Lecture 11:
Transformer Language Models

Instructor: Swabha Swayamdipta

USC C5CI 444 NLP
Oct 13, 2025

Some slides adapted from Dan Jurafsky and Chris Manning
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Announcements + Logistics

® \Wed: HW?2 due

® Next Mon: Flipped Classroom with Project Discussions
® You work on your project in class! Every team takes turns to come chat with me
regarding your proposal feedback, where you are feeling stuck, etc.
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Quiz 2
Solutions (Redacted)
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Question

Question 1

Question 2

Question 3

Question 4

Question 5

Question 6

Overall Performance

Average Grade

57.14 %

71.43 %

21.43 %

21.43 %

71.43 %

92.52 %

Standard Deviation

49.49 %

45.18 %

41.03 %

41.03 %

45.18 %

19.63 %
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| ecture Outline

® Quiz 2: Solutions
® Recap: Transtormers
® The Pretraining / Post-training Paradigm
® Encoder-only Transformer LMs
® Masked Language Modeling with Transformers



Fall 2025 CSCI 444: NLP USC Viterbi

Recap: Transtormers
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Transformers are Self-Attention Networks

® Self-Attention is the key innovation behind

Transformers!
® Transformers map sequences of input
Attention Is All You Need
vectors (X, ..., X,) to sequences of output
vectors (Y, ...,¥,) of the same length.
® Made up Of StaCkS Of TranSfOrmer b‘OCkS Ashish Vaswani” Noam Shazeer’ Niki Parmar” Jakob Uszkoreit”
. . . Google Brain Google Brain Google Research Google Research
‘ eaCh O'I: Wh|Ch 1S A mU|t||ayer network avaswani@google.com noam@google.com nikip@google.com usz@google.com
made by combining Gopeth  Unieiy o ot ey
. . llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com
® simple linear layers,
Illia Polosukhin* *
® feedforward networks, and 1111a. polosukhinggnail.con

® No recurrent connections!
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Selt-Attention and Weighted Averages

® Problem: there are no element-wise

nonlinearities in self-attention; stacking Q 7]
attention layors Jont e L |
more self-attention layers just re-averages EF rE o e
value vectors T T | T
® Solution: add a feed-forward network to self-attention
post-process each output vector. ] Q Q
FF FF FF FF
Hidden layer: T T T T

Output layer: .
pUt ey self-attention

Usually ReLU
or tanh \ The chef who food

Input layer:

vector X
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Selt Attention and Future Information

® Problem: Need to ensure we don’t “look at the future” when
predicting a sequence ,
® c.g. Target sentence in machine translation or generatea
sentence in language modeling
® To use self-attention in decoders, we need to ensure we
can't peek at the tuture, during training
® Solution (Naive): At every time step, we could change the set  chef
of keys and queries to include only past words.
® (Inefficient!)
® Solution: To enable parallelization, we mask out attention to

[START]

The

who

future words by setting attention scores to — oo
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Self-Attention and Heads

® \What it we needed to pay attention to multiple different kinds of things e.g. entities, syntax
® Solution: Consider multiple attention computations in parallel

Multiheaded attention

Attention
Distribution

10 The monkey ate the banana because
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Multi-headed attention

Multi-Head Attention
® \What it we want to look in multiple places in the sentence at once?

® For word i, self-attention “looks” where Xl-TQT(KXj) is high, but

maybe we want to focus on different j for different reasons?

® Define multiple attention “heads” through multiple Q, K, V matrices

. d . .
® Let Q, K, V), each in R¥%, where h is the number of attention

heads, and 1 <[ < h.
® Fach attention head performs attention independently:

Scaled Dot-Product '

Attention /

® Then the outputs of all the heads are combined!

Each head gets to “look” at different things, and construct value vectors differently

11
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Multiheaded Attention: Visualization

Still efficient, can be parallelized!

Tensor!

First, take the query-key 3 sets of all pairs of
dot products in one X0 - XQK'XT attention scores!
matrix multiplication: S
XQ(XK)" — o € R3*nxn

~

Next, softmax, and

compute the weighted softmax X0KTXT | xy =
average with another p

matrix multiplication.

output € R™*¢

.’ mix
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Scaled Dot Product Attention

output, = softmax(XQ, K, X") * XV,

® So far: Dot product self-attention

® \When dimensionality d becomes large, dot products between vectors tend

to become large
® Because of this, inputs to the softmax function can be large, making the Mask (opt)
gradients small

® Now: Scaled Dot product self-attention to aid in training
XQ,K) X'
\Vd/lh

output = softmax( )*XV,; Q KV

® Ve divide the attention scores by \/d/h, to stop the scores from becoming large just as a

function of d/h, where h is the number of heads

Attention is all you need (Vaswani et al., 2017)

e Rama SesatshbammEeEEGITTT

13
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Selt-Attention: Order Information?

©OO0O0O0

® Self-attention networks are not necessarily

Attention
Distribution

(and not typically) based on Recurrent
Neural Nets

® No more order information!

® Since self-attention doesn’t build in order

Attention
Scores
@
O
O

information, we need to encode the order

of the sentence in our keys, queries, ana \

a0 ) ) )
O O O (0

values. p p o (e .
, O O O (0
Do feedforward nets contain order 0 0 @ (®

information?

1 The green witch arrived
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Positional Embeddings

® Recall that Xx; is the embedding of the word at index i. The positioned embedding is:

®X,=X;+P,
® Maps integer inputs (for positions) to real-valued vectors, p;

® one per position, 1 in the entire context
® Can be randomly initialized and can let all p, be learnable parameters (most common)

® Pros:
® Flexibility: each position gets to be learned to fit the data
® Cons:
® Definitely can’t extrapolate to indices outside 1, ..., n, where n is the maximum length of the

sequence allowed under the architecture
® There will be plenty of training examples for the initial positions in our inputs and correspondingly
fewer at the outer length limits

15
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Selt-Attention Transtformer Building Block

® Self-attention: Probabilities
® the basis of the method; with multiple heads Softmax
® Position representations: Lir’]‘;m
® Specity the sequence order, since self-attention is an A
unordered function of its inputs. 3 v
. .- Q35 Feed-Forward
® Nonlinearities: §§
® At the output of the self-attention block 553 3 Maskll o
® Frequently implemented as a simple feedforward network. = 9 Attention
® Masking: S .
® In order to parallelize operations while not looking at the B Slock
future. Add Posi:cion
® Keeps information about the future from "“leaking” to the Embe']qdmgS
past. Embeddings

Inputs
16
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Residual Connections

XD ) aver 0

® Original Connections: X% = Layer(X%“~D) where i represents the layer
® Residual Connections : trick to help models train better.
e We let X' = XU~V 4 Layer(X\~1)
® so we only have to learn “the residual” from the previous layer

X4 — Layer ?—' xW

Allowing information to skip a layer improves learning and gives higher level layers direct
access to information from lower layers (He et al., 2016).

17
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| ayer Normalization

® [ayer normalization is another trick to help models train faster
® |dea: cut down on uninformative variation in hidden vector values by normalizing to unit
mean and standard deviation within each layer

® Let x € RY be an individual (word) vector in the model.

1 & 1 &
_ . _ 2.
=135 wen o= 5 E s oer
J=1 \ i=1
Result: New vector with zero mean and A—H

a standard deviation of one

o Component-wise subtraction

® ety € R and f € R?be learned “gain” and “bias” parameters. (Can omit!)

LayerNorm =7 ﬁ Xu et al., 2019

18 R ettt
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Transtormer Diagram

Add & Norm

N x

Add & Norm

Multi-Head
Attention

Qutput
Probabilities

| Softmax |

i

Linear

Add & Norm

)

I Add & Norm l‘\
Multi-Head
Attention

Positional
Encoding

Ca

Input
Embedding

INputs

} } N x
I Add & Norm :

Masked
Multi-Head
Attention

At
Y “ )

o Positional
Encoding

Output
Embedding

T

OQutputs
(shifted right)

Attention is all you need (Vaswani et al., 2017)

RS SetmmmeSET
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The Pretraining and
Post-training Paradigm
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The Pretraining / Post-training Paradigm

® Pretraining can improve NLP applications by serving as parameter initialization.

Key idea: “Pretrain and Post-train once, Prompt many times.”
R ——

Step 1: Pretrain (on language corpora) Step 2: Post-train for solving tasks
Lots of text; learn general information! Instruction Tuning / Supervised Fine Tuning
Results in a “base” model + Model Alignment
goes 1o make tasty tea END @/ ®
S S S S — S S S
(Transformer, LSTM, ++) (Transformer, LSTM, ++)

’ Iroh  goes make tasty tea ... the movie was ...
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Pretraining

Step 1: Pretrain (on language corpora)

® Central Approach: Pretraining methods hide Lots of text; learn general things!
parts of the input from the model, and train the goes to make tasty tea END
model to reconstruct those parts. t t t t t t
® Used for parameter initialization
® Part of network (Transformer, LSTM, ++)
® Full network
® Abstracts away from the task of “learning the i i i i i i
language”

lroh  goes make tasty tea

22
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Word embeddings were pretrained too!

?

Previously: —

:lﬂﬂ -
® [ earn how to incorporate context in an :

LSTM or Transtormer while training on the - pretrained
task (e.g. sentiment classitication) B (word embeddings)
® Paradigm till 2017

® Start with pretrained word embeddings
® word2vec
® GloVe

® Trained with limited context (windows)

.. the mowe was ..

However, the word "movie” gets the same word embedding, no matter what

sentence it shows up in!
23
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Pretraining Entire Models

® [n modern NLP:
® All (or almost all) parameters in NLP networks

are initialized via pretraining.
® This has been exceptionally effective at
bui\ding strong: — Pretrained jointly

y

® representations of language

® parameter initializations for strong NLP

P

*
models. ... the movie was ...

® probability distributions over language

that we can Samp‘e from [This model has learned how to represent
entire sentences through pretraining]

24
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Pretraining: Intuition from SGD

Why should pretraining and finetuning help, from a “training neural nets” perspective?

e Pretraining provides parameters 0 by approximating m@in 3pretrain(9)

° gpretrain(e) is the pretraining loss

e Then, finetuning approximates min Zs - .+ ,ne(6), but starting at 0.
0

® Ztetunel®) is the finetuning loss
® The pretraining may matter because stochastic gradient descent sticks (relatively) close to ()
during finetuning
® It is possible that the finetuning local minima near 0 tends to generalize well!

® And/or, maybe the gradients of finetuning loss near () propagate nicely!

25
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Pretraining: Language Models

goes to make tasty tea END

® Recall the language modeling task: T T T T T T

® Model py(w,|w;.,_), the probability Decoder
distribution over words given their past (Transformer, LSTM, ++)

contexts.
® There's lots of data for this! (In English.) i i i i i i

® Pretraining through language modeling: Iroh  goes ke tasty tea
make tasty tea

® Train a neural network to perform
language modeling on a large amount

of text. Semi-supervised Sequence Learning

® Save the network parameters

® Called a causal model
Andrew M. Dai Quoc V. Le

Google Inc. Google Inc.
adai@google.com gqvl@google.com

26
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Pretraining

L. 22227 Decoders

Language Models

® Can be any task, not just language modeling E E I Encoder-

® But most successful if the task definition is m Decoders

Sequence-to-sequence

very general. Hence, language modeling is a
great pretraining option
® Three options!

Encoders

Bidirectional Context

27
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Decoders, Encoder-Decoders and
Encoder-only Transtormer LMs
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Th e Tra n S-FO rm e r D e COd e r Probabilities

Softmax
0\
Linear
)
® The Transformer Decoder is a stack of Transformer % Add & Norm
Decoder Blocks. o !
. o Feed-forward
® Each Block consists of: T A
. O
® Self-attention R Add & Norm
® Add & Norm ; )
® Feed-Forward = Masked Multi-headed
® Add & Norm -1 Self-Attention
: o Block
® Output layer is as always a softmax layer
® Sometimes called an unembedding layer
Position Lookup

Embeddings Embeddings

50 Decoder Inputs
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GPT-2

® GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce
relatively convincing samples of natural language.

® Moved away from classitication, only generation

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by

30 two peaks of rock and silver snow.
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® Recall that in machine translation, we processea
the source sentence with a bidirectional model
and generated the target with a unidirectional
model.

® For this kind of seg2seq format, we often use a
Transformer Encoder-Decoder.

® \\Ve use a normal Transformer Encoder.

® Our Transtormer Decoder is moditfied to perform
cross-attention to the output of the Encoder.

31

—

[% Add & Norm
N

Feed-Forward

\ 1

|
ﬁ Add & Norm
N
Multi-Head

Attention

\ w Block

Add Position
Embeddings

T

Embeddings

Encoder Inputs

USC Viterbi
The Transformer Encoder-Decoder

Probabilities

Softmax
N
Linear

N
ﬁ Add & Norm
N

Feed-Forward

\ )
Add & Norm
[p——
Multi-Head
Attention
/—) Add & Norm
N
Masked Multi-

Head Attention

\ U Block

Add Position
Embeddings

T

Embeddings

Decoder Inputs
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Cross Attention

® \Ve saw that self -attention is when keys, queries, and h h
1) === "t
values come from the same source. -
' : Add & N
® |n the decoder, we have attention that looks more like > addaNorm ~ L Norm
N Multi-Head
what we saw last week. Jyveidhs
Feed-Forward l‘ﬁ\
® Leth,,....h, be output vectors from the Transtformer \ 0 . J AVRDIRA:
Add & Norm
encoder; h, € R? [ Add&Norm ~ ~
| Multi-Head Masked Mul'.u-
® letz,,...,Z, be input vectors from the Transformer Attention Head Attention
d (W) yJ
decoder, h; € R \ el \ Block
® Then keys and values are drawn from the encoder Add Position Add Position
: Embeddings 2 1il2Ck ik
(like a memory): 3 . b’ld\d,
Embeddings mbeddings
® k. = Kh;,v. = Vh; .
ncoder Inputs Decoder Inputs

® And the queries are drawn from the decoder, q; = Qz.

32
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T5: A Pretrained Encoder-Decoder Model

® Raffel et al., 2018 built TS, which uses as a span corruption pretraining objective

Targets

Replace ditterent-length spans from the <> for inviting <v> last <z~
input with unique placeholders; decode out
the spans that were removed!

Original text E E |

Hi t rt K.
Thank you fef inviting me to your party IBS[ wee

This is implemented in text @%

preprocessing: it's still an objective that

looks like language modeling atthe | ;s : .

decoder side. Thank you <X> me to your party <Y> week.

33
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Th e Tra n S-FO rm e r E n COd e r Probabilities

Softmax
A
Linear
)
® The Transformer Decoder constrains to unidirectional %‘2 Add & Norm
context, as for language models. 2 !
| 7= | | T Feed-forward
® \\What it we want bidirectional context, i.e. both left to K \
. . O
right as well as right to left? G Add & Norm
. . . . -l
® The only difference is that we remove the masking in i !
the self-attention. & Multi-headed Self-
® Commonly used in sequence prediction tasks such as o Attention Block
(@] o

POS tagging

® One output token y per input token x No Masking!

| — Position Lookup
Embeddings Embeddings

24 Encoder Inputs
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Pre-training
Encoder-Only Language Models

35
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Pretraining Encoders: Bidirectional Context

| was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21,

Universal Studios Theme Park is located in - Calitornia

Problem: Input
Reconstruction '‘Cause darling i'm a dressed like a daydream

Bidirectional context is important to reconstruct the input!

36
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Pretraining Encoaers: Objective

® Encoders get bidirectional context, so we can’t do language modeling!
® |dea: replace some fraction of words in the input with a special [MASK] token; predict
these words.

® h,...h,=Encoder(w,...,w;)

went store
® y. ~ softmax(Ah, + b) ! I

® Only add loss terms from words that are “masked out.”
® |f X is the masked version of x, we're learning py(x | x).

® Called Masked LM
® Special type of language modeling

| [M] to the [M]

37
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Masked Language
Modeling
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BERT: Bidirectional Encoder Representations from Transtformers

Devlin et al., 2018 proposed the “Masked LM"” objective and released BERT, a Transtormer,
pretrained to:

® 15% of the input tokens in a training sequence are

sampled for learning, these are to be predicted by the Freduesell W™ RN
model Transformer
® Of these =ncoder
® 80% are replaced with [MASK] } pi‘zza t‘o tLe [N‘,]
® 10% are replaced with randomly selected tokens, / / I
® Remaining 10% are left unchanged

[Replaced] [Notreplaced] [Masked]

? , : :
Doesn't let the model get complacent and not build strong representations of

non-masked words. (No masks are seen at fine-tuning time!)
S —————————————

39



Fall 2025 CSCI 444: NLP USC Viterbi

BERT: Bidirectional Encoder Representations from Transtformers

® The pretraining input to BERT was two separate contiguous chunks of text:

/ /- N N N / N N / /- N
Input [CLS] 1 my dog 15 ( cute W [SEP] he ( likes W play W ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E*“rf"ing E[SEP]
o e e e e e L o e e e e
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
e e ES = E = - e e 3 e 3 = =
Position
Embeddings E0 E1 Ez E3 E4 ES E6 E7 E8 E9 E10

® BERT was trained to predict whether one chunk follows the other or is randomly sampled.

® [CLS] and [SEP] tokens
® [SEP] is used for next sentence prediction - do these sentences follow each other?

® [CLS] for text classitication / connection to fine-tuning

40
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BERT: Training Details

® Two models were released:
® BERT-base: 12 layers, 768-dim hidden states, 12
attention heads, 110 million params.

® BERT-large: 24 layers, 1024-dim hidden states, 16
attention heads, 340 million params.

® Trained on:

® BooksCorpus (800 million words)
® English Wikipedia (2,500 million words)

® Pretraining is expensive and impractical on a single GPU.
® BERT was pretrained with 64 TPU chips for a total of 4

days.
® (TPU

s are special tensor operation acceleration

harc
® Finetuning is

ware)
practical and common on a single GPU

® “Pretrain once, finetune many times.”

USC Viterbi
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USC Viterbi

BERT: Contextual Embeddings

Input

Token
Embeddings

Segment
Embeddings

Position
Embeddings

(s | [ my | [ dog |[ is |[ cute |[ ises1 |[ he |[ tikes |[ ptay |[ ##ing |[ tseer |

E

E

m

E

E

[CLS] Emy dog is cute [SEP] he likes play ##ing [SEP]
-+ -+ -+ o+ -+ o+ -+ o+ o+ + o+
EA EA EA EA EA EA EB EB EB E B EB
+ + + +- + -+ + +- + + +
EO El E2 E3 E4 ES E6 E7 E8 E9 E10

® BERT results in contextual embeddings
® Embeddings for tokens in context, not just type embeddings like word2vec, GloVe

® Can be used for measuring the semantic similarity of two words in context
® Useful in linguistic tasks that require precise models of word meaning



Fall 2025 CSCI 444: NLP

® BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-

BERT: Results

the-art results on a broad range of tasks

USC Viterbi

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k i
Pre-OpenAl SOTA 80.6/80.1 66.1  82.3 93.2 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 64.8 798 90.4 36.0 73.3 849  56.8 71.0
OpenAl GPT 82.1/81.4 703 874 913 45.4 80.0 823  56.0 75.1
BERTgASE 84.6/83.4 712 905 93.5 52.1 85.8 889  66.4 79.6
BERT L ARGE 86.7/85.9 721 927 949 60.5 86.5 89.3  70.1 82.1

Various Text Classification tasks like sentiment classification

43
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USC Viterbi

BERT: Overview

® [SEP]: Later work has argued this “next sentence prediction” is
Nnot necessary
® RoBERTa: A variant of BERT that was just better trained (careful
hyper parameter optimization, etc.)
® |n general, more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder
® Results in contextual embeddings
® Key Limitations:
® Cannot be used for generation. No pretraining encoders can
be used for autoregressive generation very naturally
® There are clunky ways in which you could try...but not a
natural fit
® [or this, we need to have a decoder!

44




