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 More structured data
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but at a cost [He et. al, 17; Strubell et. al., 18]
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 Semi-Markov Conditional Random Fields    
[Sarawagi et. al. 2004]
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 Generalization of CRFs [Lafferty et. al., 01]: 

label and length of an input segment

 Training and inference → O(ndl) 
dynamic programs, with a 0th-order 
Markovian assumption
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Controlled Generation/ 
Attribute Transfer
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Recap:  
Confusion of the Muppets

 23

[Jia & Liang, 2017]
Percy Liang [AI Frontiers 18]



Learning Challenges
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Part I 

Can linguistic structure 
act as an informative 
prior for improving our 
models? 

 Syntactic Scaffolds 
for Semantic 
Structures     
(EMNLP 2018)

Part II 

What in our data is 
causing models to achieve 
high performance? 

 Annotation 
Artifacts in Natural 
Language Inference 
Data (NAACL 2018)
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Natural Language 

Inference Data
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NAACL  2018

*equal contribution

Omer  
Levy

Sam 
Bowman

Noah A. 
Smith

Roy  
Schwartz

Suchin 
Gururangan*

S.* 



Natural Language 
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

 26



Natural Language 
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

 26

Premise Two dogs are running through a field.

Hypothesis The pets are sitting on a couch.

 True               → Entailment 

 False              → Contradiction 

 Cannot Say  → Neutral



Natural Language 
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

 26

Premise Two dogs are running through a field.

Hypothesis The pets are sitting on a couch.

 True               → Entailment 

 False              → Contradiction 

 Cannot Say  → Neutral



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Two dogs are 
running through 

a field.

Premise



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Two dogs are 
running through 

a field.

Premise



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Two dogs are 
running through 

a field.

Premise



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Enta
ilm

ent There are 
animals 

outdoors.

Two dogs are 
running through 

a field.

Premise



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Enta
ilm

ent There are 
animals 

outdoors.

Neutral
Some 

puppies 
are 

running to 
catch a 
stick.

Two dogs are 
running through 

a field.

Premise



NLI Datasets

 27

Stanford NLI [Bowman et. al, 2015]   570 K 
Multi-genre NLI [Williams et. al., 2017]  433 K 

Contradiction

The pets 
are sitting 

on 
a couch.

Enta
ilm

ent There are 
animals 

outdoors.

Neutral
Some 

puppies 
are 

running to 
catch a 
stick.

Two dogs are 
running through 

a field.

Premise
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MNLI Leaderboard
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NLI as Text Classification
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C

E

N
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Premise

Two dogs are 
running through 

a field.

Hypothesis

The pets are 
sitting on a 

couch.
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C

E

N

Premise

Hypothesis

fastText [Joulin et. al. 2017]
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Given no premise, is a hypothesis true, false or neither?



A simple experiment
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Given no premise, is a hypothesis true, false or neither?

Hypothesis
The little boy is diving off the diving 
board because he is an excellent 
swimmer.

 True               →Entailment 

 False              →Contradiction 

 Cannot Say  →Neutral



Surprising Results!
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A
cc

ur
ac

y 
(%

)

0.0

17.5

35.0

52.5

70.0

SNLI MultiNLI MultiNLI

52.353.9

67

35.235.434.3

Majority Class
Hypothesis-only

Matched Mismatched

Over 50% of NLI 
examples can be 

correctly classified 
without ever 
observing the 

premise! 
[Poliak et. al., 2018, 

Glockner et. al., 2018]
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Easy

Hard

C

E

N
Premise

Hypothesis
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DAM - Decomposable Attention Model [Parikh et. al. 2016] 
ESIM - Enhanced Sequential Inference Model [Chen et. al., 2017] 
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]

MultiNLI 
Mismatched

0.0

22.5

45.0

67.5

90.0

DAM ESIM DIIN
Full Hard Easy

86.885.285.7

64.4
58.956.2

76.573.172.1

MultiNLI Matched

0.0

22.5

45.0

67.5

90.0

DAM ESIM DIIN

87.686.285.3

64.1
59.355.8

77.074.172.0
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Generalization
Some men and 

boys are playing 
frisbee in a grassy 

area.

Entailment Hypothesis

People play frisbee 
outdoors.

Premise

Cats!Three dogs 
racing on 
racetrack.

Contradiction Hypothesis

Three cats race 
on a track.

Premise

Modifiers
A middle-aged man 

works under the 
engine of a train on 

rail tracks.
Neutral Hypothesis

A man is doing work on a 
black Amtrak train.

Premise
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Two dogs are 
running through 

a field. Contradiction

The pets 
are sitting 

on 
a couch.

Enta
ilm

ent There are 
animals 
outdoors.

Neutral
Some 

puppies 
are 

running to 
catch a 
stick.

Premise
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Can we filter out 
examples with artifacts?



Hard examples exhibit their own artifacts!
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Looking ahead: 
Learning from Datasets with 

Artifacts
Intuition: Models which exploit artifacts == models 
which can detect artifacts

Stylistic global features

Subsampling large datasets → weight each example 
based on how representative it could be [Coleman et. al., 

2018]

 38

Easy Hard
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In conclusion - 
Learning Challenges
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Part I 

Can linguistic structure act 
as an informative prior to 
improve our models? 

Predicted structure can 
help representation 
learning.

Part II 

What in our data is causing 
models to achieve high 
performance? 

Need models robust to 
artifacts.



Thanks!
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swabhs swabhz

http://www.cs.cmu.edu/~sswayamd


