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• LM outputs are projected from the hidden dimension   to 
-dimensional logit and probability vectors, thus occupying 

a -dimensional subspace of  or , respectively

d
v
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• This final layer is thus low-rank, since v ≫ d

• A collection of  linearly independent outputs 
 from the model will form a basis for the 

model’s image

d
p1, p2, …, pd ∈ Δv

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024

Targeted queries to the LM’s API to extract  logit vectors will result in extracting 
its hidden dimension,  and related information

n > d
d

h l = Wh p = softmax(l)
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How to recover model logits from APIs?

• Access to top-  log probabilitiesk

• Logit Bias: A common API option that allows users to add bias to the logits for specific 
tokens

• We can recover this while preserving numerical stability in  API calls, which costs 
~$500 USD, for GPT-3.5-turbo

v/(k − 1)

• If the hidden size is known, this can be done in  API calls; in general, in  callsd O(d)
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Key Result: Hidden Dimensionality

• We collect outputs  one at a time until the number of linearly independent outputs in the collection 
(obtained via SVD) stops increasing, which will occur when we have collected  outputs

pi

d + 1

• GPT-3.5-Turbo has hidden dimension close to 4096 and is likely a 7B model!
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d p1, p2, …, pd ∈ Δv

• We call the image of the model, i.e. LM outputs in either  or , the model signatureW p

• All LM outputs can be expressed as a unique linear combination of these  outputsd

• Model signatures are unique!
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Other Applications of Model Signatures
• Detecting model updates and changes to hidden prompts

• Improved LLM Inversion

• Finding unargmaxable tokens

• Recovering the softmax parameter matrix  (up to a rotation)W
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Morris et al., 2023

Demeter et al., 2020; Grivas et al., 2023
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• LLM providers might want to 
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• Remove API access to top-  
logprobs or logit bias
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• Remove access to LM 
probabilities 

• Removing the softmax 
bottleneck altogether
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• More importantly, this is a step 
towards model accountability
• Building trust between API users 

and providers
• Implementing efficient protocols 

for model auditing
• Verifying LM identity and 

ownership
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Discovery!
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