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Lecture Outline

• Basics of Language Generation 

• Decoding Algorithms 

• Evaluating Generation 

• Metrics 

• Downstream Applications
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• Natural language understanding and natural language generation are 
two sides of the same coin 
• In order to generate good language, you need to understand 

language 
• If you understand language, you should be able to generate it (with 

some effort)
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Natural Language Generation

• Natural language understanding and natural language generation are 
two sides of the same coin 
• In order to generate good language, you need to understand 

language 
• If you understand language, you should be able to generate it (with 

some effort)
• NLG is the workhorse of many classic and novel applications 

• AI Assistants 
• Translators 
• Search summarizers
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More Interesting NLG Uses

9

Rashkin et al., 2020 Parikh et al., 2020

Krause et al., 2017

Creative Stories Data-to-text Visual Descriptions
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Broad Spectrum of NLG Tasks

10

Open-ended generation: the output distribution still has high freedom.  

Non-open-ended generation: the input mostly determines the output generation.

Less Open-Ended More Open-Ended
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Language Generation

In autoregressive text generation models, at each time step , the model  takes in a 
sequence of tokens as input and outputs a new token,  based on scores , 
where  is the vocabulary

t fθ( ⋅ )
̂yt S = fθ(y<t) ∈ ℝV

V

12
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sequence of tokens as input and outputs a new token,  based on scores , 
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t fθ( ⋅ )
̂yt S = fθ(y<t) ∈ ℝV

V

12

P(w |y<t) =
exp(Sw)

∑v∈V exp(Sv)

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

Softmax 
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• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t

13
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• Classification task at each time step trying to maximize the probability of the actual word 
 in the training data y*t

• “Teacher forcing” (reset at each time step to the ground truth)

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

y*t−1

…

y*−1 = <s>

…

y*ty*0
y*t+1
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• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm
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Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step

14

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))

• Two broad categories: maximization vs. sampling
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Lecture Outline

• Basics of Language Generation 

• Decoding Algorithms 

• Classic Maximization Algorithms 

• Modern Sampling Algorithms 

• Evaluating Generation 

• Metrics 

• Downstream Applications

15



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

Classic (Maximization) Inference: 
Greedy and Beam Search
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• No looking ahead, make the hastiest decision given all the information so far 
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• Greedy decoding has no wiggle room for errors! 

• e.g. Machine Translation Input: The green witch arrived  Spanish 

• Output: Ilego 
• Output: Ilego la  
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Greedy Decoding : Issues

18

̂yt = arg max
w∈V

(P(yt = w |y<t))

Text Generation Model

̂y0 ̂y1 ̂yt ̂yt+1 ̂yt+2

̂yt ̂yt+1̂yt−1̂y0

…

y−1 = <s>

…

• Greedy decoding has no wiggle room for errors! 

• e.g. Machine Translation Input: The green witch arrived  Spanish 

• Output: Ilego 
• Output: Ilego la  
• Output: llego la verde 

→

• How to fix this? 
• Need a lookahead 

strategy / longer-term 
planning
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Exhaustive Search Decoding

19

• Other extreme - all possible lookahead options 

• Ideally, we want to find a (length ) translation  that maximizesT y
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Exhaustive Search Decoding

• We could try computing all possible sequences y
• This means that on each step  of the decoder, we could track  possible partial 

translations, where  is the vocab size 
t Vt

V
• This complexity is far too expensive!O(VT)

19

• Other extreme - all possible lookahead options 

• Ideally, we want to find a (length ) translation  that maximizesT y

Possible solution in between greedy and exhaustive search?
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• Core idea: On each step of decoder, keep track of the  most probable partial 
translations (which we call hypotheses) 

k

•  is the beam size (in practice around 5 to 10, in NMT)k
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the  most probable partial 
translations (which we call hypotheses) 

k

•  is the beam size (in practice around 5 to 10, in NMT)k
• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better 

• We search for high-scoring hypotheses, tracking top  on each stepk
• Beam search is not guaranteed to find optimal solution 

• But much more efficient than exhaustive search!

20
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Beam Search Decoding: Example

21 Slide credit: Chris Manning
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Beam Search Decoding: Example

33 Slide credit: Chris Manning

Key difference from 
greedy: do not 

produce a solution at 
every time step. 

Instead wait till you 
reach a stopping 
criterion and then 

backtrack
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Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token 
• For e.g. <s> he hit me with a pie </s>

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different 
time steps  
• When a hypothesis produces </s>, that hypothesis is complete.  
• Place it aside and continue exploring other hypotheses via beam search. 

• Usually we continue beam search until:  

• We reach time step  (where  is some pre-defined cutoff), or  

• We have at least  completed hypotheses (where  is pre-defined cutoff)
T T

n n

34
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Beam Search Decoding: Parting Thoughts

• Problem with this: longer hypotheses have lower score
• Fix: Normalize by length. Use this to select top one instead

35

• We have our list of completed hypotheses. Now how to select top one?

• Each hypothesis  on our list has a scorey1, …, yt
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Maximization Based Decoding

• Either greedy or beam search
• Beam search can be more effective with large beam width, but also more expensive
• Another key issue: 

36

Generation can be bland or 
repetitive (also called 

degenerate)

Holtzmann et al., 2020
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Degenerate Outputs

37

Holtzmann et al., 2020
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Degenerate Outputs

37

Scale doesn’t solve this problem: even a 175 billion parameter LM still repeats 
when we decode for the most likely string.

Holtzmann et al., 2020
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Why does repetition happen?

• Probability amplification due to maximization based decoding 
• Generation fails to match the uncertainty distribution for human written text

38
Holtzmann et al., 2020

Perhaps we should not really be maximizing!
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Solution: Don’t Maximize, Pick a Sample

39

• Sample a token from the distribution of tokens.
• NOT a random sample, instead a sample from the learned model distribution

• Respects the probabilities, without going just for the maximum probability option
• Or else, you would get something meaningless

• Many good options which are not the maximum probability!
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Modern Generation: 
Sampling and Truncation

40
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Pure / Ancestral Sampling

41

yt ∼ Pt(w) =
exp(Sw)

∑v∈V exp(Sv)• Sample directly from Pt
• Access to the entire 

vocabulary!
• Very dependent on the quality of 

 or the model!Pt
• If the model distributions are 

of low quality, generations will 
be of low quality as well

• Often results in ill-formed 
generations
• No guarantee of fluency
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an option 
• Even if most of the probability mass in the distribution is over 

a limited set of options, the tail of the distribution could be 
very long and in aggregate have considerable mass

• Many tokens are probably really wrong in the current context. 
Yet, we give them individually a tiny chance to be selected. 

• But because there are many of them, we still give them as a 
group a high chance to be selected. 

42 Fan et al., ACL 2018; Holtzman et al., ACL 2018

Heavy-tailed 
distributions

Image Source: Huggingface
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Top-  SamplingK
• Problem: Ancestral sampling makes every token in the vocabulary 

an option 
• Even if most of the probability mass in the distribution is over 

a limited set of options, the tail of the distribution could be 
very long and in aggregate have considerable mass

• Many tokens are probably really wrong in the current context. 
Yet, we give them individually a tiny chance to be selected. 

• But because there are many of them, we still give them as a 
group a high chance to be selected. 

• Solution: Top-  sampling K
• Only sample from the top  tokens in the probability 

distribution
K

42 Fan et al., ACL 2018; Holtzman et al., ACL 2018

Heavy-tailed 
distributions

Image Source: Huggingface
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Top-  Sampling: Value of K K

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability distribution  

• Common values are  = 50 

K
K

K

43

• Increase  yields more diverse, but risky outputs K
• Decrease  yields more safe but generic outputsK
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44
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Top-  Sampling: IssuesK

44
Image Source: Holtzmann et al., 2019

Top-  sampling can cut off too quicklyK

Top-  sampling can also cut off too slowly!K

We can do better than having one-size-fits-all: a 
fixed  for all contexts K
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• Problem: The probability distributions we sample from are dynamic 

• When the distribution  is flatter, a limited  removes many viable options Pt K
• When the distribution  is peakier, a high  allows for too many options to have a 

chance of being selected 
Pt K
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Modern Decoding: Nucleus Sampling

• Problem: The probability distributions we sample from are dynamic 

• When the distribution  is flatter, a limited  removes many viable options Pt K
• When the distribution  is peakier, a high  allows for too many options to have a 

chance of being selected 
Pt K

• Solution: Nucleus Sampling / Top-  sampling P
• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is 

concentrated) 
P

• Varies  depending on the uniformity of K Pt

45 Holtzman et al., ICLR 2020
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Nucleus (Top- ) SamplingP
• Solution: Top-  sampling 

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is concentrated)  

• Varies  depending on the uniformity of 

P
P

K Pt

46 Holtzman et al., ICLR 2020
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Comparing different 
decoding algorithms

• Generate text to continue a 
given context 
• Open-ended generation

• Same decoding algorithms are 
also useful for close-ended 
generation tasks

47
Holtzman et al., ICLR 2020
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Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  
by applying the softmax function to a vector of scores 

t Pt
s ∈ ℝ|V|

• We can apply a temperature hyperparameter  to the softmax to 
rebalance 

τ
Pt

48

Temperature is a 
hyperparameter for 
decoding: It can be 

tuned for both beam 
search and sampling.

P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)

• Raise the temperature  > 1:  becomes more uniform  

• More diverse output (probability is spread around vocab) 
τ Pt

• Lower the temperature  < 1:  becomes more spiky  

• Less diverse output (probability is concentrated on top words)
τ Pt



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

Modern Decoding: Takeaways

49



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

Modern Decoding: Takeaways

• Natural language distributions are very peaky but the softmax function assigns probabilities 
to all tokens in the vocabulary

• Hence we need approaches to truncate / modify the softmax distribution

• Ancestral, Top- , Top-  (Nucleus), Temperaturek p

49



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

Modern Decoding: Takeaways

• Natural language distributions are very peaky but the softmax function assigns probabilities 
to all tokens in the vocabulary

• Hence we need approaches to truncate / modify the softmax distribution

• Ancestral, Top- , Top-  (Nucleus), Temperaturek p
• Some properties of the softmax function make truncation based decoding necessary

49
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Modern Sampling Involves Truncation

• Threshold sampling is guaranteed to 
only sample tokens in the support of 
the true distribution

• As long as the chosen threshold 
is larger than some bound

• So, what causes these tail errors that 
truncation sampling is able to avoid?

50
Finlayson, Hewitt, Koller, Swayamdipta and Sabharwal; ICLR 2024
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Language Models are Low Rank

51

• Language models use a low-rank 
softmax matrix  in their output layerW

• There will always be some error in the 
model’s log-probability estimation

• Despite this, language models still 
seem to perform quite well…

• Our hypothesis: 
• truncation sampling is sufficient 

to approximately mitigate errors 
from the softmax bottleneck.

Softmax Bottleneck (Yang et al., 2018)

Finlayson, Hewitt, Koller, Swayamdipta and Sabharwal; ICLR 2024
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Sampling works because Language Models are low rank

• We propose a more direct method 
for mitigating errors due to the 
softmax bottleneck

• “Non-monotonic” thresholding: 
only sample tokens in the support of 
the true probability distribution

• Dynamic threshold!

52
Finlayson, Hewitt, Koller, Swayamdipta and Sabharwal; ICLR 2024
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Lecture Outline

• Basics of Language Generation 

• Decoding Algorithms 

• Evaluating Language Generation 

• Metrics 

• Downstream Applications

53
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Evaluating  
Language Generation

54
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Evaluation Strategies

• With Reference
• Lexical Matching (e.g. BLEU)
• Semantic Matching (e.g. BERTScore)

• Without Reference
• Perplexity
• Model-Based Metrics (e.g. BLEURT)
• Advanced: Distributional Matching (MAUVE)
• Simplest, Most Reliable Strategy to-date: Human Evaluation
• Even simpler and least reliable: Auto Evaluation

55



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

Reference-Based Metrics

• Only possible for close-ended generation tasks 
• Compute a score that indicates the lexical similarity between generated and gold-

standard (human-written) text  
• Fast and efficient and widely used  

• -gram overlap metrics (e.g., BLEU, ROUGE, etc.)n

56
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BLEU

• Stands for Bilingual Evaluation Understudy
• BLEU compares the machine-written translation to one or several human-written 
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BLEU

• Stands for Bilingual Evaluation Understudy
• BLEU compares the machine-written translation to one or several human-written 

translation(s), and computes a similarity score based on: 
• Geometric mean of n-gram precision (usually for 1, 2, 3 and 4-grams) 
• Plus a brevity penalty for too-short system translations 

• BLEU is useful but imperfect 
• There are many valid ways to translate a sentence 
• So a good translation can get a poor BLEU score because it has low n-gram overlap 

with the human translation 
• Precision-based metric
• Range from 0 to 1

57
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BLEU: Details

• Purely precision-based rather than combining precision and 
recall  

• BLEU score for a corpus of candidate references is a function 
of  

• the n-gram word precision over all the references  
• combined with a brevity penalty computed over the 

corpus as a whole. 
• Consider a corpus composed of a single sentence  

• The unigram precision for this corpus is the percentage 
of unigram tokens in the candidate translation that also 
occur in the reference translation, and ditto for bigrams 
and so on, up to 4-grams 

• It computes this n-gram precision for unigrams, bigrams, 
trigrams, and 4-grams and takes the geometric mean 

• Because BLEU is a word-based metric, it is very sensitive to 
word tokenization, making it impossible to compare different 
systems if they rely on different tokenization

58
Papineni et al., 2002
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BLEU: Example

59
Papineni et al., 2002
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ROUGE

• Stands for “Recall-Oriented Understudy for Gisting Evaluation” 
• Originally created for evaluating automatic summarization as well as machine translation 
• Comparing an automatically produced summary or translation against a set of reference 

summaries (typically human-produced) 
• Four variants: 

• ROUGE-N 
• ROUGE-L 
• ROUGE-S 
• ROUGE-W

60
ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)
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ROUGE: Details
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ROUGE: Details
• ROUGE-N: measures unigram, bigram, trigram and higher order n-gram overlap 

• n-gram recall between a candidate summary and a set of reference summaries
• ROUGE-L: measures longest matching sequence of words using LCS 

• Does not require consecutive matches but in-sequence matches that reflect sentence 
level word order 

• Since it automatically includes longest in-sequence common n-grams, you don’t need 
a predefined n-gram length

61
ROUGE: A Package for Automatic Evaluation of Summaries (Lin, 2004)

ROUGE-L →
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• Model-based Metrics (BERTScore, BARTScore, Word Mover’s Distance, BLEURT)

• Use learned representations of words and sentences to compute semantic similarity 
between generated and reference texts

• No more n-gram bottleneck because text units are represented as embeddings! 
• The embeddings are pretrained, distance metrics used to measure the similarity can 

be fixed
• Automatic metrics fall short of matching human decisions
• So, Human Evaluation!
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• Ask humans to evaluate the quality of generated text
• Along specific axes: fluency, coherence / consistency, factuality and correctness, 

commonsense, etc.
• Mostly done via crowdsourcing

• Human judgments are regarded as the gold standard 
• Of course, we know that human eval is slow and expensive 
• Beyond the cost of human eval, it’s still far from perfect: 

• Humans Evaluation is hard: 
• Results are inconsistent / not reproducible 
• Can be subjective! 
• Misinterpret your question 
• Precision not recall
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Least Reliable: Automatic Evaluation

64

Cheap and theoretically consistent with 
human evaluation. BUT… reliability? 

Models evaluating their own generations 
may lead to weird mode collapsing effect
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Evaluating Systems 
without References

• Compare human / natural language 
distributions to model-generated 
language distributions

• Divergence between these two 
distributions can be measured by 
MAUVE

65
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How else can we evaluate 
and understand LLMs?
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What do some generative behaviors tell us about LLMs?
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Knowledge-Oriented

Language-Oriented

Societally-Oriented
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Lecture Outline

• Basics of Language Generation 

• Decoding Algorithms 

• Evaluating Language Generation 

• Metrics 

• Downstream Applications

69
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Generating Comparative 
Knowledge

70

NeuroComparatives [Howard, Wang, Lal, Singer, Choi & Swayamdipta, NAACL-Find. 2024]
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Compared to blenders, food processors       

typically need a longer time to process food

Comparative knowledge is an essential component of world 
knowledge, and crucial to how humans acquire knowledge 

about every day concepts.

can often handle more ingredients

have slightly different functions

have more versatility in terms of the variety of foods they can handle

have several different functions come with multiple blade attachments
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 The mix is baked for 20 minutes in moulds and served with a vegetable cream sauce , lentils , 
and sautéed mushrooms .
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filled. 
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Gonzalez , who had been ejected from the premises after an argument involving a former girlfriend , was alleged to have 
deliberately caused the fire by igniting gasoline within the club .

REMOVING

eject.V

Theme Source

amputated
REMOVING

Time

Write a new sentence as similar as possible to 
the given example, by replacing the verb 
“ejected” with “amputated” such that all 
semantic roles in the given example are 
appropriately filled.
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Gonzalez , who had been ejected from the premises after an argument involving a former girlfriend , was alleged to have 
deliberately caused the fire by igniting gasoline within the club .
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Time
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Write a new sentence as similar as possible to 
the given example, by replacing the verb 
“ejected” with “amputated” such that all 
semantic roles in the given example are 
appropriately filled.
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While the (automatically predicted) semantic fidelity remains high, 
humans tend to preserve pragmatics much more accurately than 

language models.
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CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

80

Is this message toxic? 
What is the implication for 
this message?

OATH-Frames  [Ranjit et al., and Swayamdipta, Under Submission]



CSCI 544   |   Understanding LLMs through Language Generation    |  Apr 4                                               Swabha Swayamdipta

80

I was waiting on the corner of spring to cross the st &amp; this homeless man started 
talking crazy to me and I was scared shitless then another homeless man comes up to him 
&amp; said chill out she’s my friend so the man left me alone. But Man I was so scared I 

was about to run 😭
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I was waiting on the corner of spring to cross the st &amp; this homeless man started 
talking crazy to me and I was scared shitless then another homeless man comes up to him 
&amp; said chill out she’s my friend so the man left me alone. But Man I was so scared I 

was about to run 😭

This message is not necessarily toxic, but it does express fear and discomfort. The implication of the message is that 
the person felt threatened by the unpredictable behavior of the first homeless man, but was relieved when another 

homeless man intervened on their behalf. It also implies a certain level of fear or prejudice towards homeless people, 
associating them with danger or unpredictability.

Is this message toxic? 
What is the implication for 
this message?

OATH-Frames  [Ranjit et al., and Swayamdipta, Under Submission]
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I think all homeless people should go to Ottawa and protest to our Government about the horrible conditions they live with. Being 
arrested might be better then their current conditions at least they’ll have a bed and 3 meals per day.What do you think Evan???????
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I think all homeless people should go to Ottawa and protest to our Government about the horrible conditions they live with. Being 
arrested might be better then their current conditions at least they’ll have a bed and 3 meals per day.What do you think Evan???????

Solutions / 
Interventions

Societal / Structural 
Critique

Dehumanization

PerceptionsResponses

Goffman’s Theory of Stigma (1963,1964)

Critiques
government critique

societal critique

money allocation

solutions/interventions

personal interaction/observation

media portrayal

not in my backyard

harmful generalization

deserving/undeserving
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With some effort, language models can 
be used as assistants for doing a first  
round of annotations to determine 

pragmatic frames for complex social 
phenomena

OATH-Frames  [Ranjit et al., and Swayamdipta, Under Submission]

Analysis of predictions 
allows summarizing and 
understanding online 

data at scale

Posts with the NIMBY frame by state
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LLMs exceed / match 
collective human capacity, 

but there seem to be 
distinctive strengths

LLMs struggle at nuanced 
linguistic skills, unlike 

humans

LLMs do need specialization 
via expert inputs
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LLMs exhibit a mastery of surface form language, generalization capabilities are 
not uniform, and robustness is an outstanding issue - this is distinct from humans

Reveals as much about the nature of natural language as it reveals about 
models and data 
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86

Must consider the task domain (language) and the 
overall utility (communication intent)

Understanding must involve some human 
component / metrics alone do not suffice
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Understanding LLMs through NLG: Parting Thoughts

• Once trained, language models can be very powerful 
• The power only increases with scale 
• So much so that most of our tasks in natural language can be seen as sequence 

completion tasks, e.g. Prompting (or In-Context / Few-Shot Learning)
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Understanding LLMs through NLG: Parting Thoughts

• Once trained, language models can be very powerful 
• The power only increases with scale 
• So much so that most of our tasks in natural language can be seen as sequence 

completion tasks, e.g. Prompting (or In-Context / Few-Shot Learning)
• Decoding Algorithms thus play a critical role 

• LLMs are fundamentally limited due to the large vocabulary size
• Evaluation and Understanding of LLMs needs to go beyond simple metrics 

• Standalone quantitative metrics may not capture the entirety of language generation 
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