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Announcements + Logistics

• Wed: HW2 due 
• Next Mon: Flipped Classroom with Project Discussions 

• You work on your project in class! Every team takes turns to come chat with me 
regarding your proposal feedback, where you are feeling stuck, etc.
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Quiz 2 
Solutions (Redacted)
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Overall Performance 
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Lecture Outline

• Quiz 2: Solutions 
• Recap: Transformers 
• The Pretraining / Post-training Paradigm 
• Encoder-only Transformer LMs 

• Masked Language Modeling with Transformers
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Recap: Transformers
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Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind 
Transformers! 

• Transformers map sequences of input 
vectors  to sequences of output 
vectors  of the same length.  

• Made up of stacks of Transformer blocks 
• each of which is a multilayer network 

made by combining  
• simple linear layers,  
• feedforward networks, and  
• self-attention layers 

• No recurrent connections!

(x1, …, xn)
(y1, …, yn)
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Self-Attention and Weighted Averages
• Problem: there are no element-wise 

nonlinearities in self-attention; stacking 
more self-attention layers just re-averages 
value vectors 

• Solution: add a feed-forward network to 
post-process each output vector.
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Input layer: 
vector x

Output layer: 
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU 
or tanh

Hidden layer: 

h = g(Wx) = g(
d0

∑
i=0

Wjixi)
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Self Attention and Future Information

• Problem: Need to ensure we don’t “look at the future” when 
predicting a sequence 
• e.g. Target sentence in machine translation or generated 

sentence in language modeling 
•  To use self-attention in decoders, we need to ensure we 

can’t peek at the future, during training 
• Solution (Naïve): At every time step, we could change the set 

of keys and queries to include only past words.  
• (Inefficient!) 

• Solution: To enable parallelization, we mask out attention to 
future words by setting attention scores to −∞

9
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Self-Attention and Heads

10

• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax 
• Solution: Consider multiple attention computations in parallel

Multiheaded attention
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Multi-headed attention

• What if we want to look in multiple places in the sentence at once?  

• For word , self-attention “looks” where  is high, but 
maybe we want to focus on different  for different reasons?  

• Define multiple attention “heads” through multiple  matrices 

• Let , each in , where  is the number of attention 
heads, and .  

• Each attention head performs attention independently:  
• Then the outputs of all the heads are combined! 

i xT
i QT(Kxj)

j
Q, K, V

Ql, Kl, Vl ℝd× d
h h

1 ≤ l ≤ h
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Each head gets to “look” at different things, and construct value vectors differently
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Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

12

First, take the query-key 
dot products in one 
matrix multiplication: 

 XQl(XKl)T

Tensor!
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Scaled Dot Product Attention

• So far: Dot product self-attention  
• When dimensionality 𝑑 becomes large, dot products between vectors tend 

to become large 
• Because of this, inputs to the softmax function can be large, making the 

gradients small 
• Now: Scaled Dot product self-attention to aid in training
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•  We divide the attention scores by , to stop the scores from becoming large just as a 
function of , where  is the number of heads

d/h
d/h h

outputℓ = softmax( XQℓKT
ℓ XT

d/h ) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)
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Self-Attention: Order Information?

• Self-attention networks are not necessarily 
(and not typically) based on Recurrent 
Neural Nets 
• No more order information! 

• Since self-attention doesn’t build in order 
information, we need to encode the order 
of the sentence in our keys, queries, and 
values. 
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Do feedforward nets contain order 
information?
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Positional Embeddings

• Recall that  is the embedding of the word at index 𝑖. The positioned embedding is: 

•  

• Maps integer inputs (for positions) to real-valued vectors,  

• one per position,  in the entire context 

• Can be randomly initialized and can let all  be learnable parameters (most common) 

• Pros:  
• Flexibility: each position gets to be learned to fit the data  

• Cons:  

• Definitely can’t extrapolate to indices outside 1, … , 𝑛, where  is the maximum length of the 

sequence allowed under the architecture  
• There will be plenty of training examples for the initial positions in our inputs and correspondingly 

fewer at the outer length limits

xi

x̃i = xi + pi
pi

i
pi

n
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Self-Attention Transformer Building Block
• Self-attention:  

• the basis of the method; with multiple heads 
• Position representations:  

• Specify the sequence order, since self-attention is an 
unordered function of its inputs. 

• Nonlinearities:  
• At the output of the self-attention block  
• Frequently implemented as a simple feedforward network.  

• Masking:  
• In order to parallelize operations while not looking at the 

future.  
• Keeps information about the future from “leaking” to the 

past.
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Residual Connections

• Original Connections:  where  represents the layer 

• Residual Connections : trick to help models train better.  

• We let   

• so we only have to learn “the residual” from the previous layer

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

17

Allowing information to skip a layer improves learning and gives higher level layers direct 
access to information from lower layers (He et al., 2016).
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Layer Normalization

• Layer normalization is another trick to help models train faster 
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit 

mean and standard deviation within each layer 
• Let  be an individual (word) vector in the model. x ∈ ℝd
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LayerNorm = γ ̂x + β

Xu et al., 2019

μ =
1
d

d

∑
j=1

xj; μ ∈ ℝ σ =
1
d

d

∑
j=1

(xj − μ)2 ; σ ∈ ℝ

• Let  and  be learned “gain” and “bias” parameters. (Can omit!) γ ∈ ℝ β ∈ ℝd

̂x =
x − μ

σ
Result: New vector with zero mean and 

a standard deviation of one Component-wise subtraction
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Transformer Diagram

19
Attention is all you need (Vaswani et al., 2017)
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The Pretraining and 
Post-training Paradigm

20
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The Pretraining / Post-training Paradigm
• Pretraining can improve NLP applications by serving as parameter initialization.

21

Step 1: Pretrain (on language corpora) 
Lots of text; learn general information! 
Results in a “base” model

Step 2: Post-train for solving tasks 
Instruction Tuning / Supervised Fine Tuning 
+ Model Alignment

Key idea: “Pretrain and Post-train once, Prompt many times.” 
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Pretraining

• Central Approach: Pretraining methods hide 
parts of the input from the model, and train the 
model to reconstruct those parts.  

• Used for parameter initialization 
• Part of network 
• Full network 

• Abstracts away from the task of “learning the 
language”

22

Step 1: Pretrain (on language corpora) 
Lots of text; learn general things!
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Word embeddings were pretrained too!

Previously:  
• Start with pretrained word embeddings 

• word2vec 
• GloVe 
• Trained with limited context (windows) 

• Learn how to incorporate context in an 
LSTM or Transformer while training on the 
task (e.g. sentiment classification)  

• Paradigm till 2017

23

However, the word “movie” gets the same word embedding, no matter what 
sentence it shows up in!
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Pretraining Entire Models

• In modern NLP:  
• All (or almost all) parameters in NLP networks 

are initialized via pretraining.  
• This has been exceptionally effective at 

building strong:  
• representations of language  
• parameter initializations for strong NLP 

models.  
• probability distributions over language 

that we can sample from

24

[This model has learned how to represent 
entire sentences through pretraining]
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Pretraining: Intuition from SGD

• Pretraining provides parameters  by approximating   

•  is the pretraining loss 

• Then, finetuning approximates , but starting at .  

•  is the finetuning loss 

• The pretraining may matter because stochastic gradient descent sticks (relatively) close to  
during finetuning 

• It is possible that the finetuning local minima near  tends to generalize well!  

• And/or, maybe the gradients of finetuning loss near  propagate nicely!

̂θ min
θ

ℒpretrain(θ)

ℒpretrain(θ)
min

θ
ℒfinetune(θ) ̂θ

ℒfinetune(θ)
̂θ

̂θ
̂θ

25

Why should pretraining and finetuning help, from a “training neural nets” perspective? 
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Pretraining: Language Models

• Recall the language modeling task:  

• Model , the probability 
distribution over words given their past 
contexts.  

• There’s lots of data for this! (In English.)  
• Pretraining through language modeling: 

• Train a neural network to perform 
language modeling on a large amount 
of text.  

• Save the network parameters 
• Called a causal model

pθ(wt |w1:t−1)

26
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Pretraining

• Can be any task, not just language modeling 
• But most successful if the task definition is 

very general. Hence, language modeling is a 
great pretraining option 

• Three options!

27

Bidirectional Context

Language Models

Sequence-to-sequence
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Decoders, Encoder-Decoders and 
Encoder-only Transformer LMs

28



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

The Transformer Decoder

• The Transformer Decoder is a stack of Transformer 
Decoder Blocks.  

• Each Block consists of:  
• Self-attention  
• Add & Norm  
• Feed-Forward  
• Add & Norm 

• Output layer is as always a softmax layer 
• Sometimes called an unembedding layer

29
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GPT-2

• GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce 
relatively convincing samples of natural language. 

• Moved away from classification, only generation

30
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The Transformer Encoder-Decoder

• Recall that in machine translation, we processed 
the source sentence with a bidirectional model 
and generated the target with a unidirectional 
model.  

• For this kind of seq2seq format, we often use a 
Transformer Encoder-Decoder.   

• We use a normal Transformer Encoder. 
• Our Transformer Decoder is modified to perform 

cross-attention to the output of the Encoder.

31
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Cross Attention 
• We saw that self -attention is when keys, queries, and 

values come from the same source. 
• In the decoder, we have attention that looks more like 

what we saw last week.  

• Let  be output vectors from the Transformer 
encoder;  

• Let  be input vectors from the Transformer 
decoder,  

• Then keys and values are drawn from the encoder 
(like a memory):  

•  

• And the queries are drawn from the decoder,  

h1, …, hn
hi ∈ ℝd

z1, …, zn
hi ∈ ℝd

ki = Khi, vi = Vhi

qi = Qzi

32
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T5: A Pretrained Encoder-Decoder Model
• Raffel et al., 2018 built T5, which uses as a span corruption pretraining objective

33

Replace different-length spans from the 
input with unique placeholders; decode out 
the spans that were removed!

This is implemented in text 
preprocessing: it’s still an objective that 
looks like language modeling at the 
decoder side.
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The Transformer Encoder

• The Transformer Decoder constrains to unidirectional 
context, as for language models.  

• What if we want bidirectional context, i.e. both left to 
right as well as right to left?  

• The only difference is that we remove the masking in 
the self-attention. 

• Commonly used in sequence prediction tasks such as 
POS tagging 

• One output token  per input token y x

34

Re
pe

at
 fo

r L
 e

nc
od

er
 b

lo
ck

s Add & Norm

Add & Norm

Feed-forward

Position 
Embeddings

Lookup 
Embeddings

Encoder Inputs

Block

+

                                             
D

                                             
DMulti-headed Self-

Attention

Probabilities
Softmax

Linear

No Masking!



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Pre-training  
Encoder-Only Language Models

35
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Pretraining Encoders: Bidirectional Context

36

Universal Studios Theme Park is located in ______________, California

I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____

‘Cause darling i'm a _______ dressed like a daydream

Bidirectional context is important to reconstruct the input!

Problem: Input 
Reconstruction
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Pretraining Encoders: Objective

• Encoders get bidirectional context, so we can’t do language modeling!  
• Idea: replace some fraction of words in the input with a special [MASK] token; predict 

these words.  

•  

•  
h1, …, hT = Encoder(w1, …, wT)
yi ≈ softmax(Ahi + b)

37

• Only add loss terms from words that are “masked out.”  

• If  is the masked version of 𝑥, we’re learning .  

• Called Masked LM 
• Special type of language modeling

x̃ pθ(x̃ |x)
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Masked Language 
Modeling

38
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BERT: Bidirectional Encoder Representations from Transformers

39

• 15% of the input tokens in a training sequence are 
sampled for learning, these are to be predicted by the 
model 

• Of these 
• 80% are replaced with [MASK]  
• 10% are replaced with randomly selected tokens,  
• Remaining 10% are left unchanged 

Devlin et al., 2018 proposed the “Masked LM” objective and released BERT, a Transformer, 
pretrained to:

Doesn’t let the model get complacent and not build strong representations of 
non-masked words. (No masks are seen at fine-tuning time!)

Why?
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BERT: Bidirectional Encoder Representations from Transformers

• The pretraining input to BERT was two separate contiguous chunks of text:

40

• BERT was trained to predict whether one chunk follows the other or is randomly sampled.  
• [CLS] and [SEP] tokens 
• [SEP] is used for next sentence prediction - do these sentences follow each other? 
• [CLS] for text classification / connection to fine-tuning
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BERT: Training Details
• Two models were released:  

• BERT-base: 12 layers, 768-dim hidden states, 12 
attention heads, 110 million params.  

• BERT-large: 24 layers, 1024-dim hidden states, 16 
attention heads, 340 million params.  

• Trained on:  
• BooksCorpus (800 million words)  
• English Wikipedia (2,500 million words)  

• Pretraining is expensive and impractical on a single GPU. 
• BERT was pretrained with 64 TPU chips for a total of 4 

days.  
• (TPUs are special tensor operation acceleration 

hardware)  
• Finetuning is practical and common on a single GPU  

• “Pretrain once, finetune many times.”

41
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BERT: Contextual Embeddings

• BERT results in contextual embeddings  
• Embeddings for tokens in context, not just type embeddings like word2vec, GloVe 
• Can be used for measuring the semantic similarity of two words in context 
• Useful in linguistic tasks that require precise models of word meaning

42
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BERT: Results

• BERT was massively popular and hugely versatile; finetuning BERT led to new state-of-
the-art results on a broad range of tasks

43

Various Text Classification tasks like sentiment classification
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BERT: Overview
• [SEP]: Later work has argued this “next sentence prediction” is 

not necessary  
• RoBERTa: A variant of BERT that was just better trained (careful 

hyper parameter optimization, etc.) 
• In general, more compute, more data can improve pretraining 

even when not changing the underlying Transformer encoder 
• Results in contextual embeddings  
• Key Limitations: 

• Cannot be used for generation. No pretraining encoders can 
be used for autoregressive generation very naturally 
• There are clunky ways in which you could try…but not a 

natural fit 
• For this, we need to have a decoder!
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