

Task: Frame-semantic parsing

The goal is to parse sentences into FrameNet-style semantic graphs (Baker et. al., 1998).

Hoover Dar	n played a <i>play.v</i>	major ro	ole ii	n preventing prevent.v	Las V
Performer	PERFORMERS _AND_ROLES	Role			Perf
		IMPORT- F	actor		Und
Preventing_ cause				THWARTING	Protag
					Enti

Figure: A FrameNet sentence with color-coded frame annotations below. Target words and phrases are highlighted, and their lexical units shown italicized below. Frames are shown in colored blocks, and frame-element segments are shown horizontally alongside the frame.

Focus: identifying and labeling argument spans.

Segmental Recurrent Neural Networks (Kong et. al., 2016)

- Variant of a semi-Markov conditional random field (Sarawagi and Kohen, 2004)
- Span representations are computed using bidirectional RNNs.
- Provide a generalization of BIO tagging schemes.
- Directly model an entire variable-length segment (rather than fixed-length label n-grams).
- \blacktriangleright Exact inference takes $O(nd\ell)$, n being the length of sentence, d maximum length of spans, and ℓ the number of labels.

Figure: Illustration of the model architecture for an example sentence and its frame-semantic parse.s Black: input token embeddings. Purple: input frame and frame-element embeddings. Green: token biLSTM hidden states. Red: span embedding hidden states. Gray: segment factor.

Frame-Semantic Parsing with Softmax-Margin Segmental RNNs and a Syntactic Scaffold

Swabha Swayamdipta¹ Sam Thomson¹ Chris Dyer² Noah A. Smith³

¹Carnegie Mellon University, USA ²Google DeepMind, UK ³University of Washington, USA

Recall-oriented Softmax-Margin Segmental RNNs

A modified logloss objective that encourages recall over precision, by applying a cost function which penalizes false negatives by a factor α is used:

Figure: Log loss vs recall-oriented softmax margin loss

Incorporating Syntax I: Pipelining Syntactic Features

Constituency Features is_phrase phrase_type lca_type constit_path_lstm

Incorporating Syntax II: Syntactic Scaffolding

- Frame-semantic arguments are also syntactic constituents.
- constituents and frame-semantic arguments.
- Bidirectional RNN parameters are shared between tasks.

/egas from drying up

formance	
dertaking	
gonist	Action
ity	BECOMING_DRY

$$\frac{\exp(s^*, x)}{\sum \exp\{(s, x) + \cos(s, s^*)\}},$$
 (1)
$$) = \alpha FN(s, s^*) + FP(s, s^*),$$
 (2)

This objective results in a boost in F1, primarily due to increase in recall.

Dependency Features head_word head_label out_#heads dep_path_lstm

Multi-task learning setup: simultaneously learn to predict syntactic Can exploit constituent span annotations from Penn Treebank.

Scaffold is only needed at train time; usual test setup is followed.

Learning with a syntactic scaffold

A binary logistic regression loss is used to predict if a text span could be a constituent. loss $_{
m scaffold}(i,j,r^*,x) =$

$$-\log \frac{\exp \psi(i, j, r^*, x)}{\sum \ \exp \psi(i, j, r, x)}.$$
(3)

$$r = \{0,1\}$$
The joint multi-task loss for a single sentence is:

$$\underbrace{loss(x, s^*)}_{\text{Eq. 1}} + \delta \sum_{\substack{1 \leq i \leq j \leq |x| \\ j-i < D}} loss_{\text{scaffold}}(i, j, r^*, x), \quad (4)$$

Argument Identification

Performance of argument identification only, using gold frames, on the FrameNet 1.5 test set.

Frame and Argument Identification

Parsing performance on the FrameNet 1.5 test set using a combined evaluation of frame identification and argument identification. The predicted frames are from FitzGerald et. al. (2015).

