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About 1,350,000 results (0.32 seconds)

Physically dividing ferns is the simplest way to propagate them.
Simply take a mature clump of ferns out of its container or dig it
up out of the ground and divide it into pieces. Every separate
clump of fronds — growing on an erect rhizome - can be
separated out into an individual plant.
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Apple’s Siri

Hey Siri, set an

alarm for 7am every

day
® Understands the user
Okay, your
alarm is set
® Remembers what the user said |
. When is my
earlier next alarm?

You have an

® Can understand which alarm she alarm for 7am

tomorrow

is referring to Actually

delete my alarms
for weekends
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The Political Bureau of the CPC Central Committee held a meeting on July 30 to
analyze and study the current economic situation and plan economic work in the
second half of the year.
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Physically dividing ferns is the simplest way to propagate them.
Simply take a mature clump of ferns out of its container or dig it
up out of the ground and divide it into pieces. Every separate
clump of fronds — growing on an erect rhizome - can be
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® Understands that a fern can
be indoor, can be
propagated either from seed
or from cuttings

® Can find the exact passage
in a webpage that answers
the questions

® Can find related (in meaning)
questions

Ggog|e how to propagate ferns X & G Q

Videos Images Shopping Indoor From spores In water From seed From cuttings

About 1,350,000 results (0.32 seconds)

Physically dividing ferns is the simplest way to propagate them.
Simply take a mature clump of ferns out of its container or dig it
up out of the ground and divide it into pieces. Every separate
clump of fronds — growing on an erect rhizome - can be

separated out into an individual plant.

. Savvy Gardening
https://savvygardening.com » fern-propagation 3

Fern Propagation Techniques Using Spores or Mother Plants

People also ask :
Can you grow a fern from a cutting? v
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L anguage Models

To v
® Task: Given a sequence of words so far (the context), Subject
predict what comes next et
® |ike (a supercharged) autocompletel!
> t b 0
® \Ve never know for sure what comes next, but we can — - - )
still make good guesses! qwerT T yulop
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® To understand how these work we need to familiarize
&H z x ¢ v b nm &

ourselves with the basics of machine learning
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for predicting what word should come next in this sentence?)
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Concrete Outcomes

® | carn some basic ideas of machine learning (a statistical
model)

® | earn how to build a simple language model (statistical model
for predicting what word should come next in this sentence?)

® | carn the connections between this language model ana
models such as OpenAl’s ChatGPT / GPT-4 models and how to
prompt them

® | carn some limitations of language models
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Natural Language Processing and Machine Learning

® Natural language processing uses a lot of ideas from machine learning

® Humans are good at understanding language. Computers are bad at it and it's hard to
program them.

® |f we see lots of examples of how humans do a task, can we teach a computer how to do
it?

13
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alarm is set
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You have an
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delete my alarms
for weekends
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// Start by reading the user input with a predefined method

String userStr = readUserInput();
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// Start by reading the user input with a predefined method Hey Siri, set an

String userStr = readUserInput();
1f (userStr.startsWith(“set a timer”))

startTimerDialogue();
else if (userStr.startsWith(“set an alarm”) ||
userStr.startsWith(“wake me up at”)) Okay, your

startAlarmDialogue(); 2« alarm is set
else [...] o

alarm for 7am every

When is my
next alarm?

You have an

| larm for 7
® oo hard to list every case here! alarm for 7am
tomorrow

Actually,

® This is where machine learning comes in! delete my alarms
for weekends
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Analyze Movie Review Sentiment

Spider-Man: Across the Spider-Verse is an absolute triumph that takes everything we loved about the original film and

cranks it up to a whole new level. This stunning sequel is a true testament to the power of animation, storytelling, and the
enduring legacy of everyone's favorite web-slinger.

WWWWW

The Little Mermaid: To anyone who is planning on seeing this movie, I'd highly recommend to just wait until it comes out

on Disney+ or something so you don't waste your money. | only went to see the movie because of my daughter and we can
both say that this movie did not live up to our expectations. Furthermore, we both did not enjoy the majority of the movie

' ot i A A
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cranks it up to a whole new level. This stunning sequel is a true testament to the power of animation, storytelling, and the
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enduring legacy of everyone's favorite web-slinger.
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Spider-Man: Across the Spider-Verse is an absolute triumph that takes everything we loved about the original film and
cranks it up to a whole new level. This stunning sequel is a true testament to the power of animation, storytelling, and the

WWWWW

enduring legacy of everyone's favorite web-slinger.
® | et's try something simple:
¢ (numberOfGoodWords, numberOfBadWords)

int numberOfGoodWords = computeNumGoodWords (review) ;
int numberOfBadWords = computeNumBadWords(review);
if (numberOfGoodWords > 3 && numberOfBadWords < 2)

return “4 stars”;

else if (numberOfGoodWords > 2 && numberOfBadWords < 3)
return “3 stars”;

else [...]

16
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Spider-Man: Across the Spider-Verse is an absolute triumph that takes everything we loved about the original film and
cranks it up to a whole new level. This stunning sequel is a true testament to the power of animation, storytelling, and the

WWWWW

enduring legacy of everyone's favorite web-slinger.
® | et's try something simple:
¢ (numberOfGoodWords, numberOfBadWords)

int numberOfGoodWords = computeNumGoodWords (review) ;
int numberOfBadWords = computeNumBadWords(review);
if (numberOfGoodWords > 3 && numberOfBadWords < 2)

return “4 stars”;

else if (numberOfGoodWords > 2 && numberOfBadWords < 3)
return “3 stars”;

else [...]

We can automatically generate this program!

(It's called a decision tree)
 EEEE————————————
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it to a system?
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Machine Learning Overview

® | ots of different models: decision trees, neural networks, Bayes Networks, ...
® Machine Learning starts with a feature representation of this data: how do we represent
it to a system?

® \We did for sentiment analysis with our variables, (numberOfGoodWords,

numberOfBadWords)
® Neural networks will view this as thousands ot numbers (similar to how computers view

programs as boolean codes) associated with each word.
® |et's use a probabilistic model tor language modeling...
® \ery little math to implement...

17
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L anguage Models

® Task: Given a sequence of words so far (the
context), predict what comes next.
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® Task: Given a sequence of words so far (the
context), predict what comes next.

® | ike (a supercharged) autocompletel

® \\Ve never know for sure what comes next, but we
can still make good guesses!
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| anguage Models

® Task: Given a sequence of words so far (the
context), predict what comes next.

® | ike (a supercharged) autocompletel

® \\Ve never know for sure what comes next, but we
can still make good guesses!

® Question: what is X and what is Y here?

g
® |nput X = Language and Output Y = Language

19
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Building a Language Model

What words can follow this?

| want to ...

What is common to these words?

20
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Building a Language Model

What words can follow this?

The 44th President of United States was
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Building a Language Model

What words can follow this?

The 44th President of United States was
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lots
| want to ... at < barbecue

video
la
Piay <:tennis

shovel —snow

do

Jude
Hey ...

The capital of Nebraska is ...  — Lincoln
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n-gram Language Modeling

® Our focus: build a model that predicts the next
word based on the previous one or two words
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n-gram Language Modeling

® Our focus: build a model that predicts the next
word based on the previous one or two words

® n-gram: a sequence of n words
® | |ike to = 3-gram
® | really want to go = 5-gram

® n-gram language model: predict the next word
based on the previous n-1 words
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n-gram Language Modeling

® Our focus: build a model that predicts the next
word based on the previous one or two words

2-gram

® n-gram: a sequence of n words | want to
® | |ike to = 3-gram
® | really want to go = 5-gram

® n-gram language model: predict the next word
based on the previous n-1 words
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n-gram Language Modeling

® Our focus: build a model that predicts the next
word based on the previous one or two words

2-gram
® n-gram: a sequence of n words | want to - want 1o

® | |ike to = 3-gram
® | really want to go = 5-gram

® n-gram language model: predict the next word
based on the previous n-1 words
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n-gram Language Modeling

® Our focus: build a model that predicts the next

word based on the previous one or two words | want

2-gram
® n-gram: a sequence of n words | want to - want 1o

tO

® | |ike to = 3-gram
® | really want to go = 5-gram

® n-gram language model: predict the next word
based on the previous n-1 words
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n-gram Language Modeling

® Our focus: build a model that predicts the next

word based on the previous one or two words | want

2-gram
® n-gram: a sequence of n words | want to - want 1o

tO

® | |ike to = 3-gram

® | really want to go = 5-gram

How does a bigram
context change the
words that might
follow?

® n-gram language model: predict the next word
based on the previous n-1 words

- ‘
-
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This is a conditional probability distribution:
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This is a conditional probability distribution:

P(next word =y | previous word = x)
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This is a conditional probability distribution:

P(next word =y | previous word = x)

"the probability of the next word is y given that the previous word is x”
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2-gram language models

This is a conditional probability distribution:

P(next word =y | previous word = x)

"the probability of the next word is y given that the previous word is x”

| want to go to

P(next word = was | previous word = to) = 0.0
P(next word = LA | previous word = to) = 0.2

(

(
P(next word = Europe | previous word = to) = 0.1
P(next word = Mexico | previous word = to) = 0.1
(

P(next word = eat | previous word = to) = 0.1 ...

25
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2-gram language models

This is a conditional probability distribution:

P(next word =y | previous word = x)

"the probability of the next word is y given that the previous word is x”

| want to go to

P(next word = was | previous word = to) = 0.0

P(next word = LA | previous word = to) = 0.2 These have to add up to 1 over the
P(next word = Europe | previous word = to) = 0.1 vocabulary (every possible word y
P(next word = Mexico | previous word = to) = 0.1 could be) “it we see to | think there’s a
P(next word = eat | previous word = to) = 0.1 ... 20% chance the next word is LA

25



Intro to (Large) LMs | Jun 27, 2024 Intro to Engineering | Swabha Swayamdipta

2-gram language models

This is a conditional probability distribution:

P(next word =y | previous word = x)

"the probability of the next word is y given that the previous word is x”

| want to go to

P(next word = was | previous word = to) = 0.0

P(next word = LA | previous word = to) = 0.2 These have to add up to 1 over the
P(next word = Europe | previous word = to) = 0.1 vocabulary (every possible word y
P(next word = Mexico | previous word = to) = 0.1 could be) “it we see to | think there’s a
P(next word = eat | previous word = to) = 0.1 ... 20% chance the next word is LA

- Assume a fixed vocabulary of ~30,000 words
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® |f we have these probabilities, we can build our
predictive text system:
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® |f we have these probabilities, we can build our
predictive text system:

P(next word = _ | previous word = to)
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2-gram language models

To v
® |f we have these probabilities, we can build our Subject
predictive text system: like to|
P(next word = _ | previous word = to)
> see get be \J
Check all the possible words from that list, pick the ones dwertyuiop

with the highest probability (most likely next words)
a s df gh j k I

&H z x ¢ v b nm &
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2-gram language models

® |f we have these probabilities, we can build our
predictive text system:

P(next word = _ | previous word = to)

Check all the possible words from that list, pick the ones
with the highest probability (most likely next words)

® \Where do these probabilities come from? We're going
to learn them from a bunch of text data we see

To v
Subject
| like to |
> see get be \J
1 2 3 4 5 6 7 .8 9 0
qwe T r ty uil oDp

a s df g h j k |

&H z x ¢ v b nm &




Lots and lots of text data
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2-gram LM
probabilities
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L ots and lots of text data

2-gram LM

probabilities

Probability Estimation
(Statistical Modeling)
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Probability Estimation (Statistical Modeling)

Suppose we have a biased coin that's heads with probability p, which is a number between

0 and 1, and for a normal coin, p = 0.5 (equal probability ot heads or tails).

Suppose we flip the coin four times and see (H, H, H, T)

1. What do you think the probability p of heads is with this coin? Take a guess!

28
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Probability Estimation (Statistical Modeling)

Suppose we have a biased coin that's heads with probability p, which is a number between

0 and 1, and for a normal coin, p = 0.5 (equal probability ot heads or tails).

Suppose we flip the coin four times and see (H, H, H, T)

1. What do you think the probability p of heads is with this coin? Take a guess!

® \We don’t know what p is — p could be 0.5! But p = 3/4 = 0.75 maximizes the
probability of the data. We'll say “this is the most likely value ot p”

28
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Probability Estimation (Statistical Modeling)

Suppose we have a biased coin that's heads with probability p, which is a number between

0 and 1, and for a normal coin, p = 0.5 (equal probability ot heads or tails).

Suppose we flip the coin four times and see (H, H, H, T)

1. What do you think the probability p of heads is with this coin? Take a guess!

® \We don’t know what p is — p could be 0.5! But p = 3/4 = 0.75 maximizes the
probability of the data. We'll say “this is the most likely value ot p”

® The probability of the data isp*p*p* (1 — p) — if you've taken calculus, you

can take the derivative and set it equal to zero and find p = 0.75

28
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n-gram Language Model

The decision for what words occur after a word w is exactly the same as the biased coin,
but with 33,000 possible outcomes (different words) instead of 2.

29
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n-gram Language Model

The decision tor what words occur after a word w is exactly the same as the biased coin,
but with 33,000 possible outcomes (different words) instead of 2.

~

| like to eat cake but |
want to eat pizza right
now. Mary told her
brother to eat pizza too. All other next words = 0 probability

\— _

P(next word = pizza | previous word = eat) = 2/3

> P(next word = cake | previous word = eat) =1/3

29
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n-gram Language Model

The decision tor what words occur after a word w is exactly the same as the biased coin,
but with 33,000 possible outcomes (different words) instead of 2.

. \
|like to eat ca.ke bl,Jt | P(next word = pizza | previous word = eat) = 2/3
want to eat pizza right
now. Mary told her > P(next word = cake | previous word = eat) =1/3
brother to eat pizza too. All other next words = 0 probability
\ ),

how many times do you see
count(wWprey, W)=~ Worev followed by w?

P —
how many times do you see Wprey

29
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Smoothing

| like to eat cake but |
want to eat pizza right
now. Mary told her

\—

brother to eat pizza too.

~

P(next word = pizza | previous word = eat) = 2/3

_J

> P(next word = cake | previous word = eat) = 1/3

All other next words = 0 probability
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Smoothing

. h
|like to eat ca.ke bl,Jt | P(next word = pizza | previous word = eat) = 2/3
want to eat pizza right
now. Mary told her > P(next word = cake | previous word = eat) = 1/3
brother to eat pizza too.J All other next words = 0 probability
\_

® All other 29,998 words getting O probability just doesn’t seem right. We want to assign
some probability to other words
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Smoothing

. h
|like to eat ca.ke bl,Jt | P(next word = pizza | previous word = eat) = 2/3
want to eat pizza right
now. Mary told her > P(next word = cake | previous word = eat) = 1/3
brother to eat pizza too.J All other next words = 0 probability
\_

® All other 29,998 words getting O probability just doesn’t seem right. We want to assign
some probability to other words

® \Ve want to smooth the distribution from our counts
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Smoothing

. h
|like to eat ca.ke bl,Jt | P(next word = pizza | previous word = eat) = 2/3
want to eat pizza right
now. Mary told her > P(next word = cake | previous word = eat) = 1/3
brother to eat pizza too.J All other next words = 0 probability
\_

® All other 29,998 words getting O probability just doesn’t seem right. We want to assign
some probability to other words

® \Ve want to smooth the distribution from our counts

count(Wprev, W) count (w)

P rev) — A (1 — P
(W] Wprev) count(Wprev ) ( )total word count
a number between ‘ ‘
0 and 1 (like 0.9) what we had before a unigram LM
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Neural Network
L anguage Moaels

The f we use in typical LLMs has >1000 inputs and >1 billion parameters!

These can be learned from data using derivatives from calculus
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Neural Network
L anguage Moaels

f(x) = 2x + 3 has one input (x) and two parameters (2 and 3) e (

N
RN
\\

%%%/

/,/
y 4
,‘//: 4 /

Neural networks are function that map flcontext) = prediction

f is very, very complicated!

S

The f we use in typical LLMs has >1000 inputs and >1 billion parameters!

These can be learned from data using derivatives from calculus

}7

R

\\

@a»— predict next word

PEPraar ey

' )

“ a e @ o

A

e v
Tt 1

The capital of Nebraska is

N

This model is called a Transformer.
Uses a mechanism called self
attention to capture interactions
between words

1000 numbers x 5 words = 5000 inputs



Large Language Models

NG G




Intro to (Large) LMs | Jun 27, 2024 Intro to Engineering | Swabha Swayamdipta

| arge Language Model

® Definition: Large, general-purpose models that can predict language by pre-training
and fine-tuning for specitic purposes

33 Retail Entertainment Finance
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® Definition: Large, general-purpose models that can predict language by pre-training
and fine-tuning for specitic purposes

Pre-training Lots of data from crawling the internet!
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| arge Language Model

® Definition: Large, general-purpose models that can predict language by pre-training
and fine-tuning for specitic purposes

Pre-training Lots of data from crawling the internet!

&
o A
Fine-tuning

/W]: Small amounts of data!
© O

33 Retail Entertainment Finance
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Using Large Language Models
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Using Large Language Models

® These models are trained over a ton of data (a curated scrape of the web). So they will have seen
information about Nebraska and Lincoln.

LLaMA
oY m Metq O MetaAl

Lincoln.
oy || 0| B
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Using Large Language Models

® These models are trained over a ton of data (a curated scrape of the web). So they will have seen
information about Nebraska and Lincoln.

® A big enough model can answer questions even without being trained to do so. What else can we get
these models to do?

LLaMA
oY m Metq O MetaAl

Lincoln.
oy || 0| B
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Why Large Language Models?

Code computer programs!
Summarize articles, podcasts or presentations
Draft emails
Script social media posts Create a title for an article

Play games.

Assist with job searches, Ask trivia questions.

including writing resumes

and cover letters. Discover keywords for search
engine optimization. Formulate product

Describe complex topics more simply. descriptions.
Solve math problems

Create articles, blog posts Reword existing content for a different medium, such
and quizzes for websites. as a presentation transcript for a blog post.



https://www.techtarget.com/whatis/definition/search-engine-optimization-SEO
https://www.techtarget.com/whatis/definition/search-engine-optimization-SEO

Why Large Language Models?

Code computer programs!
Summarize articles, podcasts or presentations
Draft emails
Script social media posts Create a title for an article
Play games.

Ask trivia questions.

Assist with job searches,
includinguusin

Compose musiclll

te product
Jdescriptions.

Describe €t

Create articles, blog posts
and quizzes for websites.

Solve math problems

Reword existing content for a different medium, such

as a presentation transcript for a blog post.
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® | arge

® Trained on lots of data
® Performance keeps growing with data and parameters

® General-purpose
® Can be used for many different tasks, without any moditication
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Properties of Large Language Models

NG G

® Contain lots (hundreds of billions) of parameters

® |arge
® Trained on lots of data

® Performance keeps growing with data and parameters
® General-purpose

® Can be used for many different tasks, without any moditication
® Can only be built by those who have the resources (Google, OpenAl, Meta, etc.)

36
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Pre—training an LLM
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Slide from Andrej Karpathy



But LLMs are not
perfect...



LLMs are very dependent on prompting
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LLMs are very dependent on prompting

Prompt

Language

Generated Text

® Prompts: contexts and instruction that
elicit the desired response from the
language model
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LLMs are very dependent on prompting

Prompt

Language

Generated Text

® Prompts: contexts and instruction that
elicit the desired response from the
language model

® Depending on your prompt, the

language model can do very well or
very poorly.
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LLMs are very dependent on prompting

Prompt
You
Answer this Jeopardy style question. This territory was formally transferred to the U.S. at
Language illin Si
Generated Text M?)delg Castle Hill in Sitka
) Meta Al
What is Alaska?
Alaska was formally transferred to the United States from Russia at a ceremony on Castle Hill
® P rom pts - contexts an d | nstru Ctl on th at in Sitka on October 18,1867 224 %%, The Alaska Purchase was negotiated for $7.2 million
. earlier that year °. The territory became the 49th state on January 3, 1959 2.
ehClt the deS|red reSpOﬂse from the G This territory was formally tran... View Sources
language model You
Which territory was formally transferred to the U.S. at Castle Hill in Sitka?
® " ) Meta Al
De pe N d N g on yo ur p rom pt’ th = The territory formally transferred to the U.S. at Castle Hill in Sitka was'%°4°°:
Russian Alaska
‘ an 9 Ua g € m Od = ‘ Can d O Ve ry WE ‘ ‘ or This transfer happened on October 18, 1867, after the Alaska Purchase was negotiated, in a

ceremony in which Russian Commissioner Alexei Pestchouroff transferred Russian America
to U.S. Commissioner General Lovell H. Rousseau.

very poorly.

G territory formally transferred to... || View Sources || b || &0 || B
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Impreciseness and Hallucinations
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Impreciseness and Hallucinations

You
What are the best songs written by Britney Spears?

O MetaAl
Here are some of the best songs written by Britney Spears ™

e "Toxic" from her fourth studio album, "In the Zone" (2003)

e "Everytime" from her fourth studio alboum, "In the Zone" (2003)

e "My Prerogative" from her first compilation album, "Greatest Hits: My Prerogative”
(2004)
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Impreciseness and Hallucinations

You
What are the best songs written by Miss Britney Spears?

O MetaAl

You Here are some of the best songs written by Britney Spears:

What are the best songs written by Britney Spears?
Emotional Ballads

e "Everytime" (2003) - a heartfelt apology to her ex Justin Timberlake
O MetaAl

Here are some of the best songs written by Britney Spears ™: e "Someday (I Will Understand)" (2004) - a poignant song about her miscarriage

: , e "Lucky" (2000) - a song about a friend's struggles with fame
e "Toxic" from her fourth studio album, "In the Zone" (2003)

Empowering Anthems
e "Everytime" from her fourth studio alboum, "In the Zone" (2003)

e "Stronger" (2000) - a declaration of independence after a breakup
"My Prerogative"” from her first compilation album, "Greatest Hits: My Prerogative"
(20y04) 9 P ’ 4 J e "Toxic" (2003) - a dark, edgy song about a harmful relationship

e "Womanizer" (2008) - a sassy, upbeat track about a cheating ex

Dance-Pop Hits

e "Do Somethin' (2004) - a fun, upbeat song about letting loose

40
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Impreciseness and Hallucinations

"Toxic"

40

You
What are the best songs written by Miss Britney Spears?

O MetaAl
Here are some of the best songs written by Britney Spears:

You
What are the best songs written by Britney Spea

Single by Britney Spears

from the album In the Zone Emotional Ballads

B-side "Me Against the Music"
C Meta Al Released  January 12, 2004 e "Everytime" (2003) - a heartfelt apology to her ex Justin Timberlake
7 S Recorded 2003 : : : :
Here are some of the best songs written by Britn || iy (Stockholm) e "Someday (I Will Understand)" (2004) - a poignant song about her miscarriage
. . Record Plant (Los Angeles) e "Lucky" (2000) - a song about a friend's struggles with fame
e "Toxic" from her fourth studio album, "In th el T T
breakbeat!!] - discol? Empowering Anthems
* "Everytime" from her fourth studio album, " - B
Cbol Jf e "Stronger" (2000) - a declaration of independence after a breakup
apbe Ive

e "My Prerogative" from her first compilation

e "Toxic" (2003) - a dark, edgy song about a harmful relationship
(2004)

Songwriter(s) Cathy Dennis - Christian
Karlsson - Pontus Winnberg -

Henrik Jonback

e "Womanizer" (2008) - a sassy, upbeat track about a cheating ex

Producer(s) Bloodshy & Avant .
=) / Dance-Pop Hits

Britney Spears singles chronology

"Me Against "Toxic" "Everytime" e "Do Somethin' (2004) - a fun, upbeat song about letting loose
the Music" (2004) (2004)
(2003)
Music video

"Toxic" 2 on YouTube
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Ambiguous Language

We’re Afraid Language Models Aren’t Modeling Ambiguity

AlisaLiu~ Zhaofeng Wu® Julian Michael® Alane Suhr®*® Peter West '
Alexander Koller*® Swabha Swayamdipta® Noah A. Smith”*  Yejin Choi~*

“Paul G. Allen School of Computer Science & Engineering, University of Washington |
* Allen Institute for AI ~ °University of Southern California  “UC Berkeley The cat was lost after leaving the house.

¥ Saarland University *New York University * Massachusetts Institute of Technology 2

unable to find unable to
its own way be found

The cat could not find its way.

& ' Since | took office, Wisconsin now has the 2ncq
—F \ highest health care ranking in the country.

Scott Walker, former
governor of Wisconsin

now, in contrast currently, regardless of
with before what it was before

Wisconsin’s health care ranking changed.
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Ambiguous Language

We’re Afraid Language Models Aren’t Modeling Ambiguity

AlisaLiu’~ Zhaofeng Wu® Julian Michael® Alane Suhr®*® Peter West " *
Alexander Koller*® Swabha Swayamdipta® Noah A. Smith”*  Yejin Choi~*

“Paul G. Allen School of Computer Science & Engineering, University of Washington |
* Allen Institute for AI ~ °University of Southern California  “UC Berkeley The cat was |ost after leaving the house.

v L ¢ L ¢ .
Saarland University — New York University — Massachusetts Institute of Technology 2

unable to find unable to
its own way be found

The cat could not find its way.

G PT—4 stru g g ‘ es On & ' Since | took office, Wisconsin now has the 2ndw
—F K highest health care ranking in the country.

th I S ta S k! Scott Walker, former
governor of Wisconsin
- —

now, in contrast currently, regardless of
with before what it was before

Wisconsin’s health care ranking changed.
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Fthical Concerns
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Fthical Concerns

Can We No Longer Believe Anything

i We See?
(
By Tiffany Hsu and Steven Lee Myers
April 8, 2023

Which image was created by artificial intelligence? Click on your
guess
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Fthical Concerns

Can We No Longer Believe Anything

i We See?
(
By Tiffany Hsu and Steven Lee Myers
April 8, 2023

Which image was created by artificial intelligence? Click on your
guess

This Tool Could Protect Artists From
A.L-Generated Art That Steals Their
Style

Artists want to be able to post their work online without the fear
“of feeding this monster” that could replace them.
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Fthical Concerns

Can We No Longer Believe Anything
~ We See?

¢

By Tiffany Hsu and Steven Lee Myers

. An A.I. Hit of Fake ‘Drake’ and ‘The

) .
Which image was created by artificial intelligence? Click on your %eknd Rattles the M usic WOT Id

guess

A track like “Heart on My Sleeve,” which went viral before being
taken down by streaming services this week, may be a novelty for
now. But the legal and creative questions it raises are here to stay.

0 Givethisarticle  ~>  [] @ [J215

This Tool Could Protect Artists From

A.L-Generated Art That Steals Their
Style

Artists want to be able to post their work online without the fear
“of feeding this monster” that could replace them.

42

Intro to Engineering | Swabha Swayamdipta



Intro to (Large) LMs | Jun 27, 2024

Fthica
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Mar 8, 2023 - Technology

CO NCerns Chatbot therapy, despite cautions,

Can We No Longer Believe Anything finds enthusiasts
E % See ? J\ PeterAlien Clark
; By Tiffany Hsu and Steven Lee Myers . —
. An A.l Hit of Fake ‘Drake’ and ‘The
Which image was created by artificial intelligence? Click on your %eknd, RattIeS the M USiC WOT Id
guess

A track like “Heart on My Sleeve,” which went viral before being
taken down by streaming services this week, may be a novelty for
now. But the legal and creative questions it raises are here to stay.

0 Givethisarticle  ~>  [] @ [J215

This Tool Could Protect Artists From

A.L-Generated Art That Steals Their
Style

Artists want to be able to post their work online without the fear
“of feeding this monster” that could replace them.
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Eth | Cd CO Nncerns Chatbot therapy, despite cautions,

Can We No Longer Believe Anything finds enthusiasts
We See?

~y J\ PeterAlien Clark
(J
By Tiffany Hsu and Steven Lee Myers . —
. An A.I. Hit of Fake ‘Drake’ and ‘The
) .
Which image was created by artificial intelligence? Click on your %eknd RattIeS the M usic WOT Id
guess A track like “Heart on My Sleeve,” which went viral before being

taken down by streaming services this week, may be a novelty for
now. But the legal and creative questions it raises are here to stay.

0 Givethisarticle  ~>  [] @ [J215

A.lL-Generated Content Discovered on
News Sites, Content Farms and
Product Reviews

The findings in two new reports raise fresh concerns over how
artificial intelligence may transform the misinformation
landscape online.

This Tool Could Protect Artists From
A.L-Generated Art That Steals Their
Style

Artists want to be able to post their work online without the fear
“of feeding this monster” that could replace them.
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Key Takeaway:
LLMs are incredibly useful,
but their answers cannot
always be taken at face value



What's Next?




Intro to (Large) LMs | Jun 27, 2024 Intro to Engineering | Swabha Swayamdipta

Courses to take

® How to study this more?
® Math to learn: probability, linear algebra
® Machine learning or data science online courses
® Andrew Ng's Coursera course: https://www.coursera.org/learn/machine-learning

® |ntroduction to LLMs by Andrej Karpathy: https://www.youtube.com/watch?
v=zjkBMFhN]_g

~rf

® Sentiment Analysis tutorial: https://realpython.com/sentiment-analysis-python/
® More programming or software engineering can help
® Python
® Start exploring the HuggingFace platform, library and tutorials: https://huggingface.co/
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Further Reading

® Understanding more about neural networks: Chris Olah, Jay Alammar
® https://colah.github.io/
® https://jalammar.github.io/

® | atest big language models:
® OpenAl’'s GPT-series: https://openai.com/index/hello-gpt-40/

® Meta's Llama-series (open-source): https://www.meta.ai/

® Google's Gemini: https://gemini.google.com/
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Thank you!

You can find these
slides here:

~

Check out our DILL lab /)
and come talk to us!

DILL - 47
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