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Announcements + Logistics

• Proposal grades out today 
• Today: Quiz 2  
• Next Monday: Guest Lecture by PhD student, Johnny Wei 

• PyTorch for Transformers - important for project / homework 
• No Office Hours, but send questions via email 

• Next Wednesday: Fall Break 
• HW2 due on October 15, was previously October 13 
• Office Hours resume from October 13
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Quiz 2 
Password: activation
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Lecture Outline

• Recap: Attention 
• Transformers: Self-Attention Networks 

• Multi-Headed Attention 
• Positional Embeddings 

• Transformer Blocks 
• Transformer Encoders, Decoders and Encoder-Decoders
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Recap: Encoder Decoder 
Networks and Attention
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Attention Mechanism

• Attention mechanisms allow the decoder to focus on 
a particular part of the source sequence at each time 
step 

• Fixed-length vector  (attention context vector) 

• Take a weighted sum of all the encoder hidden  
states 

• One vector per time step of the decoder! 
• Weights attend to part of the source text relevant 

for the token the decoder is producing at step  

• In general, we have a single query vector and 
multiple key vectors.  
• We want to score each query-key pair

catt
t

t
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Bahdanau et al., 2015
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Why Attention?
• Attention significantly improves neural machine 

translation performance  
• Very useful to allow decoder to focus on certain 

parts of the source  
• Attention solves the information bottleneck problem  

• Attention allows decoder to look directly at 
source; bypass bottleneck  

• Attention helps with vanishing gradient problem  
• Provides shortcut to faraway states  

• Attention provides some interpretability  
• By inspecting attention distribution, we can see 

what the decoder was focusing on →  
• We get alignment for free! We never explicitly 

trained an alignment system! The network just 
learned alignment by itself
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Attention in the decoder
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Transformers:  
Self-Attention Networks

12
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 Self-Attention

Let  be a sequence of words in vocabulary  
For each  , let , where  is an 
embedding matrix.

w1:N V
wi xi = Ewi

E ∈ ℝd×V
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Keys, Queries, Values from the same sequence

2. Compute pairwise similarities between keys and queries; normalize with softmax

1. Transform each word embedding with weight matrices , each in Q, K, V ℝd×d

3. Compute output for each word as weighted sum of values
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Self-Attention as Matrix Multiplications

• Key-query-value attention is typically computed as matrices.  

• Let  be the concatenation of input vectors 

• First, note that , , and  

• The output is defined as 

X = [x1; …; xn] ∈ ℝn×d

XK ∈ ℝn×d XQ ∈ ℝn×d XV ∈ ℝn×d

softmax(XQ(XK)T)XV ∈ ℝn×d
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First, take the query-
key dot products in 

one matrix 
multiplication: 

 XQ(XK)T

Next, softmax, 
and compute the 

weighted 
average with 

another matrix 
multiplication.
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Why Self-Attention?

• Self-attention allows a network to directly extract and use information from arbitrarily 
large contexts without the need to pass it through intermediate recurrent connections as 
in RNNs 

• Used often with feedforward networks!

15
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Transformers are Self-Attention Networks

• Self-Attention is the key innovation behind 
Transformers! 

• Transformers map sequences of input 
vectors  to sequences of output 
vectors  of the same length.  

• Made up of stacks of Transformer blocks 
• each of which is a multilayer network 

made by combining  
• simple linear layers,  
• feedforward networks, and  
• self-attention layers 

• No recurrent connections!

(x1, …, xn)
(y1, …, yn)

16
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Self-Attention and Weighted Averages
• Problem: there are no element-wise 

nonlinearities in self-attention; stacking 
more self-attention layers just re-averages 
value vectors 

• Solution: add a feed-forward network to 
post-process each output vector.
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Input layer: 
vector x

Output layer: 
y = σ(uh)

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

W

u

Usually ReLU 
or tanh

Hidden layer: 

h = g(Wx) = g(
d0

∑
i=0

Wjixi)



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Self Attention and Future Information

• Problem: Need to ensure we don’t “look at the future” when 
predicting a sequence 
• e.g. Target sentence in machine translation or generated 

sentence in language modeling 
•  To use self-attention in decoders, we need to ensure we 

can’t peek at the future, during training 
• Solution (Naïve): At every time step, we could change the set 

of keys and queries to include only past words.  
• (Inefficient!) 

• Solution: To enable parallelization, we mask out attention to 
future words by setting attention scores to −∞

18
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Self-Attention and Heads
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• What if we needed to pay attention to multiple different kinds of things e.g. entities, syntax 
• Solution: Consider multiple attention computations in parallel

Multiheaded attention
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Transformers: 
Multiheaded Attention

20
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Multi-headed attention

• What if we want to look in multiple places in the sentence at once?  

• For word , self-attention “looks” where  is high, but 
maybe we want to focus on different  for different reasons?  

• Define multiple attention “heads” through multiple  matrices 

• Let , each in , where  is the number of attention 
heads, and .  

• Each attention head performs attention independently:  
• Then the outputs of all the heads are combined! 

i xT
i QT(Kxj)

j
Q, K, V

Ql, Kl, Vl ℝd× d
h h

1 ≤ l ≤ h

21

Each head gets to “look” at different things, and construct value vectors differently
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Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

Multiheaded Attention: Visualization
Still efficient, can be parallelized!

22

First, take the query-key 
dot products in one 
matrix multiplication: 

 XQl(XKl)T

Tensor!
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Scaled Dot Product Attention

• So far: Dot product self-attention  
• When dimensionality 𝑑 becomes large, dot products between vectors tend 

to become large 
• Because of this, inputs to the softmax function can be large, making the 

gradients small 
• Now: Scaled Dot product self-attention to aid in training

23

•  We divide the attention scores by , to stop the scores from becoming large just as a 
function of , where  is the number of heads

d/h
d/h h

outputℓ = softmax( XQℓKT
ℓ XT

d/h ) * XVℓ

outputℓ = softmax(XQℓKT
ℓ XT) * XVℓ

Attention is all you need (Vaswani et al., 2017)
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Self-Attention: Order Information?

• Self-attention networks are not necessarily 
(and not typically) based on Recurrent 
Neural Nets 
• No more order information! 

• Since self-attention doesn’t build in order 
information, we need to encode the order 
of the sentence in our keys, queries, and 
values. 

24

Do feedforward nets contain order 
information?
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Transformers: 
Positional Embeddings

25
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Missing: Order Information

• Consider representing each sequence index as a vector  

• , for 𝑖 ∈ {1,2, … , 𝑛} are position vectors  

• Don’t worry about what the  are made of yet!  

• Easy to incorporate this info: just add the  to our inputs!  

• Recall that  is the embedding of the word at index 𝑖. The positioned embedding is: 

•

pi ∈ ℝd

pi
pi

xi

x̃i = xi + pi

26

In deep self-attention networks, we do this at the first layer! You could 
concatenate them as well, but people mostly just add…
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Positional Embeddings

• Maps integer inputs (for positions) to real-valued vectors 
• one per position in the entire context 

• Can be randomly initialized and can let all  be learnable parameters (most common) 

• Pros:  
• Flexibility: each position gets to be learned to fit the data  

• Cons:  

• Definitely can’t extrapolate to indices outside 1, … , 𝑛, where  is the maximum 

length of the sequence allowed under the architecture  
• There will be plenty of training examples for the initial positions in our inputs and 

correspondingly fewer at the outer length limits

pi

n

27
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Putting it all together: 
Transformer Blocks

28
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Self-Attention Transformer Building Block
• Self-attention:  

• the basis of the method; with multiple heads 
• Position representations:  

• Specify the sequence order, since self-attention is an 
unordered function of its inputs. 

• Nonlinearities:  
• At the output of the self-attention block  
• Frequently implemented as a simple feedforward network.  

• Masking:  
• In order to parallelize operations while not looking at the 

future.  
• Keeps information about the future from “leaking” to the 

past.

29
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Transformers as  
Encoders, Decoders and 

Encoder-Decoders

30
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The Transformer Model

• Transformers are made up of stacks of transformer 
blocks, each of which is a multilayer network made by 
combining feedforward networks and self-attention 
layers, the key innovation of self-attention transformers 

• The Transformer Decoder-only model corresponds to 
• a Transformer language model 

• Lookup embeddings for tokens are usually randomly 
initialized  
• Input tokenization (in 1-2 classes)

31
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The Transformer Decoder

• Two optimization tricks that help training:  
• Residual Connections  
• Layer Normalization  

• In most Transformer diagrams, these are often 
written together as “Add & Norm” 
• Add: Residual Connections 
• Norm: Layer Normalization

32
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Residual Connections

• Original Connections:  where  represents the layer 

• Residual Connections : trick to help models train better.  

• We let   

• so we only have to learn “the residual” from the previous layer

X(i) = Layer(X(i−1)) i

X(i) = X(i−1) + Layer(X(i−1))

33

Allowing information to skip a layer improves learning and gives higher level layers direct 
access to information from lower layers (He et al., 2016).
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Layer Normalization

• Layer normalization is another trick to help models train faster 
• Idea: cut down on uninformative variation in hidden vector values by normalizing to unit 

mean and standard deviation within each layer 
• Let  be an individual (word) vector in the model. x ∈ ℝd

34
LayerNorm = γ ̂x + β

Xu et al., 2019

μ =
1
d

d

∑
j=1

xj; μ ∈ ℝ σ =
1
d

d

∑
j=1

(xj − μ)2 ; σ ∈ ℝ

• Let  and  be learned “gain” and “bias” parameters. (Can omit!) γ ∈ ℝ β ∈ ℝd

̂x =
x − μ

σ
Result: New vector with zero mean and 

a standard deviation of one Component-wise subtraction
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The Transformer Decoder

• The Transformer Decoder is a stack of Transformer 
Decoder Blocks.  

• Each Block consists of:  
• Self-attention  
• Add & Norm  
• Feed-Forward  
• Add & Norm 

• Output layer is as always a softmax layer
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