

Lecture 14: Natural Language Generation (contd.)

Instructor: Swabha Swayamdipta USC CSCI 444 NLP Oct 27, 2025

Announcements + Logistics

- Quiz 3 grades out. HW2 grades this week, apologies for the delay
 - Once again, you all deserve a TA, please let USC know!
- Wed: Project Progress Report Due
- Starting Next Week: **Paper Discussions** [10% of grade]
 - 3 weeks of paper discussions following lectures on advanced topics
 - Before class, read 3 modern classic papers per week (see website)
 - In class, discuss each paper with (randomly assigned) group of 4-5 students
 - 20 mins per paper within group
 - 15 mins per paper with whole class
 - I will randomly pick a student to summarize a group discussion
 - After class, turn in your review of the 3 papers, ranking them

USC Viterbi

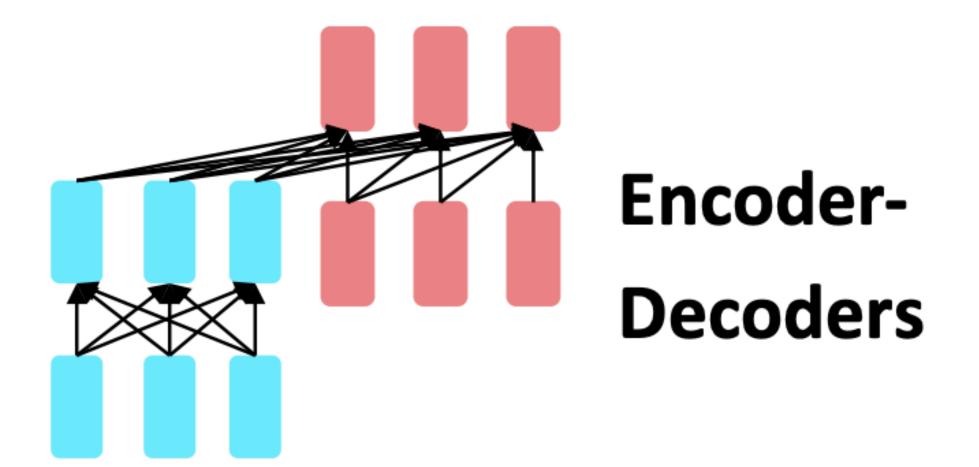
Lecture Outline

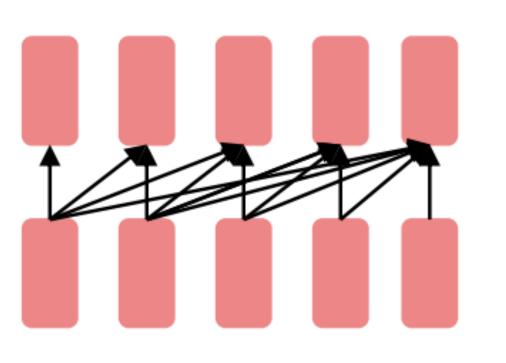
- Quiz 3 Answers
- Recap: Classic Inference Algorithms: Greedy and Beam Search
- Modern Generation: Sampling
- Generative Evaluation Metrics / Methods

Quiz 3 Answers (Redacted)

Recap: Natural Language Generation

Broad Spectrum of NLG Tasks





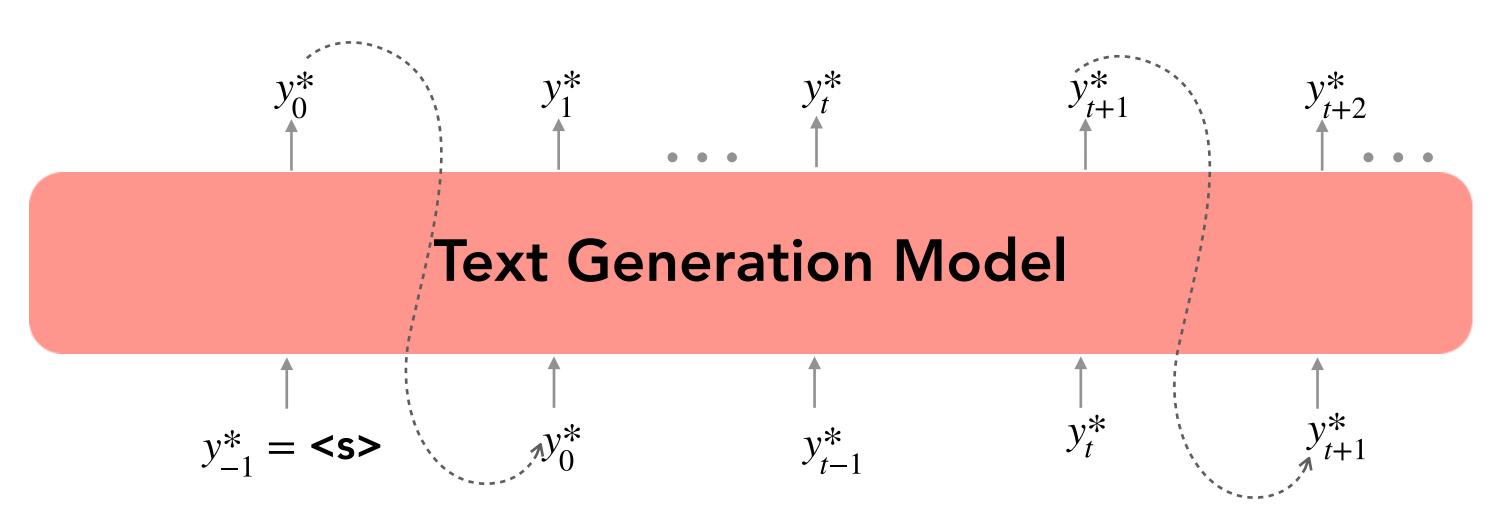
Decoders

Language Generation: Training

• Trained one token at a time to maximize the probability of the next token y_t^* given preceding words $y_{< t}^*$

$$\mathcal{L} = -\sum_{t=1}^{T} \log P(y_t | y_{< t}) = -\sum_{t=1}^{T} \log \frac{\exp(S_{y_t | y_{< t}})}{\sum_{v \in V} \exp(S_{v | y_{< t}})}$$

- ullet Classification task at each time step trying to predict the actual word y_t^* in the training data
- "Teacher forcing" (reset at each time step to the ground truth)



Teacher Forcing

- Strategy for **training** decoders / language models
- At each time step t in decoding we force the system to use the gold target token from training as the next input x_{t+1} , rather than allowing it to rely on the (possibly erroneous) decoder output \hat{y}_t
- Runs the risk of exposure bias!
 - During training, our model's inputs are gold context tokens from real, humangenerated texts
 - At generation time, our model's inputs are previously-decoded tokens

Language Generation: Inference

At inference time, our decoding algorithm defines a function to select a token from this distribution:

Inference / Decoding Algorithm

$$\hat{y}_t = g(P(y_t | y_{< t}))$$

- The "obvious" decoding algorithm is to greedily choose the highest probability next token according to the model at each time step.
 - But... greedy decoding has no wiggle room for errors!

$$g = \arg \max$$

$$\hat{y}_t = \arg \max_{w \in V} (P(y_t = w \mid y_{< t}))$$

Exhaustive Search Decoding

ullet Ideally, we want to find a (length T) translation y that maximizes

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots, P(y_T|y_1, \dots, y_{T-1}, x)$$

$$= \prod_{t=1}^{T} P(y_t|y_1, \dots, y_{t-1}, x)$$

- ullet We could try computing all possible sequences y
 - ullet This means that on each step t of the decoder, we will be tracking V^t possible partial translations, where V is the vocab size
 - This $O(V^T)$ complexity is far too expensive!

Beam Search Decoding

- ullet Core idea: On each step of decoder, keep track of the k most probable partial translations (which we call hypotheses)
 - \bullet k is the beam size (in practice around 5 to 10, in NMT)
- A hypothesis has a score which is its log probability:

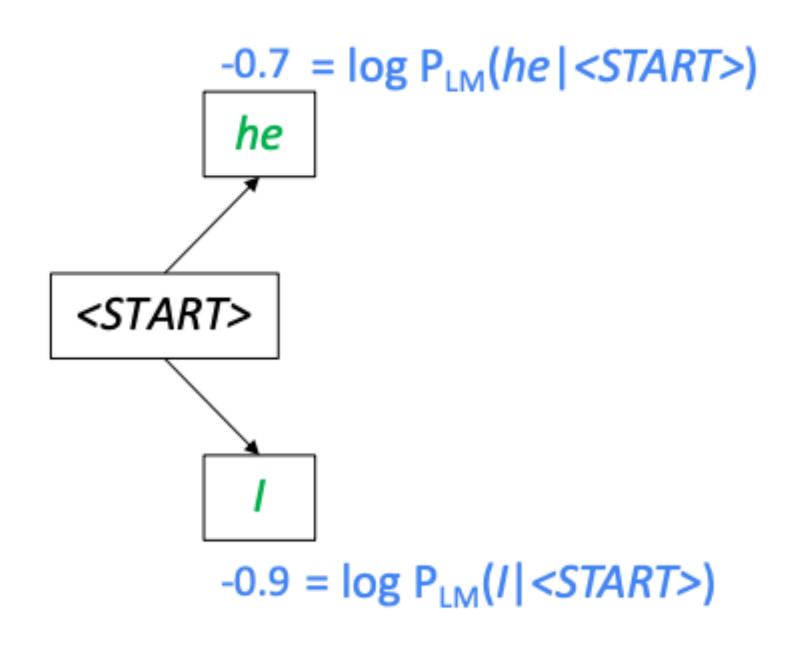
$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^{t} log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

- Scores are all negative, and higher score is better
- ullet We search for high-scoring hypotheses, tracking top k on each step
- Beam search is not guaranteed to find optimal solution
- But much more efficient than exhaustive search!

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

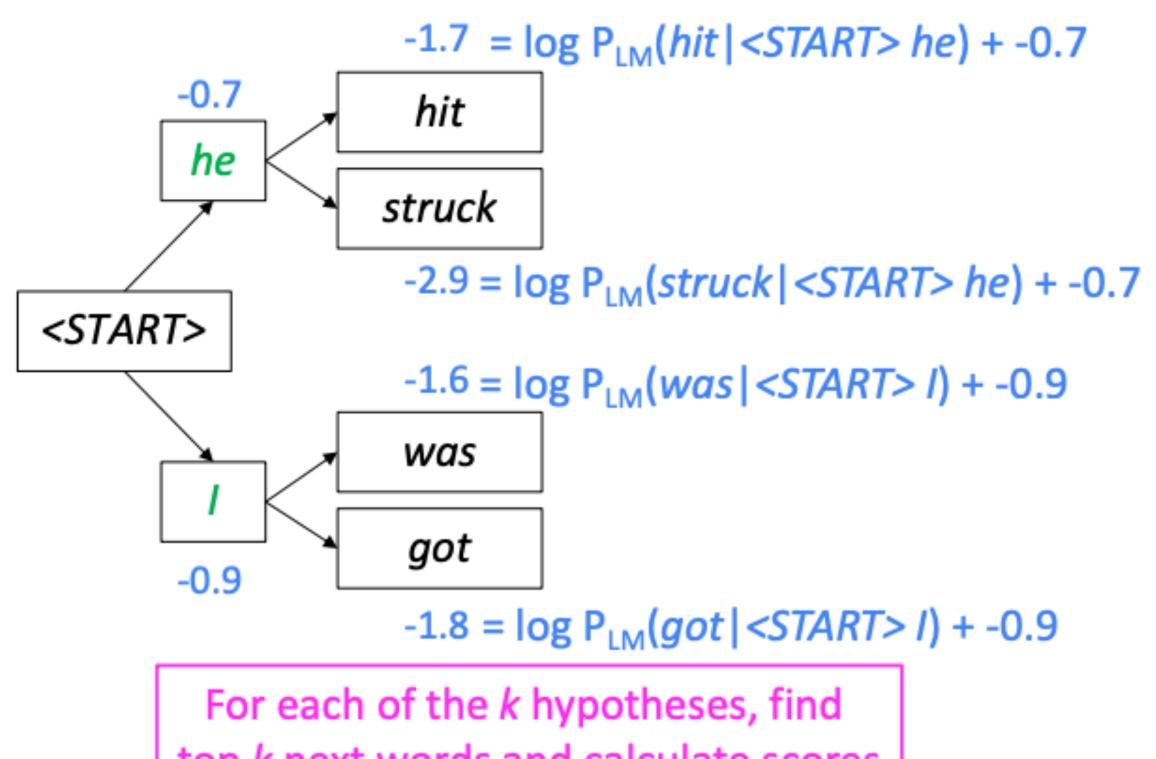
Calculate prob dist of next word

Beam size = k = 2. Blue numbers =
$$score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$



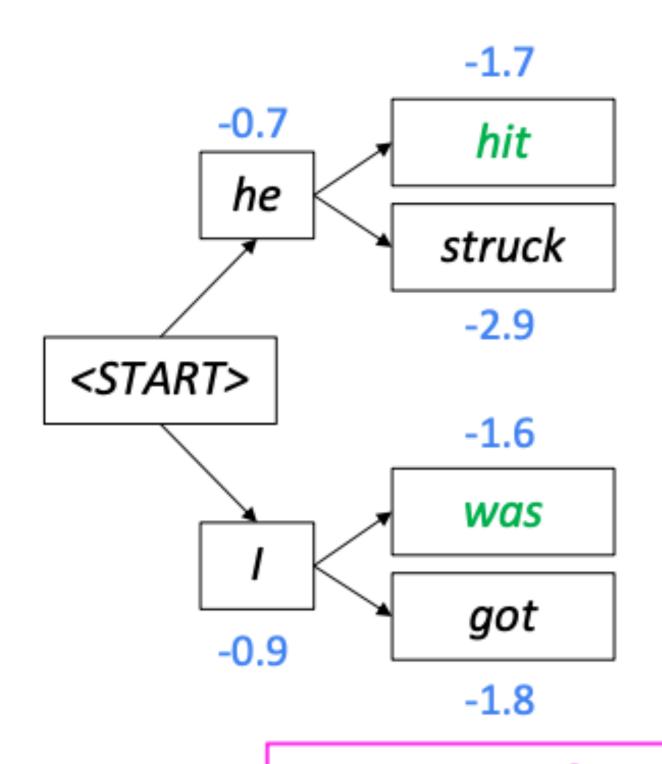
Take top *k* words and compute scores

Beam size = k = 2. Blue numbers =
$$score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$$



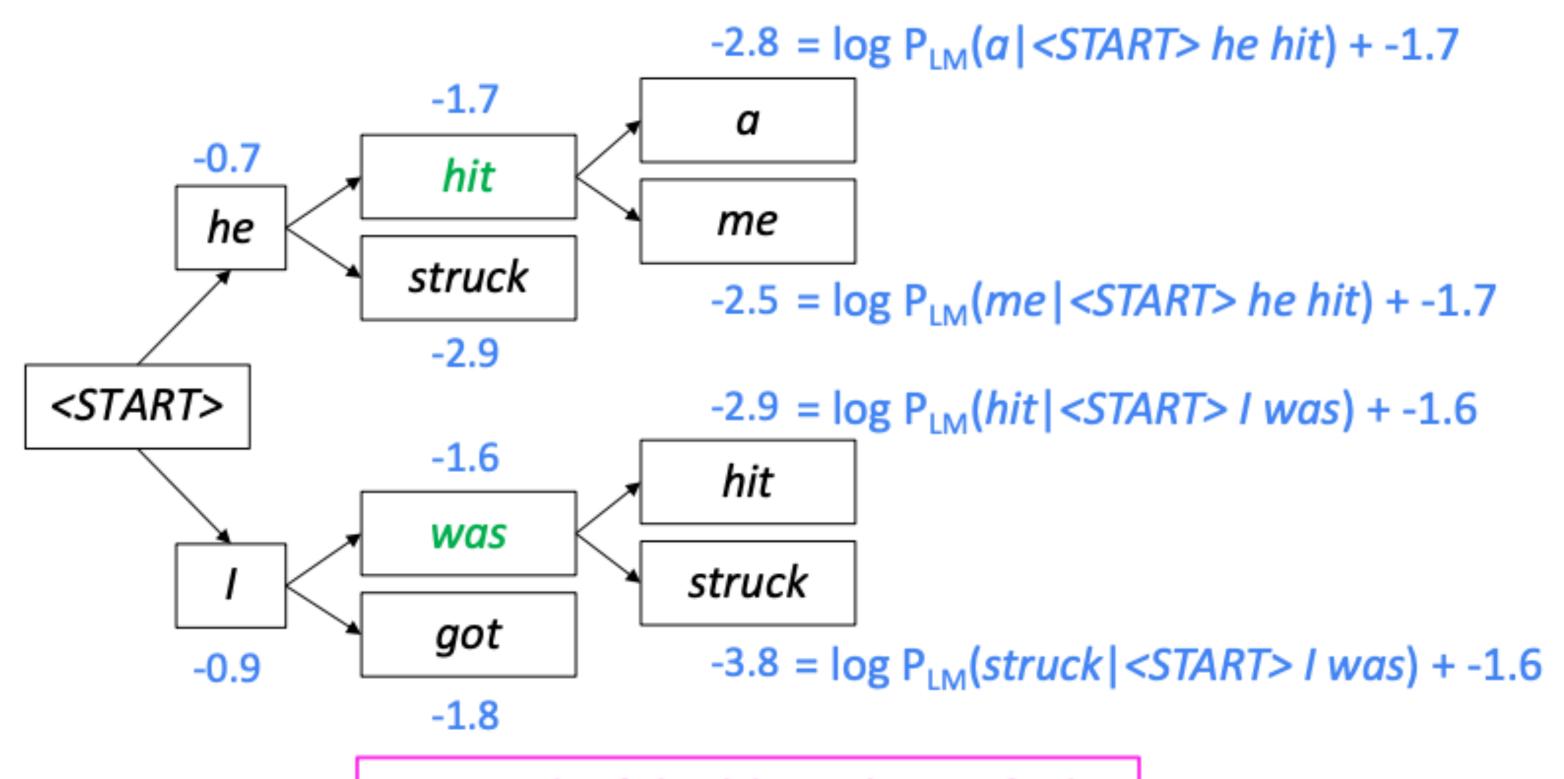
top k next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



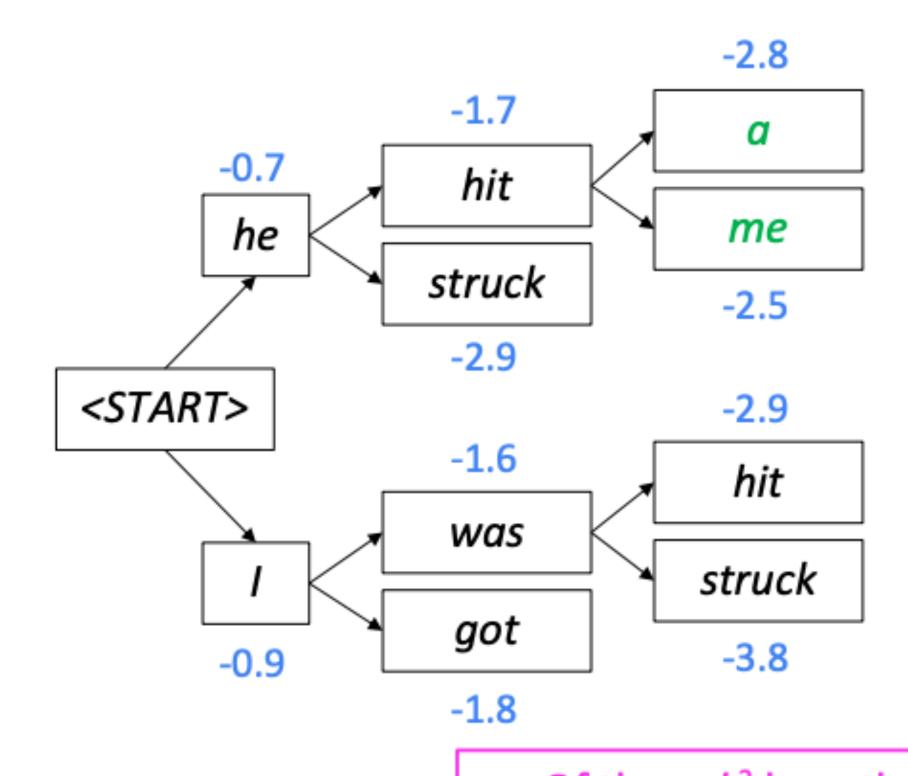
Of these k² hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$



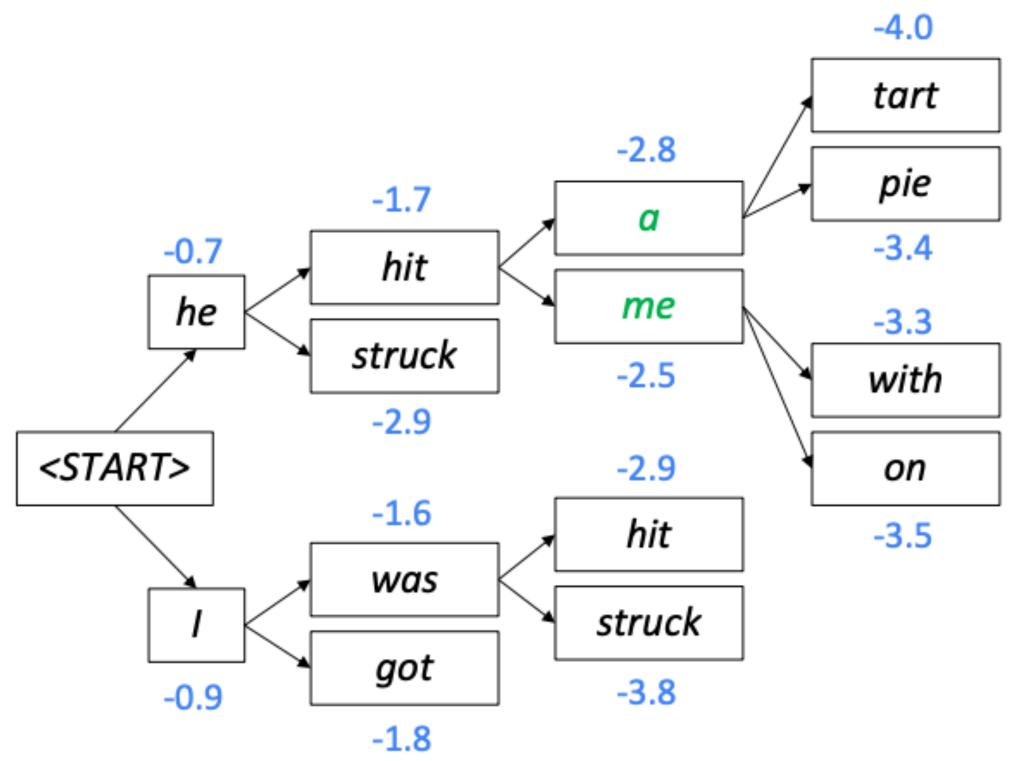
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



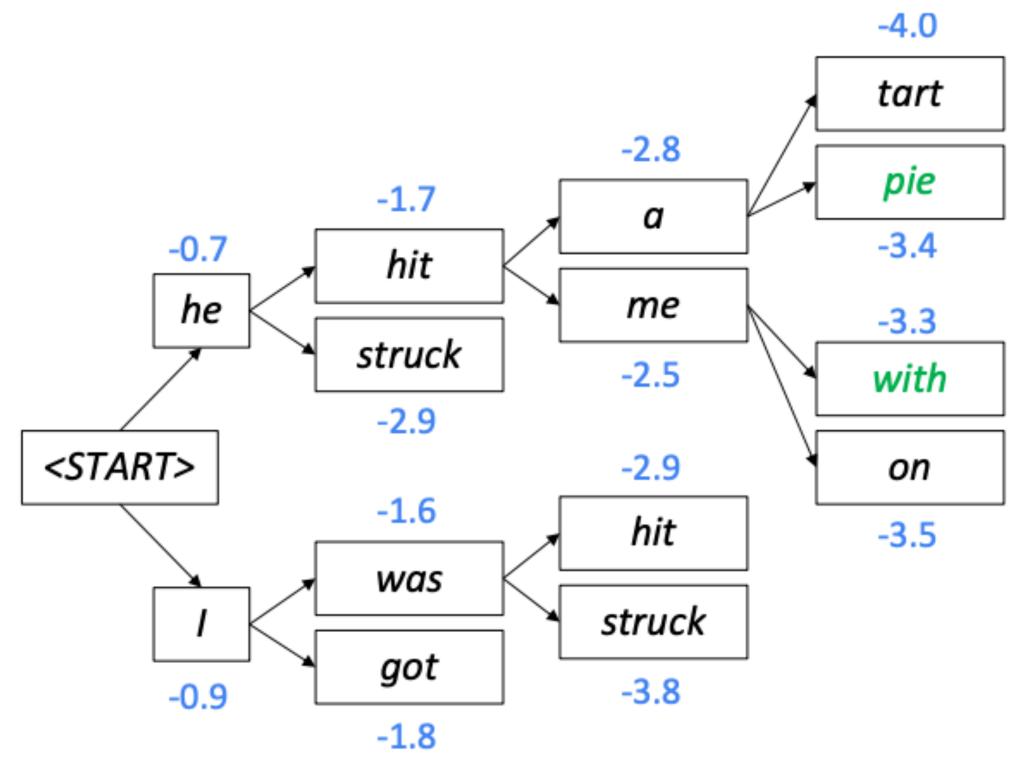
Of these k² hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



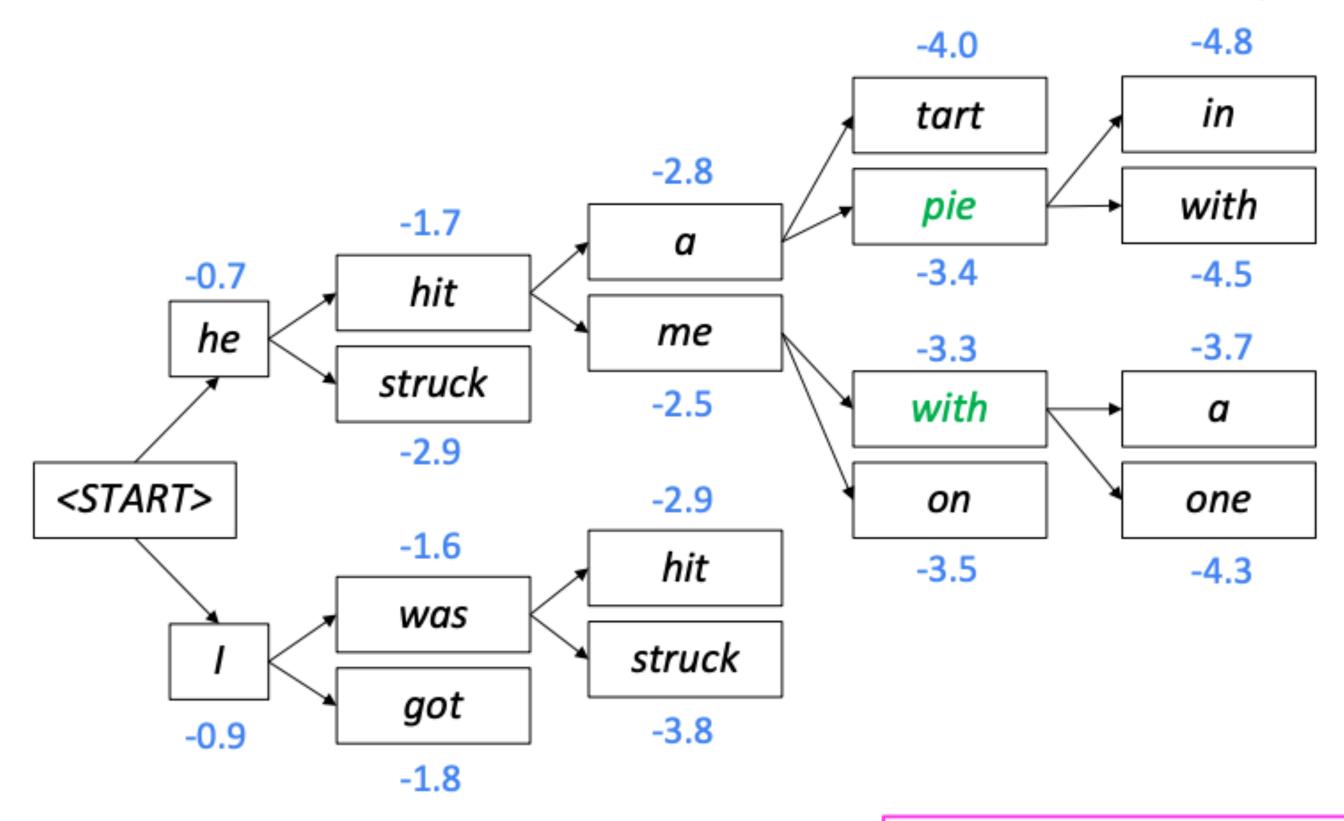
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



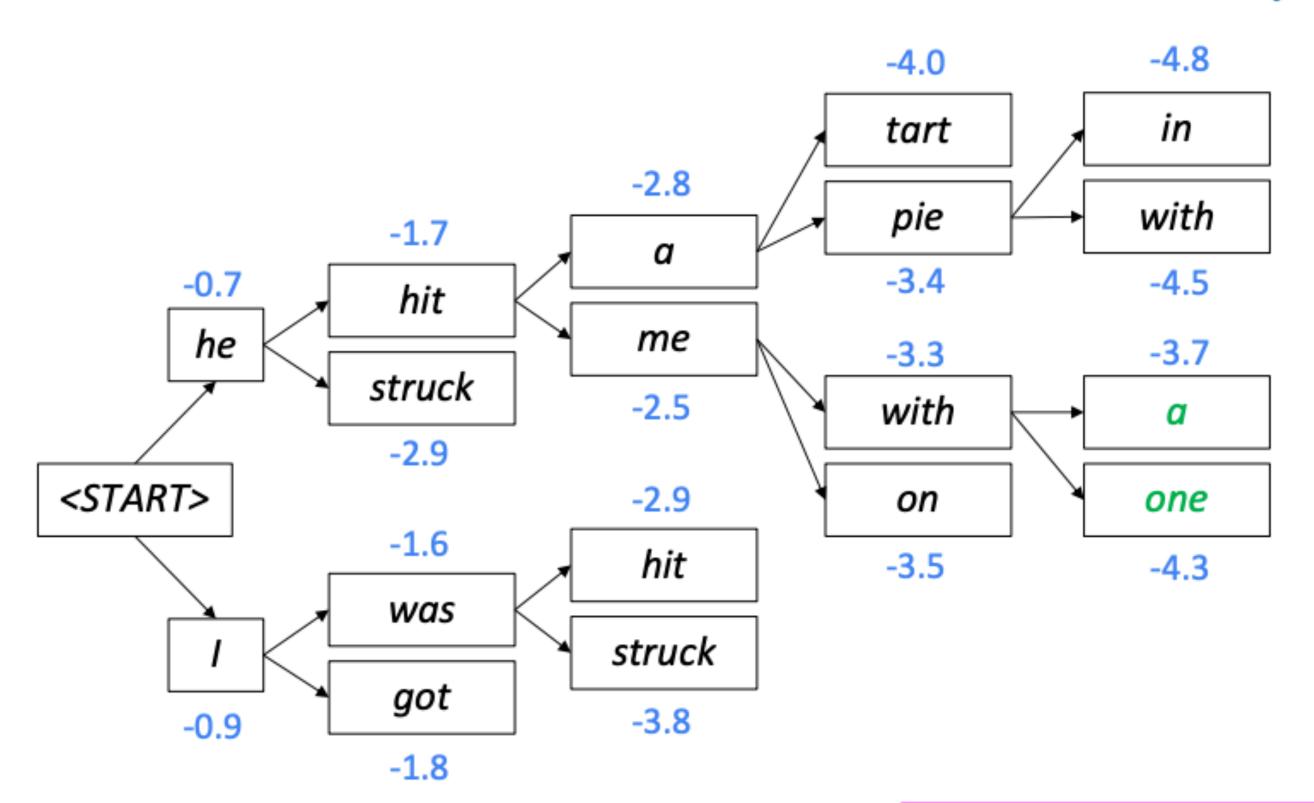
Of these k² hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



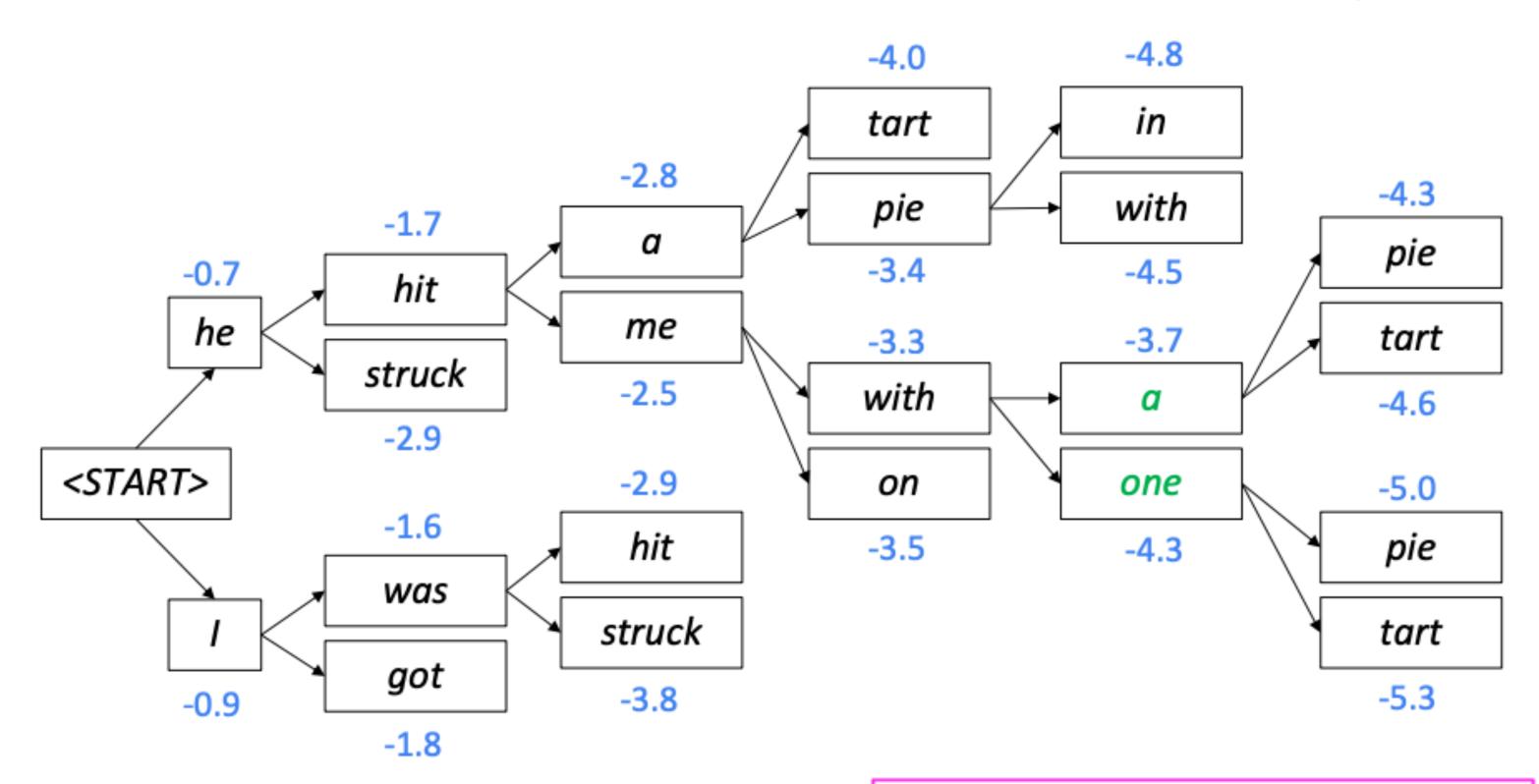
For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \dots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$



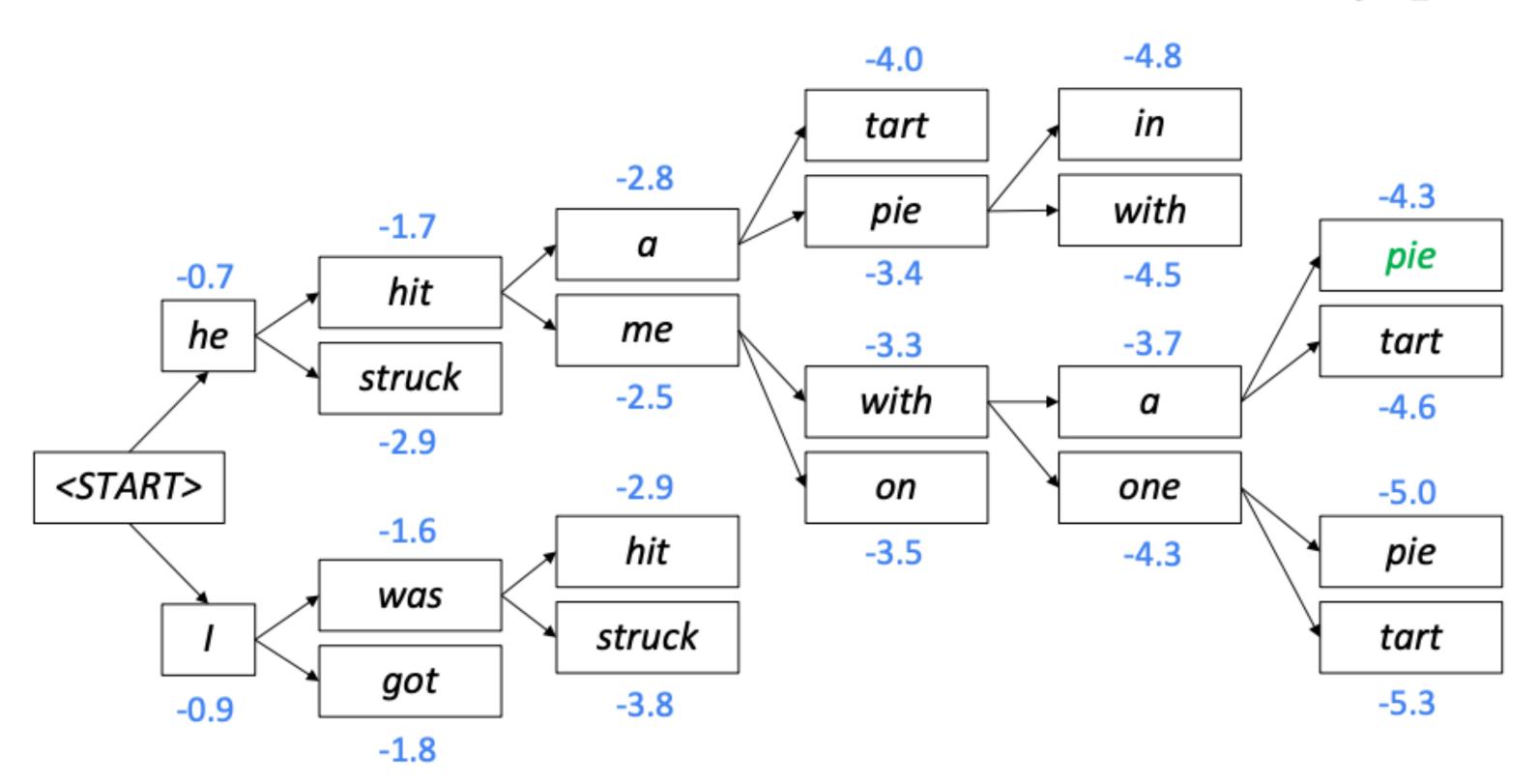
Of these k² hypotheses, just keep k with highest scores

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$

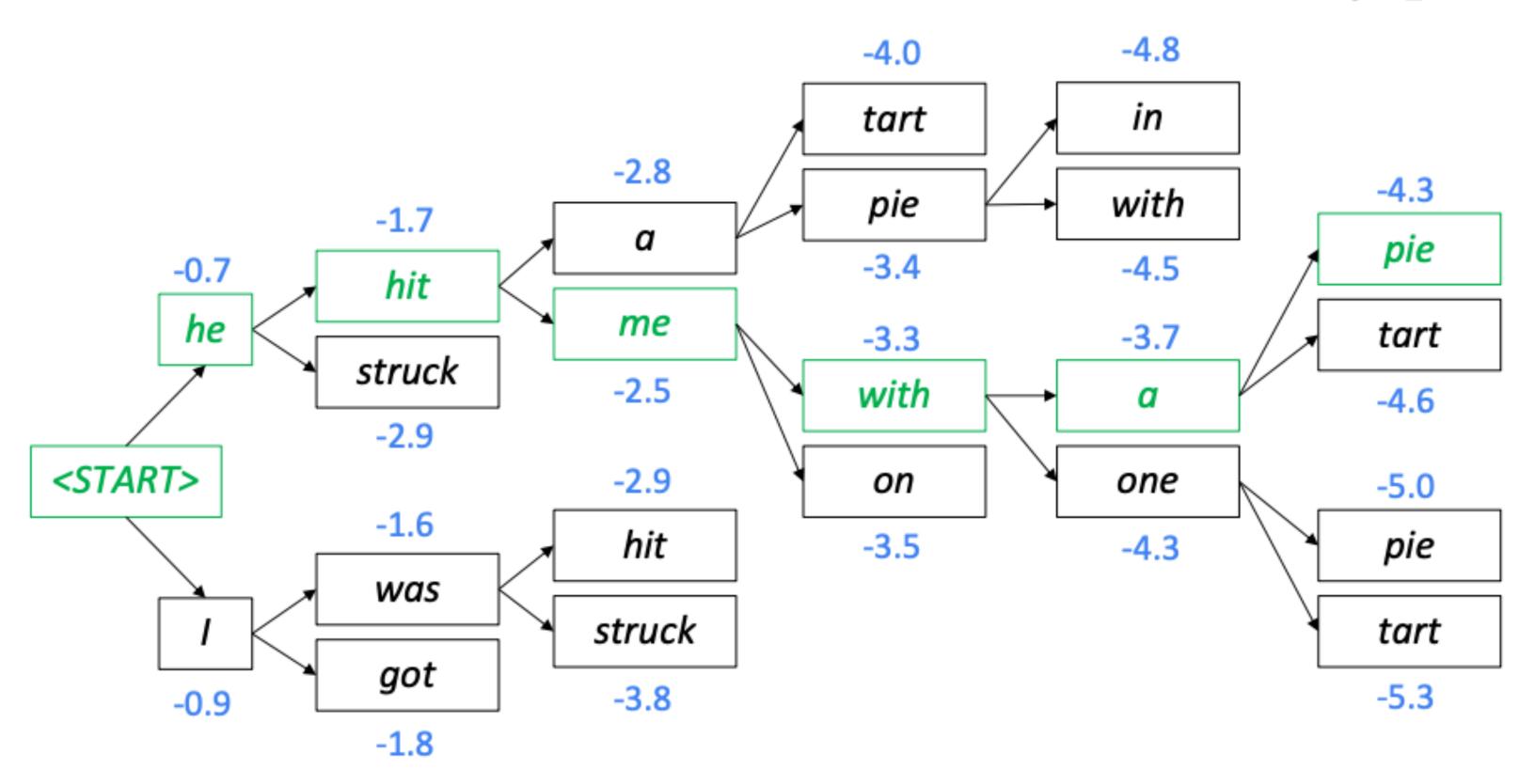


For each of the *k* hypotheses, find top *k* next words and calculate scores

Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$



Beam size = k = 2. Blue numbers = $score(y_1, \ldots, y_t) = \sum_{i=1}^{n} log P_{LM}(y_i|y_1, \ldots, y_{i-1}, x)$



Beam Search Decoding: Stopping Criterion

- Greedy Decoding is done until the model produces an </s> token
 - For e.g. <s> he hit me with a pie </s>
- In Beam Search Decoding, different hypotheses may produce </s> tokens at different time steps
 - When a hypothesis produces </s>, that hypothesis is complete
 - Place it aside and continue exploring other hypotheses via beam search
- Usually we continue beam search until:
 - ullet We reach time step T (where T is some pre-defined cutoff), or
 - ullet We have at least n completed hypotheses (where n is pre-defined cutoff)

Beam Search Decoding: Parting Thoughts

- We have our list of completed hypotheses. Now how to select top one?
- Each hypothesis $y_1, ..., y_t$ on our list has a score

$$score(y_1, \dots, y_t) = \log P_{LM}(y_1, \dots, y_t | x) = \sum_{i=1}^t \log P_{LM}(y_i | y_1, \dots, y_{i-1}, x)$$

- Problem with this: longer hypotheses have lower scores
- Fix: Normalize by length. Use this to select top one instead

$$\frac{1}{t} \sum_{i=1}^{t} \log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

But this is expensive!

Maximization Based Decoding

- Either greedy or beam search
- Beam search can be more effective with large beam width, but also more expensive
- Another key issue:

Generation can be bland or repetitive (also called degenerate) **Context:**

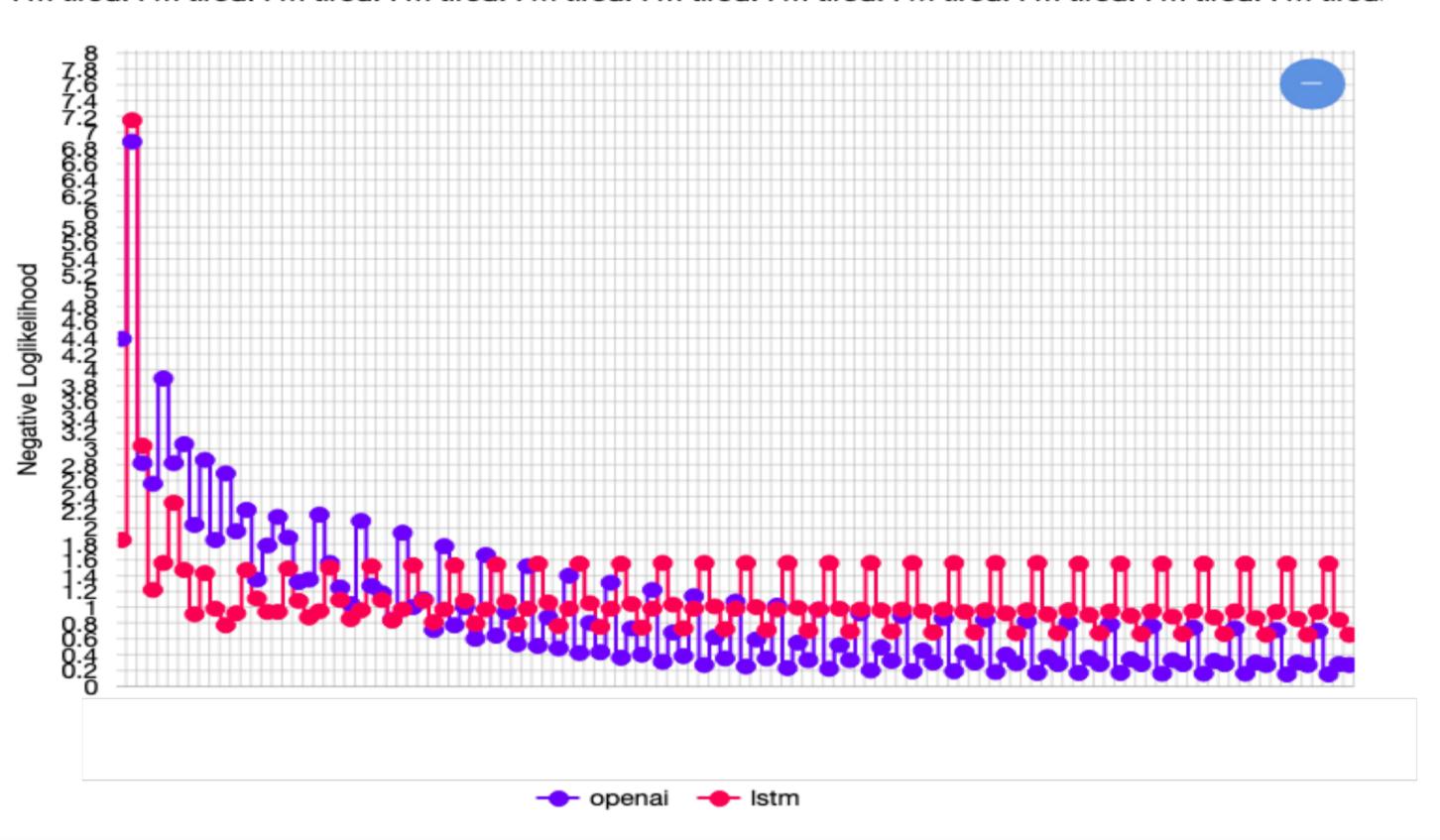
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Continuation: The study, published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS), was conducted by researchers from the Universidad Nacional Autónoma de México (UNAM) and the Universidad Nacional Autónoma de México (UNAM/Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México/ Universidad Nacional Autónoma de México...

Holtzmann et al., 2020

Degenerate Outputs

I'm tired. I'm tired.

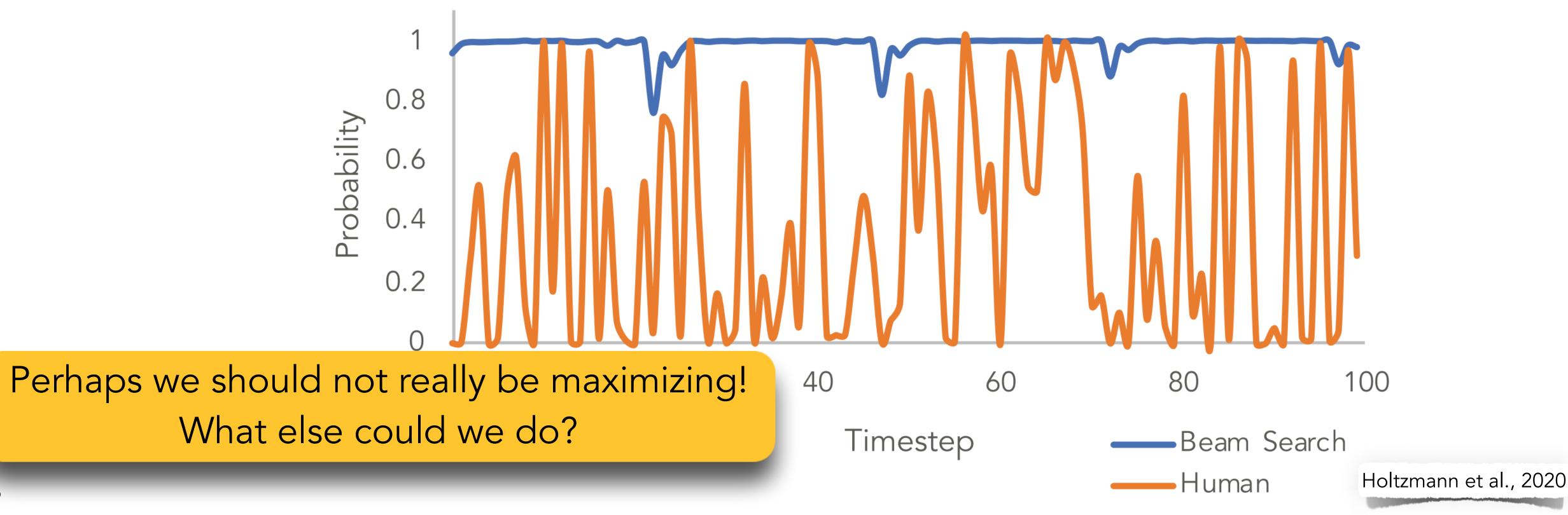


Holtzmann et al., 2020

Scale doesn't entirely solve this problem: even a 175 billion parameter LM still repeats when we decode for the most likely string.

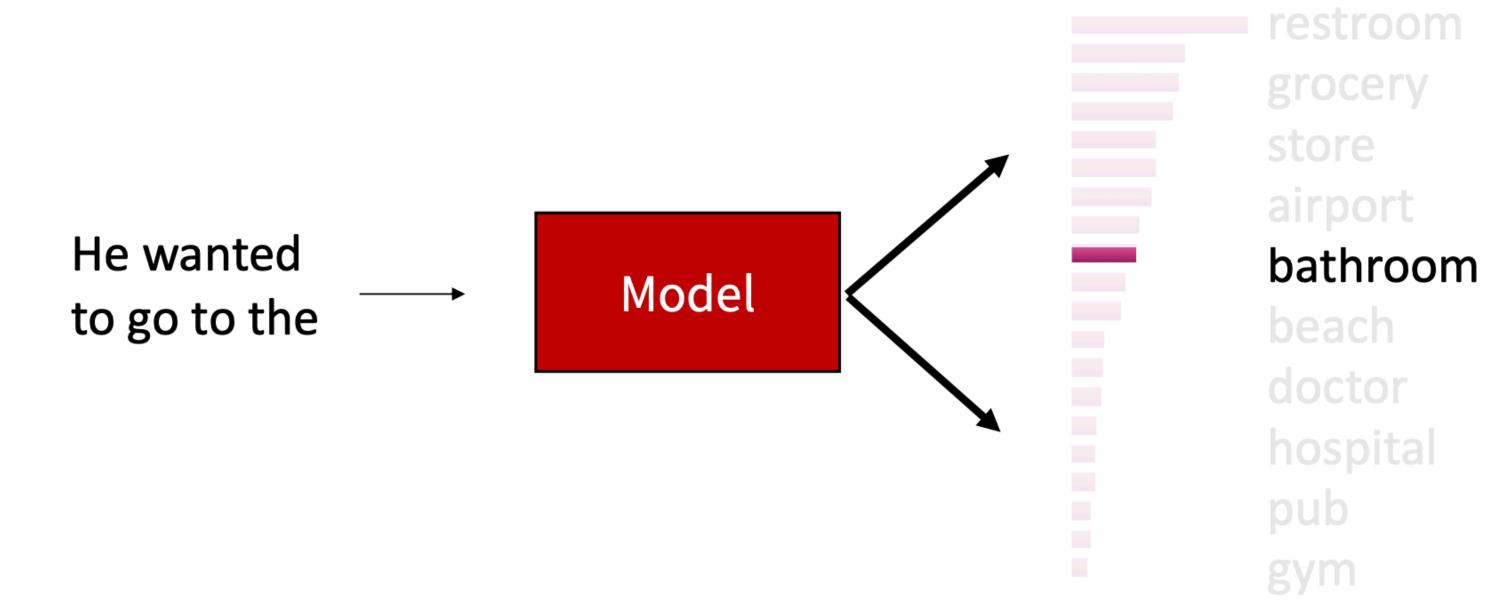
Why does repetition happen?

- Probability amplification due to maximization based decoding
- Generation fails to match the uncertainty distribution for human written text



Solution: Don't Maximize, Pick a Sample

- Sample a token from the distribution of tokens.
- But this is not a random sample, it is a sample for the learned model distribution
 - Respects the probabilities, without going just for the maximum probability option
 - Or else, you would get something meaningless
 - Many good options which are not the maximum probability!

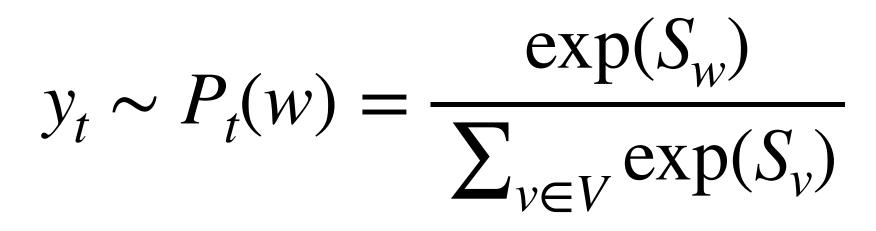


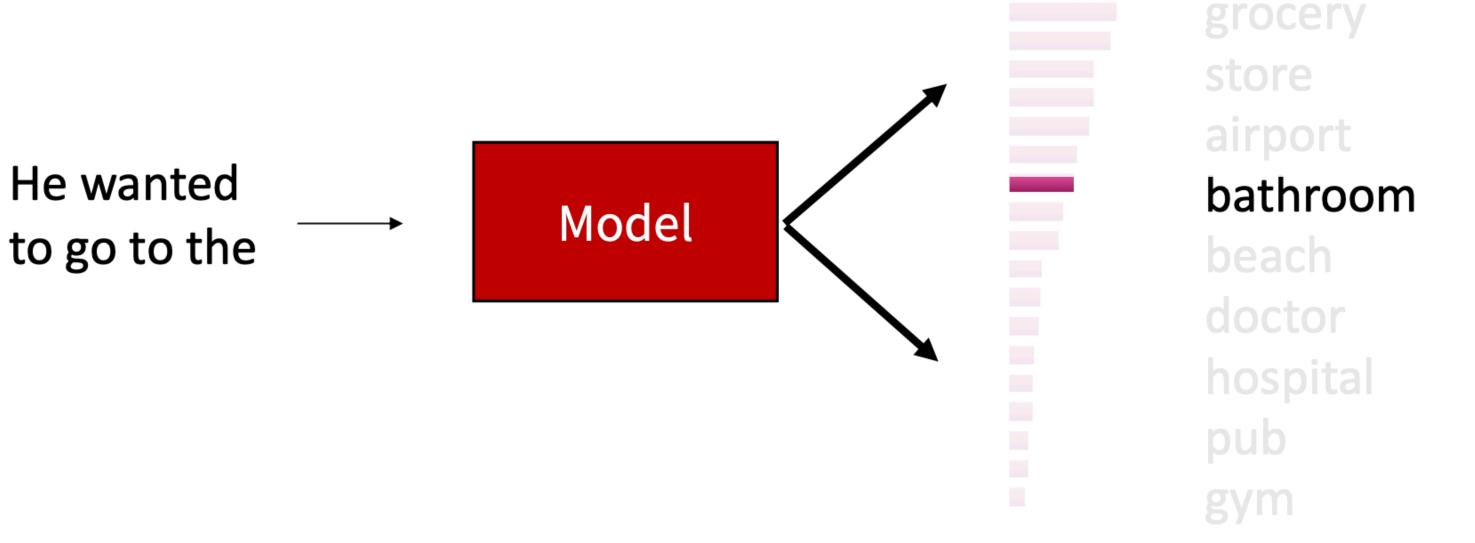
Modern Generation: Sampling

restroom

Pure / Ancestral Sampling

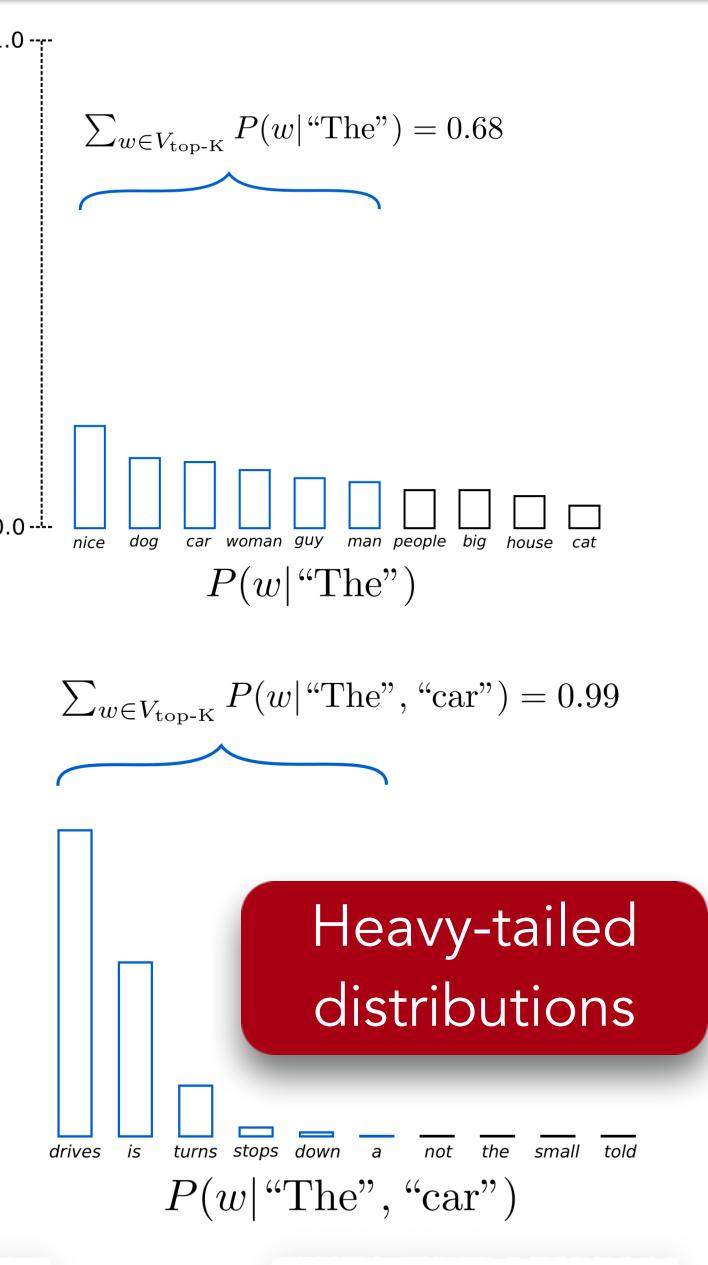
- ullet Sample directly from P_t
 - Similar to sampling from an n
 -gram language model
- Still has access to the entire vocabulary
- But if the model distributions are of low quality, generations will be of low quality as well
- Often results in ill-formed generations
 - No guarantee of fluency





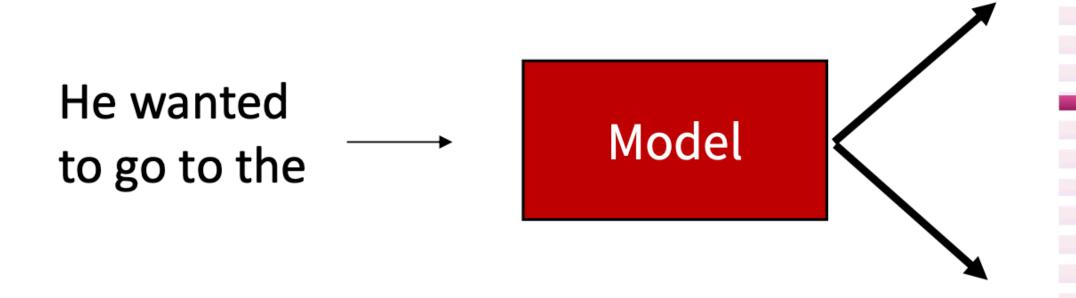
Top-K Sampling

- Problem: Ancestral sampling makes every token in the vocabulary an option
 - Even if most of the probability mass in the distribution is over a limited set of options, the tail of the distribution could be very long and in aggregate have considerable mass
 - Many tokens are probably really wrong in the current context.
 Yet, we give them individually a tiny chance to be selected.
 - But because there are many of them, we still give them as a group a high chance to be selected.
- Solution: Top-*K* sampling
 - ullet Only sample from the top K tokens in the probability distribution



Top-K Sampling: Value of K

- Solution: Top-*K* sampling
 - ullet Only sample from the top K tokens in the probability distribution
 - Common values are K = 50



- ullet Increase K yields more diverse, but risky outputs
- ullet Decrease K yields more safe but generic outputs



Top-K Sampling: Issues

Top-K sampling can cut off too quickly

Top-K sampling can also cut off too slowly!

We can do better than having one-size-fits-all: a fixed K for all contexts

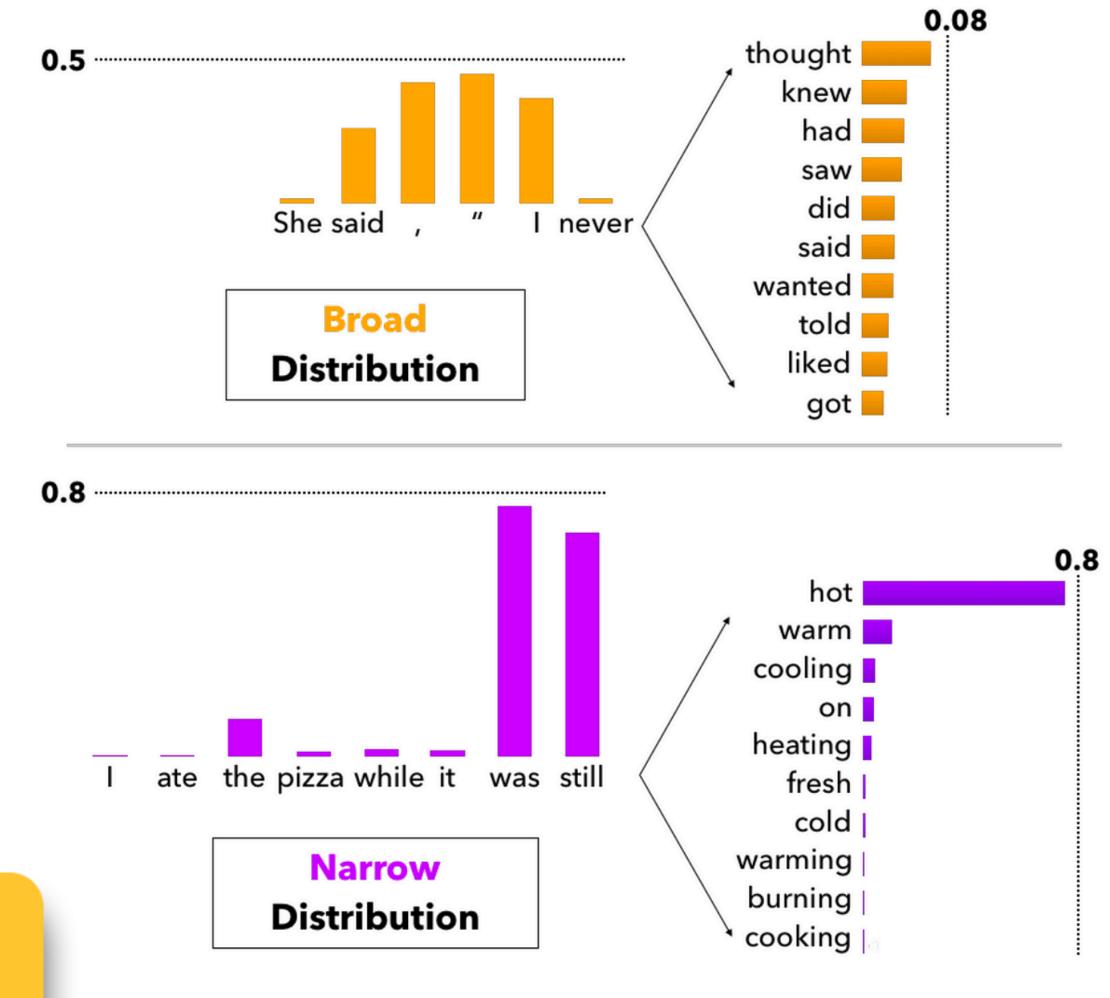


Image Source: Holtzmann et al., 2019

Modern Decoding: Nucleus Sampling

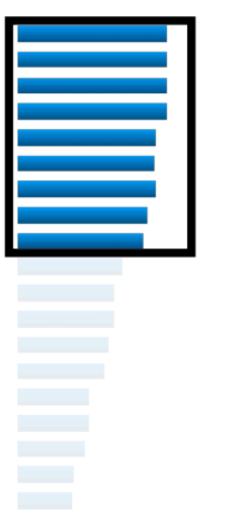
- Problem: The probability distributions we sample from are dynamic
 - ullet When the distribution P_t is flatter, a limited K removes many viable options
 - ullet When the distribution P_t is peakier, a high K allows for too many options to have a chance of being selected
- ullet Solution: Nucleus Sampling / Top-P sampling
 - ullet Sample from all tokens in the top P cumulative probability mass (i.e., where mass is concentrated)
 - ullet Varies K depending on the uniformity of P_t

Nucleus (Top-P) Sampling

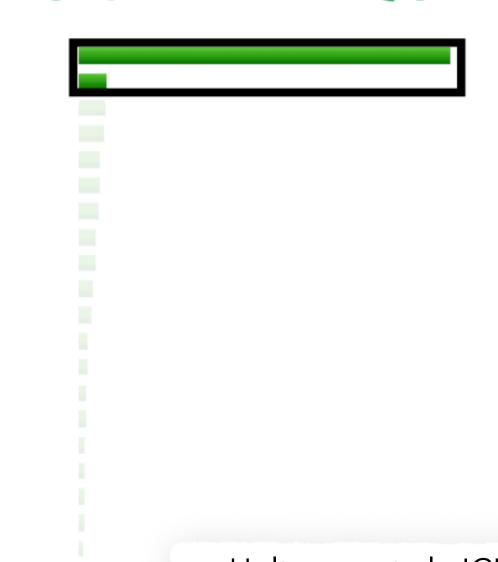
- ullet Solution: Top-P sampling
 - ullet Sample from all tokens in the top P cumulative probability mass (i.e., where mass is concentrated)
 - ullet Varies K depending on the uniformity of P_t

$$P_t^1(y_t = w \mid \{y\}_{< t})$$

$$P_t^2(y_t = w | \{ y \}_{< t})$$



$$P_t^3(y_t = w | \{y\}_{< t})$$



Temperature Scaling

Originally,
$$P(y_t = w) = \frac{\exp(S_w)}{\sum_{v \in V} \exp(S_v)}$$

- Recall: On timestep t, the model computes a prob distribution P_t by applying the softmax function to a vector of scores $s \in \mathbb{R}^{|V|}$
- ullet We can apply a temperature hyperparameter au to the softmax to rebalance P_t
- Let's say initial scores, S_w : (remember these are real-valued)
 - 0.1912, 0.7492, 0.5966, 0.5528, 0.8324, **0.9409**
- After softmax, p:
 - 0.1031, 0.1802, 0.1547, 0.1480, 0.1958, **0.2182**
- S_w/τ when $\tau = 0.01$:
 - 19.12, 74.92, 59.66, 55.28, 83.24, **94.09**
- After softmax, p
 - 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, **1.0000**

$$P(y_t = w) = \frac{\exp(S_w/\tau)}{\sum_{v \in V} \exp(S_v/\tau)}$$

Temperature is a hyperparameter for decoding: It can be tuned for both beam search and sampling.

Sampling after Temperature Scaling

- Raise the temperature $\tau > 1$: P_t becomes more uniform
 - More diverse output
 (probability is spread around vocab)
- Lower the temperature $\tau < 1$: P_t becomes more spiky
 - Less diverse output
 (probability is concentrated on top words)

