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Announcements + Logistics

• Wed: Project Proposal Due 
• See instructions on website, please do not break format 

• HW2 out yesterday 
• HW1 grades will be out by next week 
• Quiz 2 postponed 

• Oct 1, Wed after next
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Lecture Outline

• Recap: Feedforward Neural Nets 
• Feedforward Net Language Models 
• Feedforward Nets for Classification 
• Training Feedforward Nets 
• Computation Graphs and Backprop 
• Next: Recurrent Neural Nets (RNNs)
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Recap: Feed-Forward  
Neural Networks
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Non-Linear Activation Functions
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The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!
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Power of non-linearity
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After a  transformation:tanh( ⋅ )

tanh(z) =
ez − e−z

ez + e−z
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Two-layer FFNN: Notation
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x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the  and add one dimension to the  matrixb W
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Lecture Outline

• Recap: Feedforward Neural Nets 
• Feedforward Net Language Models 
• Feedforward Nets for Classification 
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• Next: Recurrent Neural Nets (RNNs)
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FFNN Language 
Models
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Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next 
word in a sequence given some history. 

• Compared to -gram language models, neural network LMs 
achieve much higher performance 
• In general, count-based methods can never do as well as 

optimization-based ones 
• State-of-the-art neural LMs are based on more powerful neural 

network technology like Transformers  
• But simple feedforward LMs work well too!

n

10

Why?

Can neural LMs 
overcome the 

overfitting problem 
in -gram LMs?n
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Simple Feedforward Neural LMs

Task: predict next word  given prior words  

Problem: Now we are dealing with sequences of arbitrary length…. 

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

11

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!
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Data: Feedforward Language Model

• Self-supervised 

• Computation is divided into time steps , where different sliding windows are considered 

•  for the context 

• represent words in this prior context by their embeddings, rather than just by their 
word identity as in n-gram LMs  

• allows neural LMs to generalize better to unseen data / similar data 
• All embeddings in the context are concatenated 

•  for the next word 

• Represented as a one hot vector of vocabulary size where only the ground truth 
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

12

One-hot vector
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Feedforward Neural LM

13

• Sliding window of size 4 
(including the target word) 

• Every feature in the 
embedding vector connected 
to every single hidden unit 

• Projection / embedding layer 
is a kind of input layer 
• This is where we plug in 

our word2vec 
embeddings 

• May or may not update 
embedding weights
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Simplified Representation

14

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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Feedforward LMs: Windows

• The goodness of the language model 
depends on the size of the sliding 
window! 

• Fixed window can be too small 

• Enlarging window enlarges  

• Each word uses different rows of . We 
don’t share weights within the window. 

• Window can never be large enough! 

W
W
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for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U
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FFNN  for 
Classification

16
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FFNN and Classification

• Learn both FFNN parameters,  and word 
embeddings!!  

• Conceptually, we have an embedding layer:  for 
the th input word in the window  

• We use deep networks—more layers—that let us 
compose our data multiple times, giving a non-
linear classifier

W

xi
i

17
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FNN and Classification
• Training Objective: For each training example , our 

objective is to maximize the probability of the correct 
class  or we can minimize the negative log probability 
of that class: 

 

• Loss as Cross entropy:  

• ground truth (or true or gold or target) is a 1-hot 
vector of size , where  

• hence, the only term left is the negative log 
probability of the true class,  

• True for both language modeling and classification

(x, y)

y

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
H(q, p) = −

K

∑
j=1

qj log pj

K qj = 1; qi = 0∀i ≠ j

−log p(yj |x)

18

movie is boringThis !

W

U
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Lecture Outline

• Recap: Feedforward Neural Nets 
• Feedforward Net Language Models 
• Feedforward Nets for Classification 
• Training Feedforward Nets 
• Computation Graphs and Backprop 
• Next: Recurrent Neural Nets (RNNs)
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Training FFNNs

20
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Intuition: Training a 2-layer Network

21

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function 

L(ŷ, y)

Forward Pass Backward Pass

Training instance y
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 Intuition: Training a 2-layer network

For every training tuple  

• Run forward computation to find our estimate  

• Run backward computation to update weights:  
• For every output node  

• Compute loss  between true  and the estimated   

• For every weight  from hidden layer to the output layer  

• Compute the gradient of  w.r.t.  and update   

• For every hidden node  
• Assess how much blame it deserves for the current answer  

• For every weight  from input layer to the hidden layer  

• Compute the gradient of  w.r.t.  and update  

(x, y)
̂y

L y ̂y
w

L w w

w
L w w

22
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LR and FFNN: Similarities and Differences

23

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE( ̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter! Remember the bias parameter is 
just another dimension

As (multiple) hidden layers are introduced, 
there will be many more parameters to 
consider, not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!
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Computation Graphs 
and Backprop

25
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Why Computation Graphs?

26

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss 

function 
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the loss 
with respect to each weight in every layer of 
the network  
• But the loss is computed only at the very 

end of the network!  
• Solution: error backpropagation or backward 

differentiation 
• Backprop is a special case of backward 

differentiation  
• Backprop relies on computation graphs
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Example: Computation Graph

27

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e
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Example: Forward Pass

28

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward 
pass to compute the 

loss!
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Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass  
• Used to compute the derivatives needed for the weight updates

29

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer 
Gradients

}Hidden Layer 
Gradients
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The Chain Rule

30

f(x) = u(v(x))

f(x) = u(v(w(x)))

∂f
∂x

=

∂f
∂x

=

Computing the derivative of a composite function:

∂u
∂v

∂v
∂x

∂u
∂v

∂v
∂w

∂w
∂x
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Example: Applying the chain rule

31

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…
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Example: Backward Pass

32

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients 
of the loss with respect to 

parameters…
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Example

33

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Example: Two Paths

34

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on 
a single node we will add these 

branches

Such cases arise when considering regularized loss functions
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Backward Differentiation on a 2-layer MLP

35

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU 
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise 

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))
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2 layer MLP with 2 input features

36
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Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with 
respect to weights in early layers of the network  
• But loss is computed only at the very end of the 

network!  
• Solution: backward differentiation  
• Backprop is an algorithm that computes the chain rule, 

with a specific order of operations that is highly efficient 
• Storing repeated subexpressions, employing recursion

37

Given a computation graph and the derivatives of all the functions in it we can automatically 
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e
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Recurrent Neural Nets

38
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Recurrent Neural Networks

• Recurrent Neural Networks processes sequences one element at a time: 

• Contains one hidden layer  per time step! Serves as a memory of the entire history… 

• Output of each neural unit at time  based both on  

• the current input at  and  

• the hidden layer from time  

• As the name implies, RNNs have a recursive formulation 
• dependent on its own earlier outputs as an input! 

• RNNs thus don’t have  

• the limited context problem that -gram models have, or  

• the fixed context that feedforward language models have,  
• since the hidden state can in principle represent information about all of the preceding words 

all the way back to the beginning of the sequence

ht
t

t
t − 1

n

39
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Recurrent Neural Net Language Models

40

The students studied the

x1 x2 x3 x4

Word Embeddings, xi

book

slides

Hidden layer: 
ht = g(Whht−1 + W[1]xt)

h0 h1 h3 h4h2

Output layer: ̂yt = softmax(W[2]ht)
̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

Initial hidden state: h0
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Why RNNs?

RNN Advantages:  
• Can process any length input 
• Model size doesn’t increase 

for longer input 

• Computation for step  can 
(in theory) use information 
from many steps back 

• Weights  are shared 
(tied) across timesteps → 
Condition the neural network 
on all previous words

t

W[1]

41

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4
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Why not RNNs?

RNN Disadvantages:  
• Recurrent computation 

is slow  
• In practice, difficult to 

access information from 
many steps back

42

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

Concluding Thoughts

Next Class: 
• More on 

Recurrent 
Neural Nets

43

The students studied the

book

slides

h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4


