When all you have are Logits... Towards (Closed-Source) LLM Accountability via Logit Signatures

Swabha Swayamdipta Assistant Professor, USC Viterbi CS NSF - OSGAI Workshop March 26, 2024

Viterbi

Swabha Swayamdipta

MISTRAL AI_

GPT - 4

Claude AI

Swabha Swayamdipta

MISTRAL AI

Swabha Swayamdipta

MISTRAL AI

Logits of API-Protected LLMs Proprietary Information

Matthew Finlayson Xiang Ren Swabha Swaya Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.ed

Leak	
amdipta e	
lu	

Logits of API-Protected LLMs Leak Proprietary Information

Matthew Finlayson Xiang Ren Swabha Swayamdipta Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.edu

Logits can reveal the hidden dimensionality!

Logits of API-Protected LLMs Leak Proprietary Information

Xiang Ren Swabha Swayamdipta Matthew Finlayson Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.edu

Logits can reveal the hidden dimensionality!

• LM outputs are projected from the hidden dimension d to v-dimensional logit and probability vectors, thus occupying a d-dimensional subspace of \mathbb{R}^{ν} or Δ_{ν} , respectively

- LM outputs are projected from the hidden dimension d to v-dimensional logit and probability vectors, thus occupying a d-dimensional subspace of \mathbb{R}^{ν} or Δ_{ν} , respectively
- This final layer is thus low-rank, since $v \gg d$

Language Models have a Softmax Bottleneck

- LM outputs are projected from the hidden dimension d to v-dimensional logit and probability vectors, thus occupying a d-dimensional subspace of \mathbb{R}^{ν} or Δ_{ν} , respectively
- This final layer is thus low-rank, since $v \gg d$

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024

Language Models have a Softmax Bottleneck

- LM outputs are projected from the hidden dimension d to v-dimensional logit and probability vectors, thus occupying a d-dimensional subspace of \mathbb{R}^{ν} or Δ_{ν} , respectively
- This final layer is thus low-rank, since $v \gg d$

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024

• A collection of *d* linearly independent outputs $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^d \in \Delta_v$ from the model will form a basis for the model's image

Language Models have a Softmax Bottleneck

- LM outputs are projected from the hidden dimension d to *v*-dimensional logit and probability vectors, thus occupying a *d*-dimensional subspace of \mathbb{R}^{ν} or Δ_{ν} , respectively
- This final layer is thus low-rank, since $v \gg d$

Yang et al., ICLR 2018; Finlayson et al., ICLR 2024

• A collection of *d* linearly independent outputs $\mathbf{p}^1, \mathbf{p}^2, ..., \mathbf{p}^d \in \Delta_v$ from the model will form a basis for the model's image

Targeted queries to the LM's API to extract n > d logit vectors will result in extracting its hidden dimension, d and related information

Swabha Swayamdipta

• Access to top- $k \log probabilities$

Swabha Swayamdipta

- Access to top- $k \log probabilities$
- tokens

Swabha Swayamdipta

• Logit Bias: A common API option that allows users to add bias to the logits for specific

- Access to top- $k \log probabilities$
- tokens
- ~\$500 USD, for GPT-3.5-turbo

Swabha Swayamdipta

• Logit Bias: A common API option that allows users to add bias to the logits for specific

• We can recover this while preserving numerical stability in v/(k-1) API calls, which costs

- Access to top- $k \log probabilities$
- tokens
- ~\$500 USD, for GPT-3.5-turbo
- If the hidden size is known, this can be done in d API calls; in general, in O(d) calls

Swabha Swayamdipta

• Logit Bias: A common API option that allows users to add bias to the logits for specific

• We can recover this while preserving numerical stability in v/(k-1) API calls, which costs

Key Result: Hidden Dimensionality

Swabha Swayamdipta

Key Result: Hidden Dimensionality

(obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs

Swabha Swayamdipta

• We collect outputs \mathbf{p}^i one at a time until the number of linearly independent outputs in the collection

Key Result: Hidden Dimensionality

(obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs

• We collect outputs \mathbf{p}^{t} one at a time until the number of linearly independent outputs in the collection

Key Result: Hidden Dimensionality

- (obtained via SVD) stops increasing, which will occur when we have collected d + 1 outputs
- GPT-3.5-Turbo has hidden dimension close to 4096 and is likely a 7B model!

• We collect outputs \mathbf{p}^i one at a time until the number of linearly independent outputs in the collection

Swabha Swayamdipta

Model Signature

the image of the model

Model Signature

• Any collection of d linearly independent LM outputs $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^d \in \Delta_v$ form a basis for

- the image of the model

• Any collection of d linearly independent LM outputs $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^d \in \Delta_v$ form a basis for

• We call the image of the model, i.e. LM outputs in either W or \mathbf{p} , the model signature

- the image of the model
- All LM outputs can be expressed as a unique linear combination of these d outputs

• Any collection of d linearly independent LM outputs $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^d \in \Delta_v$ form a basis for

• We call the image of the model, i.e. LM outputs in either W or \mathbf{p} , the model signature

- the image of the model
- All LM outputs can be expressed as a unique linear combination of these d outputs
- Model signatures are unique!

• Any collection of d linearly independent LM outputs $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^d \in \Delta_v$ form a basis for

• We call the image of the model, i.e. LM outputs in either W or \mathbf{p} , the model signature

Swabha Swayamdipta

• Even different checkpoints from the same LM have largely disjoint model signatures

- access to a set of LMs and without knowing the exact inputs to the model.

• Even different checkpoints from the same LM have largely disjoint model signatures • Possible to determine precisely which LM produced a particular output, using only API

- access to a set of LMs and without knowing the exact inputs to the model.

• Even different checkpoints from the same LM have largely disjoint model signatures • Possible to determine precisely which LM produced a particular output, using only API

Other Applications of Model Signatures

Swabha Swayamdipta

Other Applications of Model Signatures

- Detecting model updates and changes to hidden prompts
- Improved LLM Inversion

Swabha Swayamdipta

Morris et al., 2023

Other Applications of Model Signatures

- Detecting model updates and changes to hidden prompts
- Improved LLM Inversion
- Finding unargmaxable tokens

Swabha Swayamdipta

Morris et al., 2023

Demeter et al., 2020; Grivas et al., 2023

Other Applications of Model Signatures

- Detecting model updates and changes to hidden prompts
- Improved LLM Inversion
- Finding unargmaxable tokens
- Recovering the softmax parameter matrix W (up to a rotation)

Swabha Swayamdipta

Morris et al., 2023

Demeter et al., 2020; Grivas et al., 2023

Swabha Swayamdipta

So what?

• LLM providers might want to mitigate the risks of an attack Swabha Swayamdipta

So what?

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias

Swabha Swayamdipta

So what?

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities

Swabha Swayamdipta

So what?

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

Swabha Swayamdipta

So what?

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

Swabha Swayamdipta

So what?

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

So what?

• More importantly, this is a step towards model accountability

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

So what?

- More importantly, this is a step towards model accountability
 - Building trust between API users and providers

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

So what?

- More importantly, this is a step towards model accountability
 - Building trust between API users and providers
 - Implementing efficient protocols for model auditing

- LLM providers might want to mitigate the risks of an attack
 - Remove API access to top-klogprobs or logit bias
 - Remove access to LM probabilities
 - Removing the softmax bottleneck altogether

So what?

- More importantly, this is a step towards model accountability
 - Building trust between API users and providers
 - Implementing efficient protocols for model auditing
 - Verifying LM identity and ownership

Stealing Part of a Production Language Model

Nicholas Carlini¹ Daniel Paleka² Krishnamurthy (Dj) Dvijotham¹ Thomas Steinke¹ Jonathan Hayase³ A. Feder Cooper¹ Katherine Lee¹ Matthew Jagielski¹ Milad Nasr¹ Arthur Conmy¹ Eric Wallace⁴ **David Rolnick**⁵ Florian Tramèr²

Logits of API-Protected LLMs Leak Proprietary Information

Matthew Finlayson Xiang Ren Swabha Swayamdipta Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.edu

arXiv:2403.06634v1 [cs.CR] 11 Mar 2024

arXiv:2403.09539v2 [cs.CL] 15 Mar 2024

Stealing Part of a Production Language Model

Nicholas Carlini¹ Daniel Paleka² Krishnamurthy (Dj) Dvijotham¹ Thomas Steinke¹ Jonathan Hayase³ A. Feder Cooper¹ Katherine Lee¹ Matthew Jagielski¹ Milad Nasr¹ Arthur Conmy¹ Eric Wallace⁴ **David Rolnick**⁵ Florian Tramèr²

Logits of API-Protected LLMs Leak Proprietary Information

Matthew Finlayson Xiang Ren Swabha Swayamdipta Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.edu

Simultaneous Discovery!

arXiv:2403.06634v1 [cs.CR] 11 Mar 2024

arXiv:2403.09539v2 [cs.CL] 15 Mar 2024

Logits of API-Protected LLMs Leak Proprietary Information

Xiang Ren Swabha Swayamdipta Matthew Finlayson Thomas Lord Department of Computer Science University of Southern California {mfinlays, xiangren, swabhas}@usc.edu

