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Announcements + Logistics

• Today: Group formation deadline (https://forms.gle/hUVSg7e7uJFB14M9A) 
• Wed: HW1 due 
• This week: HW2 release 
• Next week: 

• Project proposal due 
• Quiz 2

2

https://forms.gle/hUVSg7e7uJFB14M9A
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Lecture Outline

• Recap: Multinomial LR + Word Embeddings 
• Sparse Embeddings 
• Dense Embeddings 

• word2vec 
• GloVe 

• Evaluating Word Embeddings

3
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Recap: Multinomial LR 

4
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Multinomial Logistic Regression

5

P(y1 |x) + P(y2 |x) + … + P(yK |x) = 1

• Generalize the sigmoid function: softmax 

• Input: a vector  of  arbitrary values  

• each  corresponds to weighted sum of features for the th class 

• Outputs a probability distribution 

z = [z1, z2, …, zK] K
zi K

Softmax 

The probability of everything must still sum to 1  classesK > 2

softmax(z) = [ exp(z1)

∑K
i=1 exp(zi)

,
exp(z2)

∑K
i=1 exp(zi)

, …,
exp(zK)

∑K
i=1 exp(zi) ]

The denominator  is used to normalize all the values into probabilities.
K

∑
i=1

exp(zi)

softmax(zi) =
exp(zi)

∑K
j=1 exp(zj)1 ≤ i ≤ K
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Binary versus Multinomial

6

Separate weights for each class

Binary Logistic Regression

y = 1 y = 0

Multinomial Logistic Regression

w5

w5 > 0 w5 ≤ 0

y = + y = −y = ∼

w5,+ w5,∼ w5,−
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Precision, Recall and F-1

• True Positives, True Negatives, False Positives and False Negatives

7

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Of all the items in the prediction, how many match the 
ground truth

Of all the items in the ground truth, how many are 
correctly predicted

F1 =
2 * PR
P + R

Harmonic Mean of Precision and Recall 

Different value for different classes!
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8

Recap: Word Embeddings
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- Firth (1957)

“You shall know a word by the company 
it keeps.” 

9
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Word Embeddings

• Represent a word as a point in a multidimensional 
semantic space 
• Space itself constructed from distribution of 

word neighbors 
• Called an “embedding” because it's embedded 

into a space  
• Fine-grained model of meaning for similarity

10

Every modern NLP algorithm uses embeddings as the representation of word 
meaning

Image Credit: Pinecone

Vector Semantics

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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 Cosine Similarity for Word Similarity
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cos( ⃗v, ⃗w ) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i=1 viwi

∑N
i=1 v2

i ∑N
i=1 w2

i

We do not care about the magnitude of the 
embeddings, just the angle between them

Cosine similarity of two vectors

 -1: vectors point in opposite directions  
+1: vectors point in same directions  
  0: vectors are orthogonal

Greater the cosine, more similar the words 
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n-grams as One-hot Vectors
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 vocabulary

i

hate

love

the

movie

 film

movie = <0, 0, 0, 0, 1, 0>  
film = <0, 0, 0, 0, 0, 1>

One hot vector

 Dot product is zero! These vectors are orthogonal

How can we compute a vector 
representation such that the dot 

product correlates with word 
similarity?

Unigram Vectors: Represent each 
word as a vector of zeros with a 
single 1 identifying the index of 
the word
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Sparse Embeddings

13
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Term-document matrix

Let us consider a collection of documents and count how frequently a word (term) appears 
in each. A document could be a play or a Wikipedia article. In general, documents can be 
anything; we often call each paragraph a document! 

Each document is represented by a vector of words

14
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Visualizing document vectors

15

• Vectors are similar 
for the two 
comedies 

• Comedies are 
different from the 
other two 
(tragedies) 
• More fools, less 

battle
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Words as vectors in a co-occurrence matrix

“Battle” is the kind of word that appears in Julius Caesar and Henry V 

“Fool” is the kind of word that appears in As You Like It and Twelfth Night

16

Number of dimensions?
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Word-word co-occurrence matrix

17

Words, not 
documents

C
on

te
xt

 
W

in
do

w

Two words are similar in meaning if their context vectors are similar
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Raw frequencies though…

• …are a bad representation!  
• The co-occurrence matrices we have seen represent 

each cell by word frequencies 
• Frequency is clearly useful; if sugar appears a lot 

near apricot, that's useful information 
• But overly frequent words like the, it, or they are not 

very informative about the context  
• It's a paradox! How can we balance these two 

conflicting constraints?

19

Need some form of weighting!
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Two different kinds of weighting

tf-idf: Term Frequency - Inverse Document Frequency 
• Downweighting words like “the” or “if” 
• Term-document matrices

20

PMI: Pointwise Mutual Information 
• Considers the probability of words like “good” and “great” co-occurring 
• Word co-occurrence matrices
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 Term Frequency

21

 = # occurrences of word  in document count(t, d) t d

tft,d = {1 + log(count(t, d)), if count(t, d) > 0
0, otherwise

Term Frequency: frequency counting (usually log transformed)
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Inverse Document Frequency

• Document Frequency:  is the number of 
documents  occurs in.  

• NOT collection frequency: total count 
across all documents 

• "Romeo" is very distinctive for one 
Shakespeare play 

• Inverse Document Frequency: idf  

dft
t

t

22

idft = log10 ( N
dft )

 = total number of documents in the collectionN

What does IDF 
signify?
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tf-idf

23

tft,d × idft,d

Raw Counts

tf-idf Weighted Counts
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Pointwise Mutual Information (PMI)

• PMI between two words:   
• Do words  and  co-occur more than if they were independent? 

• PMI ranges from −∞ to + ∞  
• Negative values are problematic: words are co-occurring less than we expect by chance 
• Only reliable under an enormous corpora  

• Imagine  and  whose probability of occurrence is each 10-6  

• Hard to be sure  is significantly different than 10-12  

• So we just replace negative PMI values by 0  

• Positive PMI

w1 w2

w1 w2
P(w1, w2)

24 Church & Hanks 1989

PMI(w1, w2) = log
P(w1, w2)

P(w1)P(w2)

PPMI(w1, w2) = max (0, log
P(w1, w2)

P(w1)P(w2) )
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The problem…

•  Raw frequency vectors are  
• long (length |V|= 20,000 to 50,000)  
• sparse (most elements are zero) 

• Alternative: learn vectors which are  
• short (length 50-1000)  
• dense (most elements are non-zero)

25
Image Credit: Pinecone

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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Sparse vs. Dense Vectors

•  Why dense vectors?  
• Memory efficiency is not a problem for sparse vectors… 
• Short vectors may be easier to use as features in machine learning (fewer weights to 

tune)  
• Dense vectors may generalize better than explicit counts  
• Dense vectors may do better at capturing synonymy:  

• car and automobile are synonyms; but are distinct dimensions  
• a word with car as a neighbor and a word with automobile as a neighbor should 

be similar, but aren't  
• In practice, they work better

26
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Co-occurrence Vectors

• Simple count co-occurrence vectors 
• Vectors increase in size with vocabulary 
• Very high dimensional: require a lot of storage (though sparse) 

• Subsequent classification models have sparsity issues  Models are less robust 

• Low-dimensional vectors 
• Idea: store “most” of the important information in a fixed, small number of 

dimensions: a dense vector 
• Usually 25–1000 dimensions, similar to word2vec 
• How to reduce the dimensionality?

→

27
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Classic Method: Dimensionality Reduction 

• Singular Value Decomposition of co-occurrence matrix  

• Factorizes  into , where  and  are orthonormal (unit vectors and orthogonal)
A

A UΣVT U V

28

• Dimensionality Reduction: Retain only  
singular values to create  

•  is the best rank  approximation to , in 
terms of least squares 

• Classic linear algebra result  
• Expensive to compute for large matrices 
• Normally, doesn’t work too well with co-

occurrence count matrices, needs some 
pruning

k
Â

Â k A
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How else to obtain dense vectors?

“Neural Language Model”-inspired models  
• Word2vec (skipgram, CBOW), GloVe  

Singular Value Decomposition (SVD)  
• Special case: Latent Semantic Analysis (LSA) 

Alternatives to “static word type embeddings”:  
• Contextual Embeddings (LLM word embeddings)  

• Compute distinct embeddings for a word in its context  
• Separate embeddings for each token of a word

29 Image Credit: Pinecone

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/
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Lecture Outline

30

• Announcements 
• Recap: Multinomial LR 
• Recap: Lexical Semantics 
• word2vec 

• Classification 
• Learning 

• GloVe 
• Properties and Evaluation of Word Embeddings



Fall 2025 CSCI 444: NLP                                                                                                                                                                                                            

word2vec

31
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word2vec

• Short, dense vector or embedding 
• Static embeddings 

• One embedding per word type 
• Does not change with context change 

• Two algorithms for computing: 
• Skip-Gram with Negative Sampling or SGNS 
• CBOW or continuous bag of words 
• But we will study a slightly different version… 

• Efficient training 
• Easily available to download and plug in

32

Mikolov et al., ICLR 2013. Efficient estimation of word representations in vector space.

Mikolov et al., NeurIPS 2013. Distributed representations of words and phrases and their compositionality. 

What happens to the 
problem of polysemy?
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word2vec : Intuition

Instead of counting how often each word  occurs near another, e.g. “cherry” 

• Train a classifier on a binary prediction task:  

•  Is  likely to show up near “cherry”? 

• We don’t actually care about this task!!!  
• But we'll take the learned classifier weights as the word embeddings

w

w

33

What is ?  What is ?x y

Word embedding itself is the learned parameter!
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word2vec: Self-supervision

• A word  that occurs near “cherry” in the corpus acts as the gold “correct answer” for 
supervised learning  

• No need for human labels! 

c

34
Bengio et al. (2003); Collobert et al. (2011)

One missing piece: where to get the  pairs from?(x, y)

What about incorrect labels?
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word2vec: Goal

35

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a 
candidate (word, context) pair: 

(apricot, jam)  
(apricot, aardvark)  

… 

P( + |w, c)
P( − |w, c) = 1 − P( + |w, c)

P( + |w, c1) P( + |w, c4)

And assigns each pair a probability:

…aardvark…

P( − |w, ck)

 Assume a +/- 2 word window, given training sentence: 
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word2vec: Pseudocode

1. Treat the target word  and a neighboring context word  as positive examples. 
2. Randomly sample other words in the lexicon to get negative examples  
3. Use logistic regression to train a classifier to distinguish those two cases  
4. Use the learned weights as the embeddings

w c

36

Predict if candidate word  is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…
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word2vec: Probability Estimates

• Central intuition: Base this probability on embedding similarity! 
• Remember: two vectors are similar if they have a high dot product  

• Cosine similarity is just a normalized dot product  
• So:  

• Still not a probability! 
• We’ll need to normalize to get a probability 

37

sim(w, c) ∝ w ⋅ c

P( + |w, c)
P( − |w, c) = 1 − P( + |w, c)

Vectors, not scalars!

Can we just use cosine?
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Turning dot products into probabilities

38

sim(w, c) ≈ w ⋅ c

P( + |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)

P( − |w, c) = 1 − P( + |w, c)

= σ(−c ⋅ w) =
1

1 + exp(c ⋅ w)

Sigmoid

Logistic 
Regression!

Similarity: 

Turn into a probability using the sigmoid function:
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Accounting for a context window

 But we have lots of context words 

• Depends on window size,  

•  We'll assume independence and just multiply them 
Same with negative context words!

L

39

P( + |w, c1:L) =
L

∏
i=1

σ(ci ⋅ w)

log P( + |w, c1:L) =
L

∑
i=1

log σ(ci ⋅ w)

P( + |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)
…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

log P( − |w, cneg) = ∑
c′￼∈cneg

log σ(−c′￼⋅ w)

}cneg

Single Context Word
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 word2vec classifier: Summary
• A probabilistic classifier, given  

• a test target word   

• its context window of  words   

• Estimates probability that  occurs in this window 
based on similarity of  (embeddings) to  
(embeddings) 

• To compute this, we just need embeddings for all 
the words 
• Separate representations for targets and 

contexts 
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

40

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and 
noise words

1

|V | + 1

2 |V |

|V |θ =

}d
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Lecture Outline
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• Announcements 
• Recap: Multinomial LR 
• Recap: Lexical Semantics 
• word2vec 

• Classification 
• Learning 

• GloVe 
• Properties and Evaluation of Word Embeddings
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Learning word2vec 
embeddings

42
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Word2vec: Training Data

43

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Positive examples

apricot tablespoon

apricot of

apricot jam

apricot a

cw

Negative examples

apricot aardvark

apricot zebra

apricot where

apricot adversarial

cnegw

…aardvark…

…zebra…
}cneg

For each positive example we'll grab a set of negative examples, sampling by weighted 
unigram frequency
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Word2vec: Learning Problem

Given  
• the set of positive and negative training instances, and  

• a set of randomly initialized embedding vectors of size ,  
the goal of learning is to adjust those word vectors such that we:  

• Maximize the similarity of the target word, context word pairs  drawn from the 
positive data  

• Minimize the similarity of the  pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

44

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg
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Loss function

45

LCE = − log[P( + |w, cpos)P( − |w, cneg)]

= − [log P( + |w, cpos) +
K

∑
j=1

log P( − |w, cnegj
)]

= − [log P( + |w, cpos) +
K

∑
j=1

log(1 − P( + |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word, 
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and 
minimize the similarity of the target with the  negative sampled non-neighbor words

L
K > L
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Learning the classifier

• How to learn?  
• Stochastic gradient descent!  
• Iterative process 
• Start with randomly initialized weights 

• Update the parameters by computing gradients of the loss 
w.r..t. parameters 

• Stop when the parameters (or, the loss) do not change 
much… 

• We’ll adjust the word weights to  
• make the positive pairs more likely  
• and the negative pairs less likely,  
• over the entire training set.

46
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Intuition of one step of gradient descent

47
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SGD: Derivates

48

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by 
subtracting respective -weighted 

gradients 
η
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SGD: updates

•  Start with randomly initialized C and W matrices, then incrementally do updates

49
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word2vec: Learned Embeddings

•  word2vec learns two sets of embeddings:  

• Target embeddings matrix   

• Context embedding matrix   

• It's common to just add them together, 
representing word  as the vector 

W
C

i wi + ci

50

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and 
noise words

1

|V | + 1

2 |V |

|V |θ =
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CBOW and Skipgram

• CBOW: continuous bag of words - 
given context, predict which word 
might be in the target position 

• Skip-gram: given word, predict which 
words make the best context 

• CBOW is faster than Skip-gram 

• Skip-gram generally works better

51

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

Why?

Why?


