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IMAGENET [Deng et al., CVPR 2009]
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Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?
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Premise Two dogs are running 
through a field.

Hypothesis The pets are 
sitting on a couch.

 True               → Entailment 

 False              → Contradiction 

 Cannot Say  → Neutral

[Katz, 1972; van Benthem, 2008; Dagan et al., 2006]
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Premise

Two dogs are 
running through 

a field.

Hypothesis

The pets are 
sitting on a 

couch.

DAM - Decomposable Attention Model (Parikh et. al. 2016) 
ESIM - Enhanced Sequential Inference Model (Chen et. al., 2017) 
DIIN - Densely Interactive Inference Network (Gong et. al. 2018)
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Premise

Hypothesis fastText [Joulin et. al. 2017]
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Hypothesis
The little boy is diving off the diving 

board because he is an excellent 
swimmer.

 True               →Entailment 

 False              →Contradiction 

 Cannot Say  →Neutral
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Over half the data can be correctly classified without 

ever observing the premise!

Poliak et. al., 2018, 
 Glockner et. al., 2018
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•Annotation Artifacts: Clues which give away the 
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•Word-class association via PPMI: 
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OUTDOORS 

LEAST 

INSTRUMENT 

OUTSIDE 

ANIMAL

TALL 

FIRST 

COMPETITION 

SAD 

FAVORITE

NOBODY 

SLEEPING 

NO 

TV 

CAT

max{0, log
p(word,class)

p(.,class)p(word, .)
}

C EN
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Purpose  

Clauses

A group of female 
athletes are huddled 
together and excited.

Hypothesis

They are huddled 
together  

because they are 
 working together.

Premise

Modifiers

A middle-aged man works 
under the engine of a train 

on rail tracks.

Hypothesis

A man is doing 
work on a black 
Amtrak train.

Premise
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painting the 
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Cats!

Three dogs racing 
on racetrack.

Hypothesis

Three cats race on 
a track.

Premise
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A woman selling bamboo sticks talking to two 
men on a loading dock.Premise

Contradiction A woman is not taking money for any of her 
sticks.

Entailment There are at least three people on a loading 
dock.

Neutral A woman is selling bamboo sticks to help provide 
for her family
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DAM - Decomposable Attention Model [Parikh et. al. 2016] 
ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017] 
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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NLI models learn from lexical cues rather than 

entailment semantics.
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Input
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Transformed 
Input
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Filtering hypothesis-only artifacts

•Other kinds of artifacts. For 
e.g. shortening the premise. 

•Examples with artifacts are 
still valid examples…

•Hard examples exhibit their 
own artifacts!

 25
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Goal

•  Balance out the occurrence of 
different phenomena in the dataset 

•  Filter out a majority of the 
samples which exhibit artifacts.

•  Avoid head phenomena 
redundancy
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Adversarial Filtering of Dataset Biases [ L., Swayamdipta, B., Z., S., P. & C. (in submission) ]

Insights

i. The models that exploit artifacts, can be used to 
detect artifacts! Better than manual identification… 
(e.g. hypothesis-only artifacts)

ii. Examples with artifacts can be classified correctly 
by multiple models.
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How predictable is a sample?

•Can it be predicted by a simple model?

•How much training does it take to predict it?

•How confident is the model?

•Can it be predicted by several simple models?

Ensembles of 

Linear ClassifiersPredictability Score
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Algorithm
•Start with an initial feature representation, ɸ

•Train multiple models on random partitions of the remaining data.

•Discard the top-k examples which are correctly identified by most models, iteratively, 
till the ensemble is no longer confident.

• Lightweight Adversarial Filtering (AFLite) :  

• linear models  

• fixed feature representation, ɸ.

Precursor: Zellers et al., 2018; 2019 
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Follow-up questions

•Is AFLite optimal? 

•No! It’s a greedy procedure

•Is there an optimal variant? 

•Yes! But intractable — subset selection problem.

•How would it work? 

•Find the smallest subset, any train-test split of which achieves high accuracy, 
but does not generalize to held-out data outside the subset. 

•Mini-max optimization problem
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Evaluation Setting

•Extrinsic Evaluation: 

•Model performance on test before / after 
filtering. 

•Training data also changes to account for 
distributional differences 

•Intrinsic Evaluation: 

•Filtered dataset properties

Unfiltered 
Train Filtered Train

Unfiltered 
Test ✔

Filtered Test ✔
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Actually not close to human performance!
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Comparison with Hyp-Only Filtering

•AFLite retains generalizability to 
many examples. 

•Manually detecting artifacts can 
only get rid of some 

•Manual filtering for balancing 
artifacts might not be effective.
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Digging Deeper Again

•Different word-class associations.
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•Overall word-class association decreases
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Effect 3: Ambiguous Artifacts
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A nearest neighbor perspective

AFLite retains diversity of examples
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Looking forward:  Can 
we reuse filtered out 
data?

Performance on 
some large-scale 
datasets could be 
misleading.

English-only #BenderRule

Data

What makes a good 
feature representation 
for adversarial 
filtering? How to 
reduce model 
dependence?
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Data

Machine 
Learning
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