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® M outputs are projected from the hidden dimension d to h 1 = Wh p = softmax(l)

W . softmax
a d-dimensional subspace of R or A , respectively R " R

I

v-dimensional logit and probability vectors, thus occupying
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® M outputs are projected from the hidden di

v-dimensional logit and probability vectors, t

a d-dimensional subspace of R or A , respectively R » R”

® This final layer is thus low-rank, since v > d

mension d to h 1 = Wh p = softmax(l)
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| anguage Models have a Softmax Bottleneck

® M outputs are projected from the hidden dimension d to h 1 = Wh p = softmax(l)
v-dimensional logit and probability vectors, thus occupying , W ., softmax
a d-dimensional subspace of R" or A , respectively R " KR Y

I

® This final layer is thus low-rank, since v > d
Yang et al., ICLR 2018; Finlayson et al., ICLR 2024
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| anguage Models have a Softmax Bottleneck

® M outputs are projected from the hidden dimension d to h 1 = Wh p = softmax(l)
v-dimensional logit and probability vectors, thus occupying , W ., softmax
a d-dimensional subspace of R" or A , respectively R " KR Y

® This final layer is thus low-rank, since v > d

® A collection of d linearly independent outputs @"“"‘\

pl, pz, ey pd € A, from the model will form a basis for the
model’s image

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024
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| anguage Models have a Softmax Bottleneck

® M outputs are projected from the hidden di

v-dimensional logit and probability vectors, t

mension d to h 1 = Wh p = softmax(l)

NUS occupyiﬂg W softmax

a d-dimensional subspace of R” or A , respectively R* » R” gAY

® This final layer is thus low-rank, since v > d

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024

I

W

® A collection ot d linearly independent outputs e"“"**-.‘\

pl, p2, ey pd € A, from the model will form a basis for the

model’s image

Targeted queries to the LM's API to extract n > d logit vectors will result in extracting

its hidden dimension, d and related information
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How to recover model logits from APIs?
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How to recover model logits from APIs?

® Access to top-k log probabilities
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® Access to top-k log probabilities

® | ogit Bias: A common API option that allows users to add bias to the logits for specific
tokens
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How to recover model logits from APIs?

® Access to top-k log probabilities

® | ogit Bias: A common API option that allows users to add bias to the logits for specific
tokens

® \We can recover this while preserving numerical stability in v/(k — 1) API calls, which costs
~$500 USD, for GPT-3.5-turbo
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How to recover model logits from APIs?

® Access to top-k log probabilities

® | ogit Bias: A common API option that allows users to add bias to the logits for specific
tokens

® \We can recover this while preserving numerical stability in v/(k — 1) API calls, which costs
~$500 USD, for GPT-3.5-turbo

® |f the hidden size is known, this can be done in d API calls; in general, in O(d) calls
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Key Result: Hidden Dimensionality
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Key Result: Hidden Dimensionality

® We collect outputs p’ one at a time until the number of linearly independent outputs in the collection
(obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs
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Key Result: Hidden Dimensionality
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® We collect outputs p’ one at a time until the number of linearly independent outputs in the collection
(obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs
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Key Result: Hidden Dimensionality

pythia-70m pythia-160m pythia-410m gpt-3.o-turbo
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® We collect outputs p’ one at a time until the number of linearly independent outputs in the collection
(obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs

® GPT-3.5-Turbo has hidden dimension close to 4096 and is likely a 7B model!

Finlayson, Ren & Swayamdipta, Under Submission 2024

6 R e




NSF-OSGAI Workshop @ Cornell Tech | Mar 26 Swabha Swayamdipta

Model Signature
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Model Signature

® Any collection of d linearly independent LM outputs p!, p%, ..., p? € A, form a basis for
the image of the model
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Model Signature
X4

® Any collection of d linearly independent LM outputs p!, p%, ..., p? € A, form a basis for
the image of the model

® \We call the image of the model, i.e. LM outputs in either W or p, the model signature
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® Any collection of d linearly independent LM outputs p!, p%, ..., p? € A, form a basis for
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® \We call the image of the model, i.e. LM outputs in either W or p, the model signature

® All LM outputs can be expressed as a unique linear combination of these d outputs
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Model Signature
X4

® Any collection of d linearly independent LM outputs p!, p%, ..., p? € A, form a basis for
the image of the model

® \We call the image of the model, i.e. LM outputs in either W or p, the model signature

® All LM outputs can be expressed as a unique linear combination of these d outputs

® Model signatures are uniquel
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LM outputs can be identified via model signatures
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LM outputs can be identified via model signatures

® Even different checkpoints from the same LM have largely disjoint model signatures
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LM outputs can be identified via model signatures

® Even different checkpoints from the same LM have largely disjoint model signatures
® Possible to determine precisely which LM produced a particular output, using only API
access to a set of LMs and without knowing the exact inputs to the model.
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LM outputs can be identified via model signatures

® Even different checkpoints from the same LM have largely disjoint model signatures
® Possible to determine precisely which LM produced a particular output, using only API
access to a set of LMs and without knowing the exact inputs to the model.
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Other Applications of Model Signatures
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Other Applications of Model Signatures

® Detecting model updates and changes to hidden prompts

® Improved LLM Inversion Morris etal,, 2023
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Other Applications of Model Signatures

® Detecting model updates and changes to hidden prompts

® |mproved LLM Inversion Morris et al., 2023
o Flndlng Unargmaxab‘e tOkeﬂS Demeter et al., 2020: Grivas et al., 2023
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Other Applications of Model Signatures

® Detecting model updates and changes to hidden prompts

® |mproved LLM Inversion Morris et al., 2023
o Flndlng Unargmaxab‘e tOkenS Demeter et al., 2020: Grivas et al., 2023
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® Recovering the softmax parameter matrix W (up to a rotation)
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So what?
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So what?

® || M providers might want to

mitigate the risks of an attack
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So what?

® || M providers might want to

mitigate the risks of an attack

® Remove APl access to top-k
logprobs or logit bias
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So what?

® | LM providers might want to ® More importantly, this is a step

mitigate the risks of an attack towards model accountability

® Remove APl access to top-k
logprobs or logit bias

® Remove access to LM
probabilities

® Removing the softmax
bottleneck altogether
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So what?

® | LM providers might want to ® More importantly, this is a step

mitigate the risks of an attack towards model accountability
® Remove APl access to top-k ® Building trust between API| users

logprobs or logit bias and providers

® Remove access to LM
probabilities

® Removing the softmax

bottleneck altogether
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So what?

® | LM providers might want to ® More importantly, this is a step

mitigate the risks of an attack towards model accountability
® Remove APl access to top-k ® Building trust between API| users

logprobs or logit bias and providers

® Remove access to LM
probabilities
® Removing the softmax

® |mplementing efficient protocols
for model auditing
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