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Announcements + Logistics

• Quiz 3 grades out. HW2 grades this week, apologies for the delay 
• Once again, you all deserve a TA, please let USC know! 

• Wed: Project Progress Report Due 
• Starting Next Week: Paper Discussions [10% of grade] 

• 3 weeks of paper discussions following lectures on advanced topics 
• Before class, read 3 modern classic papers per week (see website) 
• In class, discuss each paper with (randomly assigned) group of 4-5 students 

• 20 mins per paper within group 
• 15 mins per paper with whole class 

• I will randomly pick a student to summarize a group discussion 
• After class, turn in your review of the 3 papers, ranking them
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Lecture Outline

• Quiz 3 Answers 
• Recap: Classic Inference Algorithms: Greedy and Beam Search 
• Modern Generation: Sampling 
• Generative Evaluation Metrics / Methods
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Quiz 3 
Answers (Redacted)
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Recap: Natural 
Language Generation
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Broad Spectrum of NLG Tasks
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Machine 
Translation

Less Open-Ended More Open-Ended

Summarization Task-driven 
Dialog

Chitchat 
Dialog

Story 
Generation
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Language Generation: Training

• Trained one token at a time to maximize the probability of the next token  given preceding 
words  

y*t
y*<t
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Text Generation Model

y*0 y*1 y*t y*t+1 y*t+2

y*t−1

…

y*−1 = <s>

…

ℒ = −
T

∑
t=1

log P(yt |y<t) = −
T

∑
t=1

log
exp(Syt|y<t

)
∑v∈V exp(Sv|y<t

)

• Classification task at each time step trying to predict the actual word  in the training data  

• “Teacher forcing” (reset at each time step to the ground truth)
y*t

y*ty*0
y*t+1
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Teacher Forcing

• Strategy for training decoders / language models 

• At each time step  in decoding we force the system to use the gold target token from 
training as the next input , rather than allowing it to rely on the (possibly erroneous) 
decoder output  

• Runs the risk of exposure bias! 
• During training, our model’s inputs are gold context tokens from real, human-

generated texts 
• At generation time, our model’s inputs are previously–decoded tokens

t
xt+1

̂yt

8



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Language Generation: Inference

•  The “obvious” decoding algorithm is to greedily choose the highest probability next 
token according to the model at each time step.  

• But… greedy decoding has no wiggle room for errors!

9

• At inference time, our decoding algorithm defines a function to select a token from this 
distribution:

g = arg max

̂yt = g(P(yt |y<t))

Inference / Decoding Algorithm

̂yt = arg max
w∈V

(P(yt = w |y<t))
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Exhaustive Search Decoding

• We could try computing all possible sequences  

• This means that on each step  of the decoder, we will be tracking  possible partial 
translations, where  is the vocab size  

• This  complexity is far too expensive!

y
t Vt

V
O(VT)
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• Ideally, we want to find a ( length ) translation  that maximizesT y
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Beam Search Decoding

• Core idea: On each step of decoder, keep track of the  most probable partial 
translations (which we call hypotheses)  

•  is the beam size (in practice around 5 to 10, in NMT) 

• A hypothesis has a score which is its log probability: 

• Scores are all negative, and higher score is better  

• We search for high-scoring hypotheses, tracking top  on each step 

• Beam search is not guaranteed to find optimal solution  
• But much more efficient than exhaustive search!

k

k

k
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Beam Search Decoding: Example

12 Slide credit: Chris Manning
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Beam Search Decoding: Example
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Beam Search Decoding: Example

14 Slide credit: Chris Manning



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example
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Beam Search Decoding: Example

22 Slide credit: Chris Manning



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Beam Search Decoding: Example
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Beam Search Decoding: Example

24 Slide credit: Chris Manning
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Beam Search Decoding: Stopping Criterion

• Greedy Decoding is done until the model produces an </s> token 
• For e.g. <s> he hit me with a pie </s> 

• In Beam Search Decoding, different hypotheses may produce </s> tokens at different 
time steps  
• When a hypothesis produces </s>, that hypothesis is complete  
• Place it aside and continue exploring other hypotheses via beam search  

• Usually we continue beam search until:  

• We reach time step  (where  is some pre-defined cutoff), or  

• We have at least  completed hypotheses (where  is pre-defined cutoff)
T T

n n
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Beam Search Decoding: Parting Thoughts

• Problem with this: longer hypotheses have lower scores 
• Fix: Normalize by length. Use this to select top one instead

26

• We have our list of completed hypotheses. Now how to select top one? 

• Each hypothesis  on our list has a scorey1, …, yt

But this is expensive!



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Maximization Based Decoding

• Either greedy or beam search 
• Beam search can be more effective with large beam width, but also more expensive 
• Another key issue: 

27

Generation can be bland or 
repetitive (also called degenerate)

Holtzmann et al., 2020
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Degenerate Outputs

28

Scale doesn’t entirely solve this problem: even a 175 billion parameter LM still repeats 
when we decode for the most likely string.

Holtzmann et al., 2020
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Why does repetition happen?

• Probability amplification due to maximization based decoding  
• Generation fails to match the uncertainty distribution for human written text

29
Holtzmann et al., 2020

Perhaps we should not really be maximizing! 
What else could we do?
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Solution: Don’t Maximize, Pick a Sample

30

• Sample a token from the distribution of tokens. 
• But this is not a random sample, it is a sample for the learned model distribution 

• Respects the probabilities, without going just for the maximum probability option 
• Or else, you would get something meaningless 
• Many good options which are not the maximum probability!
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Modern Generation: 
Sampling

31
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Pure / Ancestral Sampling

32

yt ∼ Pt(w) =
exp(Sw)

∑v∈V exp(Sv)• Sample directly from  

• Similar to sampling from an 
-gram language model 

• Still has access to the entire 
vocabulary 

• But if the model distributions are 
of low quality, generations will be 
of low quality as well 

• Often results in ill-formed 
generations 
• No guarantee of fluency

Pt
n
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Top-  SamplingK
• Problem: Ancestral sampling makes every token in the vocabulary 

an option  
• Even if most of the probability mass in the distribution is over 

a limited set of options, the tail of the distribution could be 
very long and in aggregate have considerable mass 

• Many tokens are probably really wrong in the current context. 
Yet, we give them individually a tiny chance to be selected.  

• But because there are many of them, we still give them as a 
group a high chance to be selected.  

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability 
distribution

K
K

33 Fan et al., ACL 2018; Holtzman et al., ACL 2018

Heavy-tailed 
distributions

Image Source: Huggingface
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Top-  Sampling: Value of K K

• Solution: Top-  sampling  

• Only sample from the top  tokens in the probability distribution  

• Common values are  = 50 

K
K

K

34

• Increase  yields more diverse, but risky outputs  

• Decrease  yields more safe but generic outputs
K
K
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Top-  Sampling: IssuesK

35
Image Source: Holtzmann et al., 2019

Top-  sampling can cut off too quicklyK

Top-  sampling can also cut off too slowly!K

We can do better than having one-size-fits-all: a 
fixed  for all contexts K
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Modern Decoding: Nucleus Sampling

• Problem: The probability distributions we sample from are dynamic  

• When the distribution  is flatter, a limited  removes many viable options  

• When the distribution  is peakier, a high  allows for too many options to have a 
chance of being selected  

• Solution: Nucleus Sampling / Top-  sampling  

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is 
concentrated)  

• Varies  depending on the uniformity of 

Pt K
Pt K

P
P

K Pt

36 Holtzman et al., ICLR 2020
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Nucleus (Top- ) SamplingP
• Solution: Top-  sampling 

• Sample from all tokens in the top  cumulative probability mass (i.e., where mass is concentrated)  

• Varies  depending on the uniformity of 

P
P

K Pt

37 Holtzman et al., ICLR 2020
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Temperature Scaling

• Recall: On timestep , the model computes a prob distribution  by applying the softmax 
function to a vector of scores  

• We can apply a temperature hyperparameter  to the softmax to rebalance 

t Pt
s ∈ ℝ|V|

τ Pt

38

Temperature is a hyperparameter for 
decoding: It can be tuned for both beam 

search and sampling.

Originally, P(yt = w) =
exp(Sw)

∑v∈V exp(Sv)

P(yt = w) =
exp(Sw/τ)

∑v∈V exp(Sv/τ)
• Let’s say initial scores, : (remember these are real-valued) 

• 0.1912, 0.7492, 0.5966, 0.5528, 0.8324, 0.9409 

• After softmax, :  

• 0.1031, 0.1802, 0.1547, 0.1480, 0.1958, 0.2182 

•  when :  

• 19.12, 74.92, 59.66, 55.28, 83.24, 94.09 
• After softmax,  

• 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000

Sw

p

Sw/τ τ = 0.01

p
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Sampling after Temperature Scaling
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• Raise the temperature  > 1:  
becomes more uniform  
• More diverse output 

(probability is spread around 
vocab)  

• Lower the temperature  < 1:  
becomes more spiky  
• Less diverse output 

(probability is concentrated 
on top words)

τ Pt

τ Pt


