
Lecture 7:
Backpropagation

Instructor: Swabha Swayamdipta
USC CSCI 444 NLP

Sep 22, 2025

Some slides adapted from Dan Jurafsky and Chris Manning

Fall 2025 CSCI 444: NLP

Announcements + Logistics

• Wed: Project Proposal Due
• See instructions on website, please do not break format

• HW2 out yesterday
• HW1 grades will be out by next week
• Quiz 2 postponed

• Oct 1, Wed after next

2

Fall 2025 CSCI 444: NLP

Lecture Outline

• Recap: Feedforward Neural Nets
• Feedforward Net Language Models
• Feedforward Nets for Classification
• Training Feedforward Nets
• Computation Graphs and Backprop
• Next: Recurrent Neural Nets (RNNs)

3

Fall 2025 CSCI 444: NLP

Recap: Feed-Forward
Neural Networks

4

Fall 2025 CSCI 444: NLP

Non-Linear Activation Functions

5

The key ingredient of a neural network is the non-linear activation function

sigmoid tanh relu (Rectified Linear Unit)

Most common!

Fall 2025 CSCI 444: NLP

Power of non-linearity

6

After a transformation:tanh(⋅)

tanh(z) =
ez − e−z

ez + e−z

Fall 2025 CSCI 444: NLP

Two-layer FFNN: Notation

7

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y1 y2 yd2
…

W

U

Input layer: vector x

Output layer: y = softmax(U ⋅ h)

Hidden layer: h = g(Wx) = g(
d0

∑
i=0

Wjixi)
Usually ReLU or tanh

We usually drop the and add one dimension to the matrixb W

Fall 2025 CSCI 444: NLP

Lecture Outline

• Recap: Feedforward Neural Nets
• Feedforward Net Language Models
• Feedforward Nets for Classification
• Training Feedforward Nets
• Computation Graphs and Backprop
• Next: Recurrent Neural Nets (RNNs)

8

Fall 2025 CSCI 444: NLP

FFNN Language
Models

9

Fall 2025 CSCI 444: NLP

Feedforward Neural Language Models

• Language Modeling: Calculating the probability of the next
word in a sequence given some history.

• Compared to -gram language models, neural network LMs
achieve much higher performance
• In general, count-based methods can never do as well as

optimization-based ones
• State-of-the-art neural LMs are based on more powerful neural

network technology like Transformers
• But simple feedforward LMs work well too!

n

10

Why?

Can neural LMs
overcome the

overfitting problem
in -gram LMs?n

Fall 2025 CSCI 444: NLP

Simple Feedforward Neural LMs

Task: predict next word given prior words

Problem: Now we are dealing with sequences of arbitrary length….

Solution: Sliding windows (of fixed length)

wt wt−1, wt−2, wt−3, …

11

P(wt |wt−1) ≈ P(wt |wt−1:t−M+1)

First introduced by Yoshua Bengio and colleagues in 2003

Basis of word embedding models!

Fall 2025 CSCI 444: NLP

Data: Feedforward Language Model

• Self-supervised

• Computation is divided into time steps , where different sliding windows are considered

• for the context

• represent words in this prior context by their embeddings, rather than just by their
word identity as in n-gram LMs

• allows neural LMs to generalize better to unseen data / similar data
• All embeddings in the context are concatenated

• for the next word

• Represented as a one hot vector of vocabulary size where only the ground truth
gets a value of 1 and every other element is a 0

t
xt = (wt−1, …, wt−M+1)

yt = wt

12

One-hot vector

Fall 2025 CSCI 444: NLP

Feedforward Neural LM

13

• Sliding window of size 4
(including the target word)

• Every feature in the
embedding vector connected
to every single hidden unit

• Projection / embedding layer
is a kind of input layer
• This is where we plug in

our word2vec
embeddings

• May or may not update
embedding weights

Fall 2025 CSCI 444: NLP

Simplified Representation

14

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

Fall 2025 CSCI 444: NLP

Feedforward LMs: Windows

• The goodness of the language model
depends on the size of the sliding
window!

• Fixed window can be too small

• Enlarging window enlarges

• Each word uses different rows of . We
don’t share weights within the window.

• Window can never be large enough!

W
W

15

for all the

wt−2wt−3 wt−1

thanks ?

fish wishes

W

U

Fall 2025 CSCI 444: NLP

FFNN for
Classification

16

Fall 2025 CSCI 444: NLP

FFNN and Classification

• Learn both FFNN parameters, and word
embeddings!!

• Conceptually, we have an embedding layer: for
the th input word in the window

• We use deep networks—more layers—that let us
compose our data multiple times, giving a non-
linear classifier

W

xi
i

17

Fall 2025 CSCI 444: NLP

FNN and Classification
• Training Objective: For each training example , our

objective is to maximize the probability of the correct
class or we can minimize the negative log probability
of that class:

• Loss as Cross entropy:

• ground truth (or true or gold or target) is a 1-hot
vector of size , where

• hence, the only term left is the negative log
probability of the true class,

• True for both language modeling and classification

(x, y)

y

LCE = − log P(y = c |x; θ) = − (wc ⋅ x + b) + log[
K

∑
j=1

exp(wj ⋅ x + b)]
H(q, p) = −

K

∑
j=1

qj log pj

K qj = 1; qi = 0∀i ≠ j

−log p(yj |x)

18

movie is boringThis !

W

U

Fall 2025 CSCI 444: NLP

Lecture Outline

• Recap: Feedforward Neural Nets
• Feedforward Net Language Models
• Feedforward Nets for Classification
• Training Feedforward Nets
• Computation Graphs and Backprop
• Next: Recurrent Neural Nets (RNNs)

19

Fall 2025 CSCI 444: NLP

Training FFNNs

20

Fall 2025 CSCI 444: NLP

Intuition: Training a 2-layer Network

21

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

Training instance x

Model Output ŷ = softmax(U ⋅ h)

y1 y2 yd2
… } Loss function

L(ŷ, y)

Forward Pass Backward Pass

Training instance y

Fall 2025 CSCI 444: NLP

 Intuition: Training a 2-layer network

For every training tuple

• Run forward computation to find our estimate

• Run backward computation to update weights:
• For every output node

• Compute loss between true and the estimated

• For every weight from hidden layer to the output layer

• Compute the gradient of w.r.t. and update

• For every hidden node
• Assess how much blame it deserves for the current answer

• For every weight from input layer to the hidden layer

• Compute the gradient of w.r.t. and update

(x, y)
̂y

L y ̂y
w

L w w

w
L w w

22

Fall 2025 CSCI 444: NLP

LR and FFNN: Similarities and Differences

23

LCE(y, ̂y) = − log p(y |x) = − [y log ̂y + (1 − y)log(1 − ̂y)]

= − [y log σ(w ⋅ x + b) + (1 − y)log(σ(−w ⋅ x + b))]

∂LCE(̂y, y)
∂wj

= [σ(w ⋅ x + b) − y]xjGradient Update

Only one parameter! Remember the bias parameter is
just another dimension

As (multiple) hidden layers are introduced,
there will be many more parameters to
consider, not to mention activation functions!

Computation Graphs

Cross Entropy Loss again!

Fall 2025 CSCI 444: NLP

Lecture Outline

• Recap: Feedforward Neural Nets
• Feedforward Net Language Models
• Feedforward Nets for Classification
• Training Feedforward Nets
• Computation Graphs and Backprop
• Next: Recurrent Neural Nets (RNNs)

24

Fall 2025 CSCI 444: NLP

Computation Graphs
and Backprop

25

Fall 2025 CSCI 444: NLP

Why Computation Graphs?

26

Graph representing the process of computing a mathematical expression

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

̂y1 ̂y2 ̂yd2
…

W

U

y1 y2 yd2
… } Loss

function
L(ŷ, y)

Rumelhart, Hinton, Williams, 1986

Backprop

• For training, we need the derivative of the loss
with respect to each weight in every layer of
the network
• But the loss is computed only at the very

end of the network!
• Solution: error backpropagation or backward

differentiation
• Backprop is a special case of backward

differentiation
• Backprop relies on computation graphs

Fall 2025 CSCI 444: NLP

Example: Computation Graph

27

d = 2 * b

e = a + d

L = c * e

a

b

c

d = 2 * b

e = a + d

L = c * e

Fall 2025 CSCI 444: NLP

Example: Forward Pass

28

d = 2 * b
e = a + d

L = c * e a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2
e = 5

L = − 10

Forward Pass

But how to compute parameter updates?

Need the forward
pass to compute the

loss!

Fall 2025 CSCI 444: NLP

Example: Backward Pass Intuition

• The importance of the computation graph comes from the backward pass
• Used to compute the derivatives needed for the weight updates

29

d = 2 * b

e = a + d

L = c * e

∂L
∂a

= ?
∂L
∂b

= ?
∂L
∂c

= ?

Chain Rule of Differentiation!

∂L
∂d

= ?
∂L
∂e

= ?

} Input Layer
Gradients

}Hidden Layer
Gradients

Fall 2025 CSCI 444: NLP

The Chain Rule

30

f(x) = u(v(x))

f(x) = u(v(w(x)))

∂f
∂x

=

∂f
∂x

=

Computing the derivative of a composite function:

∂u
∂v

∂v
∂x

∂u
∂v

∂v
∂w

∂w
∂x

Fall 2025 CSCI 444: NLP

Example: Applying the chain rule

31

d = 2 * b

e = a + d

L = c * e

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e ∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

Cannot do all at once, need to follow an order…

Fall 2025 CSCI 444: NLP

Example: Backward Pass

32

a

b

c

d = 2 * b

e = a + d

L = c * e

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

∂L
∂c

= e
∂L
∂e

= c

∂L
∂d

=
∂L
∂e

∂e
∂d

But we need the gradients
of the loss with respect to

parameters…

Fall 2025 CSCI 444: NLP

Example

33

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂a

=
∂L
∂e

∂e
∂a

= − 2

∂L
∂b

=
∂L
∂e

∂e
∂d

∂d
∂b

= − 4

∂L
∂c

= e = 5

∂L
∂e

= c = − 2

∂L
∂d

=
∂L
∂e

∂e
∂d

= − 2

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

Fall 2025 CSCI 444: NLP

Example: Two Paths

34

a

c

L = c * a

R = 2c

∂L
∂c

∂L
∂c

= a

∂R
∂c

∂R
∂c

= 2

∂O
∂L

= 1

O = L + R

∂O
∂L

∂O
∂R

∂O
∂R

= 1 ∂O
∂c

=
∂O
∂L

∂L
∂c

+
∂O
∂R

∂R
∂c

When multiple branches converge on
a single node we will add these

branches

Such cases arise when considering regularized loss functions

Fall 2025 CSCI 444: NLP

Backward Differentiation on a 2-layer MLP

35

W[1]

w[2]

Softmax Activation

x1 x2 xd0 x0 = 1

h1 h2 h3 hd1

…

…

y

ReLU
Activation

z[1] = W[1]x

h[1] = ReLU(z[1])

z[2] = w[2] ⋅ h[1]

̂y = σ(z[2])

Element-wise

∂σ(z)
∂z

= σ(z)σ(−z) = σ(z)(1 − σ(z))

Fall 2025 CSCI 444: NLP

2 layer MLP with 2 input features

36

Fall 2025 CSCI 444: NLP

Summary: Backprop / Backward Differentiation

• For training, we need the derivative of the loss with
respect to weights in early layers of the network
• But loss is computed only at the very end of the

network!
• Solution: backward differentiation
• Backprop is an algorithm that computes the chain rule,

with a specific order of operations that is highly efficient
• Storing repeated subexpressions, employing recursion

37

Given a computation graph and the derivatives of all the functions in it we can automatically
compute the derivative of the loss with respect to these early weights.

Libraries such as PyTorch do this for you in a single line: model.backward()

a

b

c

d = 2 * b

e = a + d

L = c * e

3

1

−2

d = 2

e = 5

L = − 10

Forward Pass

∂L
∂e

∂e
∂a

∂e
∂d

∂L
∂c

∂d
∂b

Backward Pass

∂L
∂e

= c

∂e
∂a

= 1

∂e
∂d

= 1

∂d
∂b

= 2

∂L
∂c

= e

Fall 2025 CSCI 444: NLP

Recurrent Neural Nets

38

Fall 2025 CSCI 444: NLP

Recurrent Neural Networks

• Recurrent Neural Networks processes sequences one element at a time:

• Contains one hidden layer per time step! Serves as a memory of the entire history…

• Output of each neural unit at time based both on

• the current input at and

• the hidden layer from time

• As the name implies, RNNs have a recursive formulation
• dependent on its own earlier outputs as an input!

• RNNs thus don’t have

• the limited context problem that -gram models have, or

• the fixed context that feedforward language models have,
• since the hidden state can in principle represent information about all of the preceding words

all the way back to the beginning of the sequence

ht
t

t
t − 1

n

39

Fall 2025 CSCI 444: NLP

Recurrent Neural Net Language Models

40

The students studied the

x1 x2 x3 x4

Word Embeddings, xi

book

slides

Hidden layer:
ht = g(Whht−1 + W[1]xt)

h0 h1 h3 h4h2

Output layer: ̂yt = softmax(W[2]ht)
̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

Initial hidden state: h0

Fall 2025 CSCI 444: NLP

Why RNNs?

RNN Advantages:
• Can process any length input
• Model size doesn’t increase

for longer input

• Computation for step can
(in theory) use information
from many steps back

• Weights are shared
(tied) across timesteps →
Condition the neural network
on all previous words

t

W[1]

41

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

Fall 2025 CSCI 444: NLP

Why not RNNs?

RNN Disadvantages:
• Recurrent computation

is slow
• In practice, difficult to

access information from
many steps back

42

The students studied the

book

slides

h0 h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

Fall 2025 CSCI 444: NLP

Concluding Thoughts

Next Class:
• More on

Recurrent
Neural Nets

43

The students studied the

book

slides

h1 h3 h4h2

̂y4 = P(x5 |The students studied the)

Wh Wh Wh Wh

W[1]

?

W[2]

x1 x2 x3 x4

