– Other fine tuning hyper parameters
from Radford et al., 2018

- trim to the transformer input size
& add a classification token at the
end of each sample,
- pad to the left,
- convert to tensors.

!71

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Hands-on: Model adaptation
Adapt our model architecture

!72

Hands-on: Model adaptation
Adapt our model architecture

Keep our pretrained model
unchanged as the backbone.

!72

Hands-on: Model adaptation
Adapt our model architecture

Replace the pre-training head
(language modeling) with the
classification head:
A linear layer, which takes as
input the hidden-state of the
[CLF] token (using a mask)

Keep our pretrained model
unchanged as the backbone.

!72

Hands-on: Model adaptation
Adapt our model architecture

Replace the pre-training head
(language modeling) with the
classification head:
A linear layer, which takes as
input the hidden-state of the
[CLF] token (using a mask)

Keep our pretrained model
unchanged as the backbone.

* Initialize all the weights of
the model.

!72

Hands-on: Model adaptation
Adapt our model architecture

Replace the pre-training head
(language modeling) with the
classification head:
A linear layer, which takes as
input the hidden-state of the
[CLF] token (using a mask)

Keep our pretrained model
unchanged as the backbone.

* Initialize all the weights of
the model.
* Reload common weights
from the pretrained model.

!72

Hands-on: Model adaptation
Our fine-tuning code:

!73

Hands-on: Model adaptation
Our fine-tuning code:
A simple training update function:
* prepare inputs: transpose and
build padding & classification
token masks
* we have options to clip and
accumulate gradients

!73

Hands-on: Model adaptation
Our fine-tuning code:

We will evaluate on our validation
and test sets:
* validation: after each epoch
* test: at the end

A simple training update function:
* prepare inputs: transpose and
build padding & classification
token masks
* we have options to clip and
accumulate gradients

!73

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

!74

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

!74

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

We are at the state-of-the-art
(ULMFiT)

!74

Hands-on: Model adaptation – Results
We can now fine-tune our model on TREC:

We are at the state-of-the-art
(ULMFiT)

Remarks:
❏ The error rate goes down quickly! After one epoch we already have >90% accuracy. 
⇨ Fine-tuning is highly data efficient in Transfer Learning

❏ We took our pre-training & fine-tuning hyper-parameters straight from the literature on related models. 
⇨ Fine-tuning is often robust to the exact choice of hyper-parameters

!74

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few additional words on
robustness & variance.

!75

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few additional words on
robustness & variance.

❏ Large pretrained models (e.g. BERT large) are
prone to degenerate performance when fine-
tuned on tasks with small training sets.

!75

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few additional words on
robustness & variance.

❏ Large pretrained models (e.g. BERT large) are
prone to degenerate performance when fine-
tuned on tasks with small training sets.

❏ Observed behavior is often “on-off”: it either works
very well or doesn’t work at all.

Phang et al., 2018
!75

https://arxiv.org/abs/1811.01088v2

Hands-on: Model adaptation – Results
Let’s conclude this hands-on with a few additional words on
robustness & variance.

❏ Large pretrained models (e.g. BERT large) are
prone to degenerate performance when fine-
tuned on tasks with small training sets.

❏ Observed behavior is often “on-off”: it either works
very well or doesn’t work at all.

❏ Understanding the conditions and causes of this
behavior (models, adaptation schemes) is an
open research question.

Phang et al., 2018
!75

https://arxiv.org/abs/1811.01088v2

4.2 – Optimization

Image credit: ProSymbols, purplestudio, Markus, Alfredo
!76

4.2 – Optimization

Several directions when it comes to the optimization itself:

Image credit: ProSymbols, purplestudio, Markus, Alfredo
!76

4.2 – Optimization

Several directions when it comes to the optimization itself:

Image credit: ProSymbols, purplestudio, Markus, Alfredo
!76

A. Choose which weights we should update  
Feature extraction, fine-tuning, adapters 

4.2 – Optimization

Several directions when it comes to the optimization itself:

Image credit: ProSymbols, purplestudio, Markus, Alfredo
!76

A. Choose which weights we should update  
Feature extraction, fine-tuning, adapters 

B. Consider practical trade-offs  
Space and time complexity, performance

4.2.A – Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

Image credit: purplestudio
!77

4.2.A – Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

Image credit: purplestudio
!77

A. Do not change pretrained weights 
Feature extraction, adapters 

4.2.A – Optimization: Which weights?

The main question: To tune or not to tune (the pretrained weights)?

Image credit: purplestudio
!77

A. Do not change pretrained weights 
Feature extraction, adapters 

B. Change pretrained weights 
Fine-tuning

4.2.A – Optimization: Which weights?

Don’t touch the pretrained weights! 
 
Feature extraction:
❏ Weights are frozen
❏ A linear classifier is trained on top of the

pretrained representations
❏ Don’t just use features of the top layer!
❏ Learn a linear combination of layers

(Peters et al., NAACL 2018, Ruder et al.,
AAAI 2019)

❄

https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1705.08142
https://arxiv.org/abs/1705.08142

4.2.A – Optimization: Which weights?

Don’t touch the pretrained
weights! 
 
Adapters
❏ Task-specific modules that are

added in between existing
layers

❏ Only adapters are trained

!79

4.2.A – Optimization: Which weights?

Yes, change the pretrained weights!

!80

4.2.A – Optimization: Which weights?

Yes, change the pretrained weights!

!80

Fine-tuning:

4.2.A – Optimization: Which weights?

Yes, change the pretrained weights!

!80

Fine-tuning:
❏ Pretrained weights are used as initialization

for parameters of the downstream model

4.2.A – Optimization: Which weights?

Yes, change the pretrained weights!

!80

Fine-tuning:
❏ Pretrained weights are used as initialization

for parameters of the downstream model
❏ The whole pretrained architecture is

trained during the adaptation phase

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.B – Optimization: Trade-offs

!81

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.B – Optimization: Trade-offs

!81

A. Space complexity 
Task-specific modifications, additional parameters, parameter reuse  

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.B – Optimization: Trade-offs

!81

A. Space complexity 
Task-specific modifications, additional parameters, parameter reuse  

B. Time complexity 
Training time  

Several trade-offs when choosing which weights to update:

Image credit: Alfredo

4.2.B – Optimization: Trade-offs

!81

A. Space complexity 
Task-specific modifications, additional parameters, parameter reuse  

B. Time complexity 
Training time  

C. Performance

4.2.B – Optimization trade-offs: Space

Many Few

Feature
extraction

Fine-tuningAdapters
Task-specific modifications

!82

4.2.B – Optimization trade-offs: Space

Many Few

Feature
extraction

Fine-tuningAdapters
Task-specific modifications

Many Few

Feature
extraction

Fine-tuningAdaptersAdditional parameters

!82

4.2.B – Optimization trade-offs: Space

Many Few

Feature
extraction

Fine-tuningAdapters
Task-specific modifications

Many Few

Feature
extraction

Fine-tuningAdaptersAdditional parameters

All NoneFeature
extraction

Fine-tuningAdaptersParameter reuse

!82

Feature
extraction

Fine-tuningAdaptersTraining time

Slow Fast

4.2.B – Optimization trade-offs: Time

!83

4.2.B – Optimization trade-offs: Performance

!84

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

4.2.B – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them

!84

https://arxiv.org/abs/1903.05987

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar

4.2.B – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them

!84

https://arxiv.org/abs/1903.05987

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar
❏ Fine-tuning BERT on textual similarity tasks works significantly better

4.2.B – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them

!84

https://arxiv.org/abs/1903.05987

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar
❏ Fine-tuning BERT on textual similarity tasks works significantly better
❏ Adapters achieve performance competitive with fine-tuning

4.2.B – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them

!84

https://arxiv.org/abs/1903.05987

❏ Rule of thumb: If task source and target tasks are dissimilar*, use feature
extraction (Peters et al., 2019)

❏ Otherwise, feature extraction and fine-tuning often perform similar
❏ Fine-tuning BERT on textual similarity tasks works significantly better
❏ Adapters achieve performance competitive with fine-tuning
❏ Anecdotally, Transformers are easier to fine-tune (less sensitive to hyper-

parameters) than recurrent neural nets (e.g. LSTMs)

4.2.B – Optimization trade-offs: Performance

*dissimilar: certain capabilities (e.g. modelling inter-sentence relations) are
beneficial for target task, but pretrained model lacks them

!84

https://arxiv.org/abs/1903.05987

In summary

[2] Pretraining [4] Adaptation

[3] What’s in a
representation?

[1] Introduction

!85

!86

Pretraining tasks

!86

Pretraining tasks

More diverse self-supervised objectives

!86

Pretraining tasks

More diverse self-supervised objectives

❏ computer vision

Sampling a patch and a neighbour and
predicting their spatial configuration
(Doersch et al., ICCV 2015)

Image colorization (Zhang et al.,
ECCV 2016)

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1603.08511
https://arxiv.org/abs/1603.08511

!86

Pretraining tasks

More diverse self-supervised objectives

❏ computer vision

Sampling a patch and a neighbour and
predicting their spatial configuration
(Doersch et al., ICCV 2015)

Image colorization (Zhang et al.,
ECCV 2016)

❏ Self-supervision in language mostly based
on word co-occurrence (Ando and Zhang,
2005) Instead, supervision on different
levels of meaning

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1603.08511
https://arxiv.org/abs/1603.08511
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf

!86

Pretraining tasks

More diverse self-supervised objectives

❏ computer vision

Sampling a patch and a neighbour and
predicting their spatial configuration
(Doersch et al., ICCV 2015)

Image colorization (Zhang et al.,
ECCV 2016)

❏ Self-supervision in language mostly based
on word co-occurrence (Ando and Zhang,
2005) Instead, supervision on different
levels of meaning
❏ Discourse, document, sentence, etc.

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1603.08511
https://arxiv.org/abs/1603.08511
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf

!86

Pretraining tasks

More diverse self-supervised objectives

❏ computer vision

Sampling a patch and a neighbour and
predicting their spatial configuration
(Doersch et al., ICCV 2015)

Image colorization (Zhang et al.,
ECCV 2016)

❏ Self-supervision in language mostly based
on word co-occurrence (Ando and Zhang,
2005) Instead, supervision on different
levels of meaning
❏ Discourse, document, sentence, etc.
❏ Using other signals, e.g. meta-data

https://arxiv.org/abs/1505.05192
https://arxiv.org/abs/1603.08511
https://arxiv.org/abs/1603.08511
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf
http://www.jmlr.org/papers/volume6/ando05a/ando05a.pdf

Pretraining tasks

!87

Pretraining tasks
Need for grounded representations

!87

https://openreview.net/forum?id=AzxEzvpdE3Wcy
http://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/1901.05415

Pretraining tasks
Need for grounded representations

❏ Limits of distributional hypothesis—difficult to learn certain types of
information from raw text
❏ Human reporting bias: not stating the obvious (Gordon and Van Durme, AKBC 2013)
❏ Common sense isn’t written down
❏ No grounding to other modalities 

!87

https://openreview.net/forum?id=AzxEzvpdE3Wcy
http://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/1901.05415

Pretraining tasks
Need for grounded representations

❏ Limits of distributional hypothesis—difficult to learn certain types of
information from raw text
❏ Human reporting bias: not stating the obvious (Gordon and Van Durme, AKBC 2013)
❏ Common sense isn’t written down
❏ No grounding to other modalities 

❏ Possible solutions:
❏ Incorporate other structured knowledge (e.g. knowledge bases like ERNIE, Zhang et al 2019)
❏ Multimodal learning (e.g. with visual representations like VideoBERT, Sun et al. 2019)
❏ Interactive/human-in-the-loop approaches (e.g. dialog, Hancock et al. 2018)

!87

https://openreview.net/forum?id=AzxEzvpdE3Wcy
http://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/1901.05415

Continual learning

❏ Current transfer learning performs adaptation once.
❏ Ultimately, we’d like to have models that continue to retain and accumulate

knowledge across many tasks (Yogatama et al., 2019).
❏ No distinction between pretraining and adaptation; just one stream of tasks.
❏ Main challenge towards this: Catastrophic forgetting.

!88

https://arxiv.org/abs/1901.11373

Thank you!
Questions?

!89

https://swabhs.com

Email: swabhas@allenai.org

@swabhz

Other Resources:
Colab
Full tutorial Video
Tutorial  
Slides

https://swabhs.com
mailto:swabhas@allenai.org
https://colab.research.google.com/drive/18BMXaN6p_dCi_oSqxOfPTPYdaCEhp1CB
https://vimeo.com/359399507
https://www.aclweb.org/anthology/N19-5004/
https://swabhs.com/assets/pdf/talks/swabha-uw-data-598-tl.pdf

