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More data, better prediction®

100
€he New Hork Eimes

8 75
g o O
: Finally, a Machine That
& Can Finish Your Sentence
E P Completing someone else’s thought is not an easy trick for A.l.
32 { s©,’0 But new systems are starting to crack the code of natural
[2" o5 ‘o ) language.

o/

Little Less More Even More
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Datasets abound!

SWAG: A Large-Scale Adversarial Dataset

SQUAD QUAC

() Sentiment Analysis Question Answering in Context

The Stanford Question Answering Dataset

The Stanford Natural Language Inference (SNLI) Corpus

Mul _ Story Cloze Test and ROCStories Corpora
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A simple quiz

Cow Cow Cow Cow
Cow Cow
- person person

Beery et al., 2018
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A simple quiz
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Natural Language Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

Two dogs are running

o _} o
Premise through a field O True Entailment

wa,lse — Contradiction

O Cannot Say — Neutral

The pets are [Katz, 1972; van Benthem, 2008; Dagan et al., 20006]

8

Hypothesis

sitting on a couch.
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Two dogs are
running through
a field.
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NLI Dataset Creation Process

There are animals
outdoors.

Two dogs are
running through
a field.

Neutral Some puppies are
s 4 running to catch a,
stick.

Premise

e Stanford NLI [Bowman et. al, 2015] 570 K

e Multi-genre NLI [Williams et. al., 2017] 433 K
e Matched and Mismatched Test Sets

The pets are sitting
on
a couch.




Leaderboard progress

# Team Name Notebook Team Members Score Entries Last
1 bgm 0.90557 4 14d
2 Haoming Jiang 0.87923 10 Tmo
3 Xiaodong Liu 0.86443 4 10mo
4 Anonymous 0.86351 2 1y
9 anonymous11111 0.85177 18 Tmo
6 Ariel 0.85065 41 5mo
7 sherry77 . 0.85034 17 5mo
-
Q  Bidirectional LSTM &
104 gabrielalmeida 24 0.67313 5 8mo
105 Zippy 0.67160 2 1y
106 kudkudak 0.66435 2 1y
107 Shawn Tan 0.65271 1 6d

Q CBOW
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NLI as Text Classification

Two dogs are
running through

Premise

The pets are

sitting on a
couch.

Hypothesis

DAM - Decomposable Attention Model (Parikh et. al. 2016)
ESIM - Enhanced Sequential Inference Model (Chen et. al., 2017)

DIIN - Densely Interactive Inference Network (Gong et. al. 2018)
11
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A simple experiment

Premise x\‘

fastText [Joulin et. al. 201’7]

Hypothesis

12 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Intuitively...

Given no premise, is a hypothesis true, false or neither?

13 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Intuitively...

The little boy is diving off the diving
Hypothesis board because he is an excellent
SWimmer.

Given no premise, is a hypothesis true, false or neither?

O True — Entailment
O False — Contradiction

O Cannot Say — Neutral

13 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]
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Accuracy (%)

70.0

5R.5

35.0

17.5

0.0

Over half

SNLI

| Majority Class

B Hypothesis-only

53.9

orrectly clas sified without

be C .
the data ¢a” g the prermse\.

ever oD servin
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o Majority Class B Hypothesis-only

70.0
5R.5

35.0

Accuracy (%)

17.5

0.0

SNLI MultiNLI MultiNLI

Matched Mismatched

Poliak et. al., 2018,
Glockner et. al., 2018

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]
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Digging Deeper &

¢ Annotation Artifacts: Clues which give away the
correct prediction without any reasoning.

¢ Hypothesis-only artifacts are class-specific.

® Word-class association via PPMI:

p(word, class)

max{0, log —— X
p(., class)p(word, .)

15 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Digging Deeper &

¢ Annotation Artifacts: Clues which give away the ° ° o

correct prediction without any reasoning.

OUTDOORS NOBODY TALL
¢ Hypothesis-only artifacts are class-specific.
LEAST SLEEPING FIRST
® \Word-class association via, PPMI:
INSTRUMENT No COMPETITION
p(word, class) OUTSIDE Tv SAD
max {0, log P R ——
p (" c aSS)p (wor 2 ) ANIMAL CAT FAVORITE

15 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Entailment Artifacts

16 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Entailment Artifacts

People play
frisbee outdoors.

Hypothesis

Some men and boys
are playing frisbee in
a, grassy area.

Premise

16 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Entailment Artifacts

People play
frisbee outdoors.

Some men and boys
are playing frisbee in

A person in red is
a, grassy area. 12

g cutting the grass
. B, S on a ridin
Premise 2w N 6

INOWET.

Hypothesis

A person in a red shirt is
mowing the grass with a

green riding mower.

Premise

16 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Neutral Artifacts

17 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Neutral Artifacts

A man is doing
work on a black
Amtrak train.

Hypothesis

A middle-aged man works

under the engine of a train
on rail tracks.

Premise

17 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Neutral Artifacts

A man is doing
work on a black
Amtrak train.

Hypothesis

They are huddled
together
because they are
working together.

A middle-aged man works

under the engine of a train
on rail tracks.

Premise Hypothesis

A group of female

athletes are huddled
together and excited.

Premise
17 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Contradiction Artifacts

18 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Contradiction Artifacts

Older man with white
hair and a red cap
painting the
golden gate bridge on
the shore with the
golden gate bridge in the
distance.

Premise

18

wears a cap.

Hypothesis

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Contradiction Artifacts

Older man with white
hair and a red cap
painting the
golden gate bridge on
the shore with the
golden gate bridge in the
distance.

Premise

18

wears a cap.

Hypothesis

Three cats race on
a track.

Hypothesis

Three dogs racing

on racetrack.

Premise

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



A possible explanation

There are animals
outdoors.

Two dogs are
running through
a field.

Some puppies are
running to catch a
stick.

Premise

The pets are

sitting on
a, couch.

19 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]
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Are seed examples responsible?

A woman selling bamboo sticks talking to two

Premise men on a loading dock.
Entailment There are at least tggile{ .people on a loading
Neutral A woman is sellin%ozalir;?c;; Iitill;ks to help provide
Contradiction A woman is not taking money for any of her

sticks.

20 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Identifying examples with artifacts

Premise

x\
.——»o

Hypothesis

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Identifying examples with artifacts

Premise
Hypothesis

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Revisiting NLI models

22 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]



Revisiting NLI models

B Full | Hard § Easy
MultiNLI Mismatched MultiNLI Matched

90.0 90.0
e 74.1
45.0
22.5
0.0
DAM ESIM DIIN

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 8017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

67.5

45.0

R:.5

0.0

DAM ESIM DIIN
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Revisiting NLI models

B Full | Hard § Easy
MultiNLI Mismatched MultiNLI Matched

90.0 90.0

67.5 67.5

45.0

45.0

R:.5 R:.5

0.0

DAM ESIM DIIN DAM ESIM DIIN

0.0

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 8017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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90.0

67.5

45.0

R:.5

0.0

R

Revisiting NLI models

B Full | Hard § Easy

MultiNLI Mismatched MultiNLI Matched

DAM

90.0

86.2

67.5

45.0

R:.5

0.0

ESIM DIIN DAM ESIM DIIN

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 8017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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Revisiting NLI models

90.0

67.5

45.0

R:.5

0.0

R

MultiNLI Mismatched

DAM

90.0

lllll

ESIM DIIN

B Full | Hard | Easy

MultiNLI Matched

ESIM DIIN

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 8017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

Annotation Artifacts in NLI Data [ G*.,

Swayamdipta*, L., S., B., & S., NAACL 2018]
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Not unique to NLI...

Story Cloze Test and ROCStories Corpora S Q g A D

Schwartz et al., 2017, The Stanford Question Answering Dataset
Cai et al., 2017

Jia & Liang et al., 2017

cnn_dailymalil

VQA Visual Question Answering

Chen et al., 2017
Jabri et al., 2016

Q3
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Looking Ahead: Improved Data Collection

R

e Partial input baselines. BE.8.

® SWAG [Zellers et. al., 2018 ],

Transformed
Input

® DROP [Duaet. al., 2019],

® Diverse NLI [ poliak et. al., 2018 ]

~D

e Alternatives to human elicitation for
building datasets?

4



Filtering hypothesis-only artifacts

x\,

Prem:se

Hypothesis

Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]




Filtering hypothesis-only artifacts

e Other kinds of artifacts. For
e.g. shortening the premise. \
Premise

Hypothesis

25 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]
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Filtering hypothesis-only artifacts

e Other kinds of artifacts. For
e.g. shortening the premise. \

e Examples with artifacts are Premise

still valid examples... /

* Hard examples exhibit their
own artifacts!

Hypothesis

25 Annotation Artifacts in NLI Data [ G*., Swayamdipta*, L., S., B., & S., NAACL 2018]
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Question #2
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* Balance out the occurrence of
different phenomena in the dataset

e FHilter out a majority of the
samples which exhibit artifacts.

e Avoid head phenomena
redundancy
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i. The models that exploit artifacts, can be used to
detect artifacts! Better than manual identification...
(e.g. hypothesis-only artifacts)
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i. The models that exploit artifacts, can be used to
detect artifacts! Better than manual identification...
(e.g. hypothesis-only artifacts)

ii. Examples with artifacts can be classified correctly Democracy

by multiple models.
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e Can it be predicted by a simple model?
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e Can it be predicted by a simple model?

¢ How much training does it take to predict it?
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e Can it be predicted by a simple model?

¢ How much training does it take to predict it?

e How confident is the model%

e Can it be predicted by several simple models?
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Predictability Scores
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¢ Start with an initial feature representation, ¢
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Algorithm

¢ Start with an initial feature representation, ¢

¢ Train multiple models on random partitions of the remaining data.
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¢ Start with an initial feature representation, ¢

till the ensemble is no longer confident.
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Algorithm

Precursor: Zellers et al., R018; 2019

¢ Start with an initial feature representation, ¢

¢ Train multiple models on random partitions of the remaining data.

e Discard the top-k examples which are correctly identified by most models, iteratively,
till the ensemble is no longer confident. — f f

o
e Lightweight Adversarial Filtering (AFLite) : ®

e ]inear models

¢ fixed feature representation, ¢.
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Follow-up questions

e Js AFLite optimal?
e No! It's a greedy procedure
e Is there an optimal variant?

¢ Yes! But intractable — subset selection problem.

e How would it work?

¢ F'ind the smallest subset, any train-test split of which achieves high accuracy,
but does not generalize to held-out data outside the subset.

¢ Mini-max optimization problem
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BEvaluation Setting

o Fixtrinsic Evaluation:

e \Model performance on test before / after

¢ Training data also changes to account for Unfiltered v/
distributional differences Test

e Intrinsic Evaluation: Filtered Test V

e Filtered dataset properties
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Effect 1: Word-Class Association
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38 Adversarial Filtering of Dataset Biases [ L., Swayamdipta, B., Z., S., P. & C. (in submission) ]



Effect 1: Word-Class Association

e Overall word-class association decreases

2.4
B nobody
g 1.8 B sleeping
§ Lo o tall
S W first
A 06 B outdoors
B least

O
O

Before After

38 Adversarial Filtering of Dataset Biases [ L., Swayamdipta, B., Z., S., P. & C. (in submission) ]



Effect 1: Word-Class Association

e Overall word-class association decreases

2.4
B nobody
g 1.8 B sleeping
§ Lo o tall
S W first
A 06 B outdoors
B least

O
O

Before After

e If word association was the only indicator

38 Adversarial Filtering of Dataset Biases [ L., Swayamdipta, B., Z., S., P. & C. (in submission) ]



Effect 1: Word-Class Association
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Bffect 2: Newer, less common artifacts
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BEffect &: Ambiguous Artifacts

Two men sit casually in

folding chairs, gesturing, Neutral share tea and

and speaking to one —_—) crumpets
another. e
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A man in a tie is holding o
a microphone while the Contradiction
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cheering.
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a, speech.
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A nearest neighbor perspective

monarch chosen by AFLite
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A nearest neighbor perspective
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