Learning Challenges in
Natural Language
Processing

owabha Swayamdipta,
April 08, 2019

m Carnegie Mellon

UWNLP ngThIglttt




NLP today



NLP today

Contextualized
Representations



NLP today

[ N o N N N o R e N e B

w X Y Z <eos> w X Y

[Dai & Le, 2015]

T AN - A
[ &~ N AT
PR Y e e
Bo e m s ey oy
o B aite bl o) Lo By

layer

Layer3 |

Layer 3

Layer2 |

Layer 2

Layer2 |

Layerl | Layer 1

Layer 1

: v ‘ AN .= % /AN
Embedding | oy Embedding ! Embedding § . . 1
fayer 1 fover | : e

b The gold gold  The best

The best scene

[Howard & Ruder, 2018]

[Devlin et. al., 2018]

Q



NLP today

[ N N I B o N N B

Large Languasge
Model

w X Y Z <eos> w X Y Z

[Dai & Le, 2015]

~ ~ ~ A~
e o

[ » &~ AR
r oA g e
LR I e o L,
e Tl g W e,
oF R R K e e o
N R e v B
® W ae g
Bo e m s ey oy
o B aite bl o) Lo By

- .

P Y s e

Softmax |
layer

Layer3 |
ayer Layer 3

, ] |
Tayer2 | Layer2 i Layer2 |

Layer1 | ) i Layer | .’. i Layer 1

Embedding | O |y Embedding Embedding § O O ]
fayer ‘ fayer | ‘ e

The gold gold  The best s The best scene

[Howard & Ruder, 2018]

[Devlin et. al., 2018]

Q



NLP today

[ N N I B o N N B

w X Y Z <eos> w X Y Z

Large Language
Model

[Dai & Le, 2015]

> -~ o= araslv
*® WA ~poye

RN N e . e
+ o~ ~ o N

ey s
e R e a0

Conte

e

Downstream
Tasks

Softmax | .
] Softmax 1:
layer ;
3 layer

Layer3 |
ayer Layer 3

Layer 2 ; Layer2
i B {
Layer1 |

Layer 1§ OO | Layer 1

Embedding | |y Embedding i Embedding |
layer ; layer layer |

The gold gold  The best s The best scene

[Howard & Ruder, 2018] ,
[Devlin et. al., 2018]

Q



NLP today

[ N N I B o N N B

Large Language
Model

w X Y Z <eos> w X Y z

[Dai & Le, 2015]

~

8% 7T AT
- aew

LA N e e . e
oW ae ~ oy

~ ~ ~ A~ T

L Y L s
A a CNDEE
AT PN e m A
P Al ae e e
D e

ROy M\ oA A AT
o B aite bl o) Lo By

R

Downstream
Tasks

Emheddmgi . . . ',/
e G

The best scene

Embedding
layer |

or gold The best

[Devlin et. al., 2018]

[Howard & Ruder, 2018]

Q



NLP today

|_,|

R s S s By By Ry

X ——>

Large Language

Y z <eos> w X Y z

~

[Dai & Le, 2015]

Model

Unsupervised

~ ¢ 2~ -raouted
- .- alel

LR oy &
* WA ~ gy

L R T e N AT

P sior o) o
Lo mie e miwete

PRI A ol B
~ S AT ST

Conte

oi\p

-

xt

Downstream
Tasks

Supervised

|y Embedding: 0o ‘ & S ‘:
: e . lver

or gold The best The best scene

[Howard & Ruder, 2018] el
[Devlin et. al., 2018]

Q



A closer 1o0oKk...

On 31 December 1687 the first organized group of Huguenots set sail from the
Netherlands to the Dutch East India Company post at the Cape of Good Hope. The
largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689
in seven ships as part of the organised migration, but quite a few arrived as late as
1700; thereafter the numbers declined and only small groups arrived at a time.

The number of new Huguenot colonists declined after what year?

3 Percy Liang [AI Frontiers 18]
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Learning Challenge #1

> Can we incorporate some priors about language®

2 One kind of prior - Linguistic Structure

> Can linguistic structure act as an informative prior?
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zSyntax - a foundation for sentence meaning / semantics

»Phrase-based syntax (node — span)

2»Key Intuition: Learn from a complementary structure
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Structured prediction
with an auxiliary structure

Auxiliary structure: syntax

. Primary Structure
Traditionally a pipeline, both at train (Span-based Semantics)

and test time [Gildea & Jurafsky, 2002 ]
> More structured data
> (Cascading errors

Forsaken in most end-to-end models,
but at a cost [He et. al, 17; Strubell et. al., 18]
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> Soft syntax-aware representations avoid
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| Input
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Shallow Syntactic Prediction

2> Desired parts of syntactic tree:

ARGM-TMP
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»Span-level classification: For every span, predict phrase

category
gZ(Xa Z) — = Z logp(zi:j ‘ Xi:j)

1<igjgkn
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y = Output Structure
z = Scaffold Structure
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. tacti Ratio Objective
Primary Objective Scaffold !
Dataset Dataset
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The primary objective

Same structures must be scored in both the primary
and the scaffold task.

> Span-based classification, with aggressive
pruning [Lee et. al., 2017 ]

2> Semi-Markov Conditional Random Fields
[ Sarawagi et. al. 2004 ]
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Semi-Markov CRFSs

After encouraging them he told them goodbye and 'left for Macedonia
ARGM-TMP ARGO leave.04 ARGR2

e et

2 Globally normalized model for
segmentations (s) of a sentence (x) P (S | X)

2> Generalization of CRF'S [Lafferty et. al., 01 ]: — (1 1
5 = <19]9 yi:j>
2 label and length of an input segment

m

> Training and inference — O(ndl) D(x — Z N

dynamic programs, with a Oth-order ( ’ S) ¢( k> lk:]k)
k=1

Markovian assumption
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Model architecture
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2 Learn scaffold score when syntactic annotations available.
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Effect of Contextualized
Representations

B Semi-CRF Bl NP-PP Scaf.

FN 1.5 Test F1

Without ELMo With ELMo

e Note: These results are not
included in the paper.
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Recap: Learning Challenge #1

Can linguistic structure act as an informative prior for

improving our models?

After  encouraging them, he told them goodbye and left for Macedonia
encourage.02 tell.O1 leave.04
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"SARG1 ARGO ARG2 ARG1 TN
NP NP NP NP NP
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modeling for syntax
(He et. al.,
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et. al. 2013)
\C Multitask Syntactic Joint
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Looking ahead:
Preced Structure

Downstream

Sentence Applications e.g.
Reading Comprehension

Semantics
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Looking ahead:

Structured Tra,nsforma,tionﬁ

Controlled Generation/ Transformed
Attribute Transfer Input

Iyyer et. al. [NAACL 2018]
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Recap:
Confusmn of the Muppets

On 31 December 1687 the first organized group of Huguenots set sail from the
Netherlands to the Dutch East India Company post at the Cape of Good Hope. The
largest portion of the Huguenots to settle in the Cape arrived between 1688 and 1689
in seven ships as part of the organised migration, but quite a few arrived as late as

‘170‘0,;‘ thereafter the numbers declined and only small groups arrived at a time.

The number of old Acadian colonists declined after the year l*x

The number of new Huguenot colonists declined after what year?

[Jia & Liang, 2017]
oz Percy Liang [AI Frontiers 18]



Learning Challenges

high performance?
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Artifacts in Natural
Language Inference ‘
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Suchin ,
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*equal contribution




Natural Language
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?



Natural Language
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

i ll-l Two dogs are running through a field.

Hypothesis The pets are sitting on a couch.
O True — Entailment
O False — Contradiction

O Cannot Say — Neutral

6



Natural Language
Inference (NLI)

Given a premise, is a hypothesis true, false or neither?

i ll-l Two dogs are running through a field.

Hypothesis The pets are sitting on a couch.

O True — Entailment

ﬁalse — Contradiction

O Cannot Say — Neutral

6



NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K

7



NLI Datasets

Two dogs are
running through
a field.

Premise

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K

Q7



NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K

Q7



NLI Datasets

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K

Q7



NLI Datasets

There are
animals
outdoors.

Stanford NLI [Bowman et. al, 2015] 570 K
Multi-genre NLI [Williams et. al., 2017] 433 K

Q7



NLI Datasets
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o Neutral
s — s
' p— running to
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NLI Datasets

There are
animals
outdoors.

puppies

are
running to
catch a

| The pets
Stanford NLI [Bowman et. al, 2015] 570 K are sitting

Multi-genre NLI [Williams et. al., 2017] 433 K on

a couch.

Q7



Lots of progress

# Team Name Kernel Team Members Score Entries Last
1 Allen Lao m 0.86443 4
2 Anonymous D 0.86351 2
3 sherry77 ) 0.85034 2
4 Arel g 0.84953 10
5 ysffirst D 0.84718 6
6 ArielY N 0.84687 4
7 mattpeters D 0.84595 7
|
|
|
Q@  Bidirectional LSTM &
104  gabrielalmeida Ld 0.67313 5
105 Zippy 3 0.67160 2
106  kudkudak 3 0.66435 2
107 Shawn Tan v 0.65271 1
Q  CBOW E

_8
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Lots of progress

Team Name Kernel

Allen Lao
Anonymous
sherry77
Ariel
ysffirst
ArielY

mattpeters

Bidirectional LSTM

gabrielalmeida

Zippy

kudkudak

Shawn Tan

CBOW

8

Team Members

RER~ B8

Score Entries Last
0.86443 4
0.86351 2
0.85034 2
0.84953 10
0.84718 6
0.84687 4
0.84595 7
0.67313 5
0.67160 2
0.66435 2
0.65271 1

MN.

LI Leaderboard




NLI as Text Classification

Two dogs are

running through
a field.

1)

Premise

The pets are

sitting on a
couch.

1)

Hypothesis

Q9
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A simple experiment

Premise X\A

Hypothesis

(CCC)

fastText [Joulin et. al. 2017]
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A simple experiment

Given no premise, is a hypothesis true, false or neither?

The little boy is diving off the diving
2875 L1 IS T I Doard because he is an excellent

swimmer,
O True —Entailment
O False — Contradiction

O Cannot Say —Neutral

31



Accuracy (%)

70.0

Surprising Results!

I Majority Class
B Hypothesis-only Over 50% of NLI
examples can be

correctly classified
without ever
observing the

premise!
[ Poliak et. al., 2018,

Glockner et. al., 2018]

SNLI MultiNLI MultiNLI
Matched Mismatched

3R
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Revisiting NLI models

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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MultiNLI
Mismatched MultiNLI Matched
90.0 90.0
675 o5 TN 4.1
45.0 45.0
22.5 22.5
0.0 -
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B Full Hard B Easy
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Revisiting NLI models

MultiNLI
Mismatched MultiNLI Matched

90.0

67.5

45.0

RR.5

0.0

DAM ESIM DIIN  pam ESIM DIIN
B Full " Hard B Easy

DAM - Decomposable Attention Model [Parikh et. al. 2016]
ESIM - Enhanced Sequential Inference Model [Chen et. al., 017]
DIIN - Densely Interactive Inference Network [Gong et. al. 2018]
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Artifacts by NLI Class

Some men and

ffigi e glgﬁgfy Generalization RELUICRIENSELEE
e  E———— outdoors

Premise Entailment Hypothesis

A middle-aged man . . .
works under the Modifier A man is doing work on a

engine of a train on _)> black Amtrak train.
rail tracks. .
Neutral Hypothesis

Premise

Three dogs Cats! Three cats race
racing on > on a track.

Contradiction Hypothesis

racetrack.

Premise
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puppies
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running through J - catch a

g field.
Premise

The pets
are sitting

on
a couch.



Can we filter out
examples with artifacts?




Can we filter out
examples with artifacts?

X\‘\

Premise
»Hard examples exhibit their own artifacts!

C
@

Hypothesis




Can we filter out
examples with artifacts?

X\‘\

Premise
»Hard examples exhibit their own artifacts!

C
@

Hypothesis

2z Artifacts are still valid examples...
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Looking ahead:
Learning from Datasets with

Artifacts

2 Intuition: Models which exploit artifacts == models
which can detect artifacts

2> Stylistic global features

2 Subsampling large datasets = weight each example
based on how representative it could be [coleman et. al.,
2018 ]

38
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» Partial input baselines. BE.g. SWAG [Zellers et. al., 2018],
DROP [Duaet. a1, 2019], Diverse NLI [Poliak et. al., 2018 ]
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Looking Ahead:
Improved Data Collection

2z Partial input baselines. E.g. SWAG [zelters et. al., 2018],
DROP [Duaet. a1, 2019], Diverse NLI [Poliak et. al., 2018 ]

2z Alternatives to human elicitation for building
datasets?

Transformed

Input

39
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In conclusion :
It’s an exciting time for NLP!

Che New Nork Cimes

w;——w

Finally, a Machine That

Can Finish Your Sentence

Completing someone else’s thought is not an easy trick for A.I. But

new systems are starting to crack the code of natural language.
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In conclusion -

Learning Cha,llenges

Part I

Can linguistic structure act |

as an informative prior to
improve our models?

N ARGO P -
/ “S(ARGl ARGO / ARG2 ™~ ARG1
NP NP NP NP NP

encourage.02 tell.0O1 leave.04
After | encouraging them, he [told them goodbye and /left for Macedonia

Predicted structure can
help representation

Part 11

What in our data is causing
models to achieve high
performance?

b Three cats race
- ] N on a track.
—— 6 ()

‘ ‘) v
= - (y Contradiction
Three dogs

racing on
racetrack.

Premise

Need models robust to

artlfacts




Thanks!

| wvgv | http://www.cs.cmu.edu/~sswayamd




