Natural Language Processing and Language Models

Swabha Swayamdipta
Assistant Professor of Computer Science
Introduction to Engineering by Prof. Darin Gray
June 23, 2023

Slides adapted from Greg Durrett, UT Austin
Physically dividing ferns is the simplest way to propagate them. Simply take a mature clump of ferns out of its container or dig it up out of the ground and divide it into pieces. Every separate clump of fronds – growing on an erect rhizome – can be separated out into an individual plant.
Human language, as opposed to programming languages

Natural Language Processing

Automatic, as opposed to manual
What is Natural Language Processing?

- Field at the intersection of Computer science, AI (especially machine learning) and Linguistics
- Goal: for computers to process human language, similar to human understanding, towards performing useful tasks
- Challenge: understanding and representing the meaning of language is something even humans struggle with
Apple’s Siri

- Understands the user
- Remembers what the user said earlier
- Can understand which alarm she is referring to

Hey Siri, set an alarm for 7am every day
Okay, your alarm is set
When is my next alarm?
You have an alarm for 7am tomorrow
Actually, delete my alarms for weekends
Google Translate

- Detects language automatically
- Can reorder spans in text on the fly
• Understands that a fern can be indoor, can be propagated either from seed or from cuttings

• Can find the exact passage in a webpage that answers the questions

• Can find related (in meaning) questions
Concrete Outcomes

- Learn what NLP is about
- Learn some basic ideas of machine learning (a statistical model)
- See how a statistical model for predictive text works (what word should come next in this sentence?)
- Learn the connections between this language model and models such as OpenAI’s ChatGPT / GPT-4 models
Outline

Natural Language Processing

Machine Learning

Language Modeling

n-gram Language Models

Chat-GPT and other Large Language Models

So you want to …

...dance
...learn
...play

What’s Next?
Machine Learning
Machine Learning

- All about predictions: Input X and Output Y

- In most real life problems, there is no simple formula to obtain Y from X

- Machine learning uses statistical analysis to figure out what would be the probability of the output Y, written as $p(Y)$, given the input X

- Statistical Analysis: Lots of data as example pairs of input X and output Y

Examples of what we want to do:

- e.g. Face Identifier in Google Photos

Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Formula</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>e.g. Software Program</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New Input: X_{new}

New Output: Y_{new}
Natural Language Processing and Machine Learning

- Natural language processing uses a lot of ideas from machine learning

- Humans are good at understanding language. Computers are bad at it and it’s hard to program them.

- If we see lots of examples of how humans do a task, can we teach a computer how to do it?
Building Siri

// Start by reading the user input with a predefined method
String userStr = readUserInput();
if (userStr.startsWith("set a timer"))
 startTimerDialogue();
else if (userStr.startsWith("set an alarm") ||
 userStr.startsWith("wake me up at"))
 startAlarmDialogue();
else [...]
Analyze Movie Review Sentiment

Spider-Man: Across the Spider-Verse is an absolute triumph that takes everything we loved about the original film and cranks it up to a whole new level. This stunning sequel is a true testament to the power of animation, storytelling, and the enduring legacy of everyone's favorite web-slinger.

🌟🌟🌟🌟🌟

The Little Mermaid: To anyone who is planning on seeing this movie, I'd highly recommend to just wait until it comes out on Disney+ or something so you don't waste your money. I only went to see the movie because of my daughter and we can both say that this movie did not live up to our expectations. Furthermore, we both did not enjoy the majority of the movie at all.

🌟🌟🌟🌟☆
Let’s try something simple:

- `(numberOfGoodWords, numberOfBadWords)`

```java
int numberOfGoodWords = computeNumGoodWords(review);
int numberOfBadWords = computeNumBadWords(review);
if (numberOfGoodWords > 3 && numberOfBadWords < 2)
    return "4 stars";
else if (numberOfGoodWords > 2 && numberOfBadWords < 3)
    return "3 stars";
else [...]```

We can automatically generate this program! (It’s called a decision tree)
Machine Learning Overview

• Lots of different models: decision trees, neural networks, Bayes Networks, …

• Machine Learning starts with a **feature representation** of this data: how do we represent it to a system?
  
  • We did for sentiment analysis with our variables, \((\text{numberOfGoodWords}, \text{numberOfBadWords})\)

• **Neural networks** will view this as thousands of numbers (similar to how computers view programs as boolean codes) associated with each word.

• Let’s use a probabilistic model for language modeling…
  
  • Very little math to implement…
Language Models

So you want to ...

...dance
...learn
...play
Language Models

- Task: Given a sequence of words so far (the context), predict what comes next.
- Like autocomplete!
- We never know for sure what comes next, but we can still make good guesses!
- Question: what is X and what is Y here?
I want to …

…dance
…learn
…play

What words can follow this?

What is common to these words?
Building a Language Model

What words can follow this?

The 44th President of United States was ...

...Barack Obama
I want to _____
Why Language Modeling?

- Summarize articles, podcasts or presentations
- Code computer programs!
- Draft emails
- Play games.
- Script social media posts
- Create a title for an article
- Compose music!!!
- Assist with job searches, including writing resumes and cover letters
- Ask trivia questions.
- Create product descriptions.
- Describe complex topics more simply.
- Solve math problems
- Create articles, blog posts and quizzes for websites.
- Reword existing content for a different medium, such as a presentation transcript for a blog post.

Extremely powerful: can in many cases replace laborious manual efforts
n-gram Language Modeling

- Our focus: build a model that predicts the next word based on the previous one or two words

- **n-gram**: a sequence of n words
  - *I like to* = 3-gram
  - *I really want to go* = 5-gram

- **n-gram language model**: predict the next word based on the previous n-1 words

How does a bigram context change the words that might follow?
Building n-gram Language Models
2-gram language models

This is a **conditional probability distribution**:

\[ P(\text{next word} = y \mid \text{previous word} = x) \]

“the probability of the next word is \( y \) given that the previous word is \( x \)

I want to ____

\[
\begin{align*}
P(\text{next word} = \text{was} \mid \text{previous word} = \text{to}) &= 0.0 \\
P(\text{next word} = \text{LA} \mid \text{previous word} = \text{to}) &= 0.2 \\
P(\text{next word} = \text{Europe} \mid \text{previous word} = \text{to}) &= 0.1 \\
P(\text{next word} = \text{Mexico} \mid \text{previous word} = \text{to}) &= 0.1 \\
P(\text{next word} = \text{eat} \mid \text{previous word} = \text{to}) &= 0.1 \\
\end{align*}
\]

These have to add up to 1 over the vocabulary (every possible word \( y \) could be) “if we see to I think there’s a 20% chance the next word is LA”

Assume a **fixed vocabulary** of ~30,000 words
2-gram language models

• If we have these probabilities, we can build our predictive text system:

\[ P(\text{next word} = \_ \mid \text{previous word} = \text{to}) \]

Check all the possible words from that list, pick the ones with the highest probability (most likely next words)

• Where do these probabilities come from? We’re going to learn them from a bunch of text data we see
Lots and lots of text data

2-gram LM probabilities

Probability Estimation (Statistical Modeling)
Probability Estimation (Statistical Modeling)

Suppose we have a biased coin that’s heads with probability $p$. $p$ is a number between 0 and 1, and for a normal coin, $p = 0.5$ (equal probability of heads or tails).

Suppose we flip the coin four times and see (H, H, H, T)

1. What do you think the probability $p$ of heads is with this coin? Take a guess!

- We don’t know what $p$ is — $p$ could be 0.5! But $p = 3/4 = 0.75$ maximizes the probability of the data. We’ll say “this is the most likely value of $p$”

- The probability of the data is $p*p*p*(1-p)$ — if you’ve taken calculus, you can take the derivative and set it equal to zero and find $p = 0.75$
n-gram Language Model

The decision for what words occur after a word $w$ is exactly the same as the biased coin, but with 33,000 possible outcomes (different words) instead of 2.

I like to eat cake but I want to eat pizza right now. Mary told her brother to eat pizza too.

$P(\text{next word} = \text{pizza} \mid \text{previous word} = \text{eat}) = \frac{2}{3}$

$P(\text{next word} = \text{cake} \mid \text{previous word} = \text{eat}) = \frac{1}{3}$

All other next words = 0 probability
Smoothing

- All other 29,998 words getting 0 probability just doesn’t seem right. We want to assign some probability to other words

- We want to smooth the distribution from our counts

\[ P(w | w_{prev}) = \lambda \frac{\text{count}(w_{prev}, w)}{\text{count}(w_{prev})} + (1 - \lambda) \frac{\text{count}(w)}{\text{total word count}} \]

a number between 0 and 1 (like 0.9) what we had before a unigram LM
Neural networks are function that map $f(\text{context}) \rightarrow \text{prediction}$

$f$ is very, very complicated!

$f(x) = 2x + 3$ has one input ($x$) and 2 parameters ($2$ and $3$)

The $f$ we use here has $>1000$ inputs and $>1$ million parameters!

These can be learned from data using derivatives from calculus

This model is called a Transformer. Uses a mechanism called self \textit{attention} to capture interactions between words. 1000 numbers x 5 words = 5000 inputs
Chat-GPT and other Large Language Models
Using Large Language Models

- These models are trained over a ton of data (a curated scrape of the web). So they will have seen information about Nebraska and Lincoln.

- A big enough model can answer questions even without being trained to do so. What else can we get these models to do?

![Diagram of GPT-3 process]

Web text → Language Model → Lincoln

“Pre-training”: LM is learned on the web

The capital of Nebraska is _____
Why does this work?

The model has really seen how to do a lot of tasks already when it was being built!
But, LLMs are not perfect...

The cat was lost after leaving the house.

The cat could not find its way.

Since I took office, Wisconsin now has the highest health care ranking in the country.

Wisconsin’s health care ranking changed.

GPT-4 struggles on this task!
Ethical Concerns

Can We No Longer Believe Anything We See?

By Tiffany Hsu and Steven Lee Myers
April 8, 2023

Which image was created by artificial intelligence? Click on your guess

This Tool Could Protect Artists From A.I.-Generated Art That Steals Their Style
Artists want to be able to post their work online without the fear “of feeding this monster” that could replace them.

An A.I. Hit of Fake ‘Drake’ and ‘The Weeknd’ Rattles the Music World
A track like “Heart on My Sleeve,” which went viral before being taken down by streaming services this week, may be a novelty for now. But the legal and creative questions it raises are here to stay.

A.I.-Generated Content Discovered on News Sites, Content Farms and Product Reviews
The findings in two new reports raise fresh concerns over how artificial intelligence may transform the misinformation landscape online.
What’s Next?
Courses to take

- How to study this more?
- Math to learn: probability, linear algebra
- Machine learning or data science online courses
  - Andrew Ng’s Coursera course: https://www.coursera.org/learn/machine-learning
  - Sentiment Analysis tutorial: https://realpython.com/sentiment-analysis-python/
- More programming or software engineering can help
  - Python
Further Reading

• Understanding more about neural networks: Chris Olah, Jay Alammar
  • https://colah.github.io/
  • https://jalammar.github.io/

• Latest big language models:
  • https://openai.com/blog/better-language-models/
Thank you!

You can find these slides here:

My lab