
Lecture 5:
word2vec

Instructor: Swabha Swayamdipta
USC CSCI 444 NLP

Sep 15, 2025

Some slides adapted from Dan Jurafsky and Chris Manning and Xuezhe Ma

Fall 2025 CSCI 444: NLP

Announcements + Logistics

• Today: Group formation deadline (https://forms.gle/hUVSg7e7uJFB14M9A)
• Wed: HW1 due
• This week: HW2 release
• Next week:

• Project proposal due
• Quiz 2

2

https://forms.gle/hUVSg7e7uJFB14M9A

Fall 2025 CSCI 444: NLP

Lecture Outline

• Recap: Multinomial LR + Word Embeddings
• Sparse Embeddings
• Dense Embeddings

• word2vec
• GloVe

• Evaluating Word Embeddings

3

Fall 2025 CSCI 444: NLP

Recap: Multinomial LR

4

Fall 2025 CSCI 444: NLP

Multinomial Logistic Regression

5

P(y1 |x) + P(y2 |x) + … + P(yK |x) = 1

• Generalize the sigmoid function: softmax

• Input: a vector of arbitrary values

• each corresponds to weighted sum of features for the th class

• Outputs a probability distribution

z = [z1, z2, …, zK] K
zi K

Softmax

The probability of everything must still sum to 1 classesK > 2

softmax(z) = [exp(z1)

∑K
i=1 exp(zi)

,
exp(z2)

∑K
i=1 exp(zi)

, …,
exp(zK)

∑K
i=1 exp(zi)]

The denominator is used to normalize all the values into probabilities.
K

∑
i=1

exp(zi)

softmax(zi) =
exp(zi)

∑K
j=1 exp(zj)1 ≤ i ≤ K

Fall 2025 CSCI 444: NLP

Binary versus Multinomial

6

Separate weights for each class

Binary Logistic Regression

y = 1 y = 0

Multinomial Logistic Regression

w5

w5 > 0 w5 ≤ 0

y = + y = −y = ∼

w5,+ w5,∼ w5,−

Fall 2024 CSCI 544: Applied NLP

Precision, Recall and F-1

• True Positives, True Negatives, False Positives and False Negatives

7

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Of all the items in the prediction, how many match the
ground truth

Of all the items in the ground truth, how many are
correctly predicted

F1 =
2 * PR
P + R

Harmonic Mean of Precision and Recall

Different value for different classes!

Fall 2025 CSCI 444: NLP

8

Recap: Word Embeddings

Fall 2025 CSCI 444: NLP

- Firth (1957)

“You shall know a word by the company
it keeps.”

9

Fall 2025 CSCI 444: NLP

Word Embeddings

• Represent a word as a point in a multidimensional
semantic space
• Space itself constructed from distribution of

word neighbors
• Called an “embedding” because it's embedded

into a space
• Fine-grained model of meaning for similarity

10

Every modern NLP algorithm uses embeddings as the representation of word
meaning

Image Credit: Pinecone

Vector Semantics

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

Fall 2025 CSCI 444: NLP

 Cosine Similarity for Word Similarity

11

cos(⃗v, ⃗w) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i=1 viwi

∑N
i=1 v2

i ∑N
i=1 w2

i

We do not care about the magnitude of the
embeddings, just the angle between them

Cosine similarity of two vectors

 -1: vectors point in opposite directions
+1: vectors point in same directions
 0: vectors are orthogonal

Greater the cosine, more similar the words

Fall 2025 CSCI 444: NLP

n-grams as One-hot Vectors

12

 vocabulary

i

hate

love

the

movie

 film

movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>

One hot vector

 Dot product is zero! These vectors are orthogonal

How can we compute a vector
representation such that the dot

product correlates with word
similarity?

Unigram Vectors: Represent each
word as a vector of zeros with a
single 1 identifying the index of
the word

Fall 2025 CSCI 444: NLP

Sparse Embeddings

13

Fall 2025 CSCI 444: NLP

Term-document matrix

Let us consider a collection of documents and count how frequently a word (term) appears
in each. A document could be a play or a Wikipedia article. In general, documents can be
anything; we often call each paragraph a document!

Each document is represented by a vector of words

14

Fall 2025 CSCI 444: NLP

Visualizing document vectors

15

• Vectors are similar
for the two
comedies

• Comedies are
different from the
other two
(tragedies)
• More fools, less

battle

Fall 2025 CSCI 444: NLP

Words as vectors in a co-occurrence matrix

“Battle” is the kind of word that appears in Julius Caesar and Henry V

“Fool” is the kind of word that appears in As You Like It and Twelfth Night

16

Number of dimensions?

Fall 2025 CSCI 444: NLP

Word-word co-occurrence matrix

17

Words, not
documents

C
on

te
xt

W

in
do

w

Two words are similar in meaning if their context vectors are similar

Fall 2025 CSCI 444: NLP

18

Fall 2025 CSCI 444: NLP

Raw frequencies though…

• …are a bad representation!
• The co-occurrence matrices we have seen represent

each cell by word frequencies
• Frequency is clearly useful; if sugar appears a lot

near apricot, that's useful information
• But overly frequent words like the, it, or they are not

very informative about the context
• It's a paradox! How can we balance these two

conflicting constraints?

19

Need some form of weighting!

Fall 2025 CSCI 444: NLP

Two different kinds of weighting

tf-idf: Term Frequency - Inverse Document Frequency
• Downweighting words like “the” or “if”
• Term-document matrices

20

PMI: Pointwise Mutual Information
• Considers the probability of words like “good” and “great” co-occurring
• Word co-occurrence matrices

Fall 2025 CSCI 444: NLP

 Term Frequency

21

 = # occurrences of word in document count(t, d) t d

tft,d = {1 + log(count(t, d)), if count(t, d) > 0
0, otherwise

Term Frequency: frequency counting (usually log transformed)

Fall 2025 CSCI 444: NLP

Inverse Document Frequency

• Document Frequency: is the number of
documents occurs in.

• NOT collection frequency: total count
across all documents

• "Romeo" is very distinctive for one
Shakespeare play

• Inverse Document Frequency: idf

dft
t

t

22

idft = log10 (N
dft)

 = total number of documents in the collectionN

What does IDF
signify?

Fall 2025 CSCI 444: NLP

tf-idf

23

tft,d × idft,d

Raw Counts

tf-idf Weighted Counts

Fall 2025 CSCI 444: NLP

Pointwise Mutual Information (PMI)

• PMI between two words:
• Do words and co-occur more than if they were independent?

• PMI ranges from −∞ to + ∞
• Negative values are problematic: words are co-occurring less than we expect by chance
• Only reliable under an enormous corpora

• Imagine and whose probability of occurrence is each 10-6

• Hard to be sure is significantly different than 10-12

• So we just replace negative PMI values by 0

• Positive PMI

w1 w2

w1 w2
P(w1, w2)

24 Church & Hanks 1989

PMI(w1, w2) = log
P(w1, w2)

P(w1)P(w2)

PPMI(w1, w2) = max (0, log
P(w1, w2)

P(w1)P(w2))

Fall 2025 CSCI 444: NLP

The problem…

• Raw frequency vectors are
• long (length |V|= 20,000 to 50,000)
• sparse (most elements are zero)

• Alternative: learn vectors which are
• short (length 50-1000)
• dense (most elements are non-zero)

25
Image Credit: Pinecone

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

Fall 2025 CSCI 444: NLP

Sparse vs. Dense Vectors

• Why dense vectors?
• Memory efficiency is not a problem for sparse vectors…
• Short vectors may be easier to use as features in machine learning (fewer weights to

tune)
• Dense vectors may generalize better than explicit counts
• Dense vectors may do better at capturing synonymy:

• car and automobile are synonyms; but are distinct dimensions
• a word with car as a neighbor and a word with automobile as a neighbor should

be similar, but aren't
• In practice, they work better

26

Fall 2025 CSCI 444: NLP

Co-occurrence Vectors

• Simple count co-occurrence vectors
• Vectors increase in size with vocabulary
• Very high dimensional: require a lot of storage (though sparse)

• Subsequent classification models have sparsity issues Models are less robust

• Low-dimensional vectors
• Idea: store “most” of the important information in a fixed, small number of

dimensions: a dense vector
• Usually 25–1000 dimensions, similar to word2vec
• How to reduce the dimensionality?

→

27

Fall 2025 CSCI 444: NLP

Classic Method: Dimensionality Reduction

• Singular Value Decomposition of co-occurrence matrix

• Factorizes into , where and are orthonormal (unit vectors and orthogonal)
A

A UΣVT U V

28

• Dimensionality Reduction: Retain only
singular values to create

• is the best rank approximation to , in
terms of least squares

• Classic linear algebra result
• Expensive to compute for large matrices
• Normally, doesn’t work too well with co-

occurrence count matrices, needs some
pruning

k
Â

Â k A

Fall 2025 CSCI 444: NLP

How else to obtain dense vectors?

“Neural Language Model”-inspired models
• Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
• Special case: Latent Semantic Analysis (LSA)

Alternatives to “static word type embeddings”:
• Contextual Embeddings (LLM word embeddings)

• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word

29 Image Credit: Pinecone

https://www.pinecone.io/learn/series/nlp/dense-vector-embeddings-nlp/

Fall 2025 CSCI 444: NLP

Lecture Outline

30

• Announcements
• Recap: Multinomial LR
• Recap: Lexical Semantics
• word2vec

• Classification
• Learning

• GloVe
• Properties and Evaluation of Word Embeddings

Fall 2025 CSCI 444: NLP

word2vec

31

Fall 2025 CSCI 444: NLP

word2vec

• Short, dense vector or embedding
• Static embeddings

• One embedding per word type
• Does not change with context change

• Two algorithms for computing:
• Skip-Gram with Negative Sampling or SGNS
• CBOW or continuous bag of words
• But we will study a slightly different version…

• Efficient training
• Easily available to download and plug in

32

Mikolov et al., ICLR 2013. Efficient estimation of word representations in vector space.

Mikolov et al., NeurIPS 2013. Distributed representations of words and phrases and their compositionality.

What happens to the
problem of polysemy?

Fall 2025 CSCI 444: NLP

word2vec : Intuition

Instead of counting how often each word occurs near another, e.g. “cherry”

• Train a classifier on a binary prediction task:

• Is likely to show up near “cherry”?

• We don’t actually care about this task!!!
• But we'll take the learned classifier weights as the word embeddings

w

w

33

What is ? What is ?x y

Word embedding itself is the learned parameter!

Fall 2025 CSCI 444: NLP

word2vec: Self-supervision

• A word that occurs near “cherry” in the corpus acts as the gold “correct answer” for
supervised learning

• No need for human labels!

c

34
Bengio et al. (2003); Collobert et al. (2011)

One missing piece: where to get the pairs from?(x, y)

What about incorrect labels?

Fall 2025 CSCI 444: NLP

word2vec: Goal

35

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Goal: train a classifier that is given a
candidate (word, context) pair:

(apricot, jam)
(apricot, aardvark)

…

P(+ |w, c)
P(− |w, c) = 1 − P(+ |w, c)

P(+ |w, c1) P(+ |w, c4)

And assigns each pair a probability:

…aardvark…

P(− |w, ck)

 Assume a +/- 2 word window, given training sentence:

Fall 2025 CSCI 444: NLP

word2vec: Pseudocode

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative examples
3. Use logistic regression to train a classifier to distinguish those two cases
4. Use the learned weights as the embeddings

w c

36

Predict if candidate word is a neighborc

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

Fall 2025 CSCI 444: NLP

word2vec: Probability Estimates

• Central intuition: Base this probability on embedding similarity!
• Remember: two vectors are similar if they have a high dot product

• Cosine similarity is just a normalized dot product
• So:

• Still not a probability!
• We’ll need to normalize to get a probability

37

sim(w, c) ∝ w ⋅ c

P(+ |w, c)
P(− |w, c) = 1 − P(+ |w, c)

Vectors, not scalars!

Can we just use cosine?

Fall 2025 CSCI 444: NLP

Turning dot products into probabilities

38

sim(w, c) ≈ w ⋅ c

P(+ |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)

P(− |w, c) = 1 − P(+ |w, c)

= σ(−c ⋅ w) =
1

1 + exp(c ⋅ w)

Sigmoid

Logistic
Regression!

Similarity:

Turn into a probability using the sigmoid function:

Fall 2025 CSCI 444: NLP

Accounting for a context window

 But we have lots of context words

• Depends on window size,

• We'll assume independence and just multiply them
Same with negative context words!

L

39

P(+ |w, c1:L) =
L

∏
i=1

σ(ci ⋅ w)

log P(+ |w, c1:L) =
L

∑
i=1

log σ(ci ⋅ w)

P(+ |w, c) = σ(c ⋅ w) =
1

1 + exp(−c ⋅ w)
…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…

log P(− |w, cneg) = ∑
c′￼∈cneg

log σ(−c′￼⋅ w)

}cneg

Single Context Word

Fall 2025 CSCI 444: NLP

 word2vec classifier: Summary
• A probabilistic classifier, given

• a test target word

• its context window of words

• Estimates probability that occurs in this window
based on similarity of (embeddings) to
(embeddings)

• To compute this, we just need embeddings for all
the words
• Separate representations for targets and

contexts
• Same as the parameters we need to estimate!

w
L c1:L
w

w c1:L

40

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and
noise words

1

|V | + 1

2 |V |

|V |θ =

}d

Fall 2025 CSCI 444: NLP

Lecture Outline

41

• Announcements
• Recap: Multinomial LR
• Recap: Lexical Semantics
• word2vec

• Classification
• Learning

• GloVe
• Properties and Evaluation of Word Embeddings

Fall 2025 CSCI 444: NLP

Learning word2vec
embeddings

42

Fall 2025 CSCI 444: NLP

Word2vec: Training Data

43

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

Positive examples

apricot tablespoon

apricot of

apricot jam

apricot a

cw

Negative examples

apricot aardvark

apricot zebra

apricot where

apricot adversarial

cnegw

…aardvark…

…zebra…
}cneg

For each positive example we'll grab a set of negative examples, sampling by weighted
unigram frequency

Fall 2025 CSCI 444: NLP

Word2vec: Learning Problem

Given
• the set of positive and negative training instances, and

• a set of randomly initialized embedding vectors of size ,
the goal of learning is to adjust those word vectors such that we:

• Maximize the similarity of the target word, context word pairs drawn from the
positive data

• Minimize the similarity of the pairs drawn from the negative data

2 |V |

(w, c1:L)

(w, cneg)

44

…lemon, a [tablespoon of apricot jam, a] pinch…

c1 c2 c3 c4
w

…aardvark…

…zebra…}cneg

Fall 2025 CSCI 444: NLP

Loss function

45

LCE = − log[P(+ |w, cpos)P(− |w, cneg)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log P(− |w, cnegj
)]

= − [log P(+ |w, cpos) +
K

∑
j=1

log(1 − P(+ |w, cnegj
)]

= − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

For every word,
context pair…

Cross Entropy

Maximize the similarity of the target with the actual context words in a window of size , and
minimize the similarity of the target with the negative sampled non-neighbor words

L
K > L

Fall 2025 CSCI 444: NLP

Learning the classifier

• How to learn?
• Stochastic gradient descent!
• Iterative process
• Start with randomly initialized weights

• Update the parameters by computing gradients of the loss
w.r..t. parameters

• Stop when the parameters (or, the loss) do not change
much…

• We’ll adjust the word weights to
• make the positive pairs more likely
• and the negative pairs less likely,
• over the entire training set.

46

Fall 2025 CSCI 444: NLP

Intuition of one step of gradient descent

47

Fall 2025 CSCI 444: NLP

SGD: Derivates

48

LCE = − [log σ(w ⋅ cpos) +
K

∑
j=1

log σ(−w ⋅ cnegj
)]

3 different parameters

∂LCE

∂w
= [σ(cpos ⋅ w) − 1]cpos +

K

∑
j=1

[σ(cnegj
⋅ w)]cnegj

∂LCE

∂cpos
= [σ(cpos ⋅ w) − 1]w

∂LCE

∂cnegj

= [σ(cnegj
⋅ w)]w

Update the parameters by
subtracting respective -weighted

gradients
η

Fall 2025 CSCI 444: NLP

SGD: updates

• Start with randomly initialized C and W matrices, then incrementally do updates

49

Fall 2025 CSCI 444: NLP

word2vec: Learned Embeddings

• word2vec learns two sets of embeddings:

• Target embeddings matrix

• Context embedding matrix

• It's common to just add them together,
representing word as the vector

W
C

i wi + ci

50

aardvark

apricot

zebra

aardvark

apricot

zebra

}
}

W
target words

C
context and
noise words

1

|V | + 1

2 |V |

|V |θ =

Fall 2025 CSCI 444: NLP

CBOW and Skipgram

• CBOW: continuous bag of words -
given context, predict which word
might be in the target position

• Skip-gram: given word, predict which
words make the best context

• CBOW is faster than Skip-gram

• Skip-gram generally works better

51

Mikolov et al., 2013. Exploiting Similarities among Languages for Machine Translation.

Why?

Why?

